Abstract

A regional near-infrared (NIR) ocean normalized water-leaving radiance (nLw(λ)) model is proposed for atmospheric correction for ocean color data processing in the western Pacific region, including the Bohai Sea, Yellow Sea, and East China Sea. Our motivation for this work is to derive ocean color products in the highly turbid western Pacific region using the Geostationary Ocean Color Imager (GOCI) onboard South Korean Communication, Ocean, and Meteorological Satellite (COMS). GOCI has eight spectral bands from 412 to 865 nm but does not have shortwave infrared (SWIR) bands that are needed for satellite ocean color remote sensing in the turbid ocean region. Based on a regional empirical relationship between the NIR nLw(λ) and diffuse attenuation coefficient at 490 nm (Kd(490)), which is derived from the long-term measurements with the Moderate-resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, an iterative scheme with the NIR-based atmospheric correction algorithm has been developed. Results from MODIS-Aqua measurements show that ocean color products in the region derived from the new proposed NIR-corrected atmospheric correction algorithm match well with those from the SWIR atmospheric correction algorithm. Thus, the proposed new atmospheric correction method provides an alternative for ocean color data processing for GOCI (and other ocean color satellite sensors without SWIR bands) in the turbid ocean regions of the Bohai Sea, Yellow Sea, and East China Sea, although the SWIR-based atmospheric correction approach is still much preferred. The proposed atmospheric correction methodology can also be applied to other turbid coastal regions.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
    [CrossRef] [PubMed]
  2. IOCCG, “Atmospheric Correction for Remotely-Sensed Ocean-Colour Products,” M. Wang (Ed.), Reports of International Ocean-Colour Coordinating Group, No. 10, IOCCG, Dartmouth, Canada (2010).
  3. J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
    [CrossRef]
  4. J. L. Mueller, “SeaWiFS algorithm for the diffuse attenuation coefficient, K(490), using water-leaving radiances at 490 and 555 nm,” SeaWiFS Postlaunch Tech. Rep. Ser., vol. 11, NASA Tech. Memo. 2000−206892, S. B. Hooker and E. R. Firestone, eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, pp. 24−27 (2000).
  5. A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
    [CrossRef]
  6. M. Wang, S. Son, and J. L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009), doi:.
    [CrossRef]
  7. H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27(5), 862–871 (1988).
    [CrossRef] [PubMed]
  8. H. R. Gordon and M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component,” Appl. Opt. 31(21), 4247–4260 (1992).
    [CrossRef] [PubMed]
  9. M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: Accounting for the effects of ocean surface roughness,” Int. J. Remote Sens. 23(13), 2693–2702 (2002).
    [CrossRef]
  10. M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Remote Sens. 26(24), 5651–5663 (2005).
    [CrossRef]
  11. M. Wang, “A sensitivity study of SeaWiFS atmospheric correction algorithm: Effects of spectral band variations,” Remote Sens. Environ. 67(3), 348–359 (1999).
    [CrossRef]
  12. M. Wang, “Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing,” Appl. Opt. 45(35), 8951–8963 (2006).
    [CrossRef] [PubMed]
  13. A. Morel and D. Antoine, “Heating rate within the upper ocean in relation to its bio-optical state,” J. Phys. Oceanogr. 24(7), 1652–1665 (1994).
    [CrossRef]
  14. Y. Wu, C. Tang, S. Sathyendranath, and T. Platt, “The impact of bio-optical heating on the properties of the upper ocean: A sensitivity study using a 3-D circulation model for the Labrador Sea,” Deep Sea Res. Part II Top. Stud. Oceanogr. 54(23-26), 2630–2642 (2007).
    [CrossRef]
  15. S. Sathyendranath, T. Platt, C. M. Caverhill, R. Warnock, and M. Lewis, “Remote sensing of oceanic primary production: Computations using a spectral model,” Deep-Sea Res. 36(3), 431–453 (1989).
    [CrossRef]
  16. Z. P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
    [CrossRef] [PubMed]
  17. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102(D14), 17081–17106 (1997).
    [CrossRef]
  18. S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102(1-2), 12–23 (2006).
    [CrossRef]
  19. C. R. McClain, “A decade of satellite ocean color observations,” Annu. Rev. Mar. Sci. 1(1), 19–42 (2009).
    [CrossRef] [PubMed]
  20. M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005), doi:.
    [CrossRef]
  21. S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, and D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean color images over turbid waters,” Cont. Shelf Res. 25(4), 539–555 (2005).
    [CrossRef]
  22. D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39(21), 3582–3591 (2000).
    [CrossRef] [PubMed]
  23. K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39(6), 897–912 (2000).
    [CrossRef] [PubMed]
  24. R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters,” SeaWiFS Postlaunch Tech. Rep. Ser., vol. 22, NASA Tech. Memo. 2003−206892, S. B. Hooker and E. R. Firestone, eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, pp. 51−59 (2003).
  25. S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18(7), 7521–7527 (2010).
    [CrossRef] [PubMed]
  26. M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007).
    [CrossRef] [PubMed]
  27. M. Wang and W. Shi, “The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing,” Opt. Express 15(24), 15722–15733 (2007).
    [CrossRef] [PubMed]
  28. M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithm using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
    [CrossRef]
  29. M. Wang, J. Tang, and W. Shi, “MODIS-derived ocean color products along the China east coastal region,” Geophys. Res. Lett. 34(6), L06611 (2007), doi:.
    [CrossRef]
  30. M. Wang, W. Shi, and J. Tang, “Water property monitoring and assessment for China's inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ. 115(3), 841–854 (2011), doi:.
    [CrossRef]
  31. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 µm wavelength region,” Appl. Opt. 12(3), 555–563 (1973).
    [CrossRef] [PubMed]
  32. W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ. 113(8), 1587–1597 (2009).
    [CrossRef]
  33. W. Shi and M. Wang, “Characterization of global ocean turbidity from Moderate Resolution Imaging Spectroradiometer ocean color observations,” J. Geophys. Res. 115(C11), C11022 (2010), doi:.
    [CrossRef]
  34. W. Shi and M. Wang, “Satellite observations of the seasonal sediment plume in central East China Sea,” J. Mar. Syst. 82(4), 280–285 (2010), doi:.
    [CrossRef]
  35. M. Zhang, J. Tang, Q. Dong, Q. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
    [CrossRef]
  36. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
    [CrossRef]
  37. M. Wang, K. D. Knobelspiesse, and C. R. McClain, “Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products,” J. Geophys. Res. 110(D10), D10S06 (2005), doi:.
    [CrossRef]
  38. M. Wang and W. Shi, “Satellite observed algae blooms in China's Lake Taihu,” Eos Trans. AGU 89(22), 201–202 (2008), doi:.
    [CrossRef]
  39. W. Shi, M. Wang, X. Li, and W. G. Pichel, “Ocean sand ridge signatures in the Bohai Sea observed by satellite ocean color and synthetic aperture radar measurements,” Remote Sens. Environ. 115(8), 1926–1934 (2011), doi:.
    [CrossRef]
  40. S. Son, M. Wang, and J. Shon, “Satellite observations of optical and biological properties in the Korean dump site of the Yellow Sea,” Remote Sens. Environ. 115(2), 562–572 (2011), doi:.
    [CrossRef]
  41. S. Son and M. Wang, “Environmental responses to a land reclamation project in South Korea,” Eos Trans. AGU 90(44), 398–399 (2009).
    [CrossRef]
  42. W. Shi, M. Wang, and L. Jiang, “Spring-neap tidal effects on satellite ocean color observations in the Bohai Sea, Yellow Sea, and East China Sea,” J. Geophys. Res. 116, C12932 (2011), doi:.
    [CrossRef]

2011 (4)

M. Wang, W. Shi, and J. Tang, “Water property monitoring and assessment for China's inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ. 115(3), 841–854 (2011), doi:.
[CrossRef]

W. Shi, M. Wang, X. Li, and W. G. Pichel, “Ocean sand ridge signatures in the Bohai Sea observed by satellite ocean color and synthetic aperture radar measurements,” Remote Sens. Environ. 115(8), 1926–1934 (2011), doi:.
[CrossRef]

S. Son, M. Wang, and J. Shon, “Satellite observations of optical and biological properties in the Korean dump site of the Yellow Sea,” Remote Sens. Environ. 115(2), 562–572 (2011), doi:.
[CrossRef]

W. Shi, M. Wang, and L. Jiang, “Spring-neap tidal effects on satellite ocean color observations in the Bohai Sea, Yellow Sea, and East China Sea,” J. Geophys. Res. 116, C12932 (2011), doi:.
[CrossRef]

2010 (4)

W. Shi and M. Wang, “Characterization of global ocean turbidity from Moderate Resolution Imaging Spectroradiometer ocean color observations,” J. Geophys. Res. 115(C11), C11022 (2010), doi:.
[CrossRef]

W. Shi and M. Wang, “Satellite observations of the seasonal sediment plume in central East China Sea,” J. Mar. Syst. 82(4), 280–285 (2010), doi:.
[CrossRef]

M. Zhang, J. Tang, Q. Dong, Q. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[CrossRef]

S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18(7), 7521–7527 (2010).
[CrossRef] [PubMed]

2009 (5)

S. Son and M. Wang, “Environmental responses to a land reclamation project in South Korea,” Eos Trans. AGU 90(44), 398–399 (2009).
[CrossRef]

W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ. 113(8), 1587–1597 (2009).
[CrossRef]

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithm using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[CrossRef]

C. R. McClain, “A decade of satellite ocean color observations,” Annu. Rev. Mar. Sci. 1(1), 19–42 (2009).
[CrossRef] [PubMed]

M. Wang, S. Son, and J. L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009), doi:.
[CrossRef]

2008 (1)

M. Wang and W. Shi, “Satellite observed algae blooms in China's Lake Taihu,” Eos Trans. AGU 89(22), 201–202 (2008), doi:.
[CrossRef]

2007 (5)

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[CrossRef]

Y. Wu, C. Tang, S. Sathyendranath, and T. Platt, “The impact of bio-optical heating on the properties of the upper ocean: A sensitivity study using a 3-D circulation model for the Labrador Sea,” Deep Sea Res. Part II Top. Stud. Oceanogr. 54(23-26), 2630–2642 (2007).
[CrossRef]

M. Wang, J. Tang, and W. Shi, “MODIS-derived ocean color products along the China east coastal region,” Geophys. Res. Lett. 34(6), L06611 (2007), doi:.
[CrossRef]

M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007).
[CrossRef] [PubMed]

M. Wang and W. Shi, “The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing,” Opt. Express 15(24), 15722–15733 (2007).
[CrossRef] [PubMed]

2006 (2)

M. Wang, “Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing,” Appl. Opt. 45(35), 8951–8963 (2006).
[CrossRef] [PubMed]

S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102(1-2), 12–23 (2006).
[CrossRef]

2005 (4)

M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005), doi:.
[CrossRef]

S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, and D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean color images over turbid waters,” Cont. Shelf Res. 25(4), 539–555 (2005).
[CrossRef]

M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Remote Sens. 26(24), 5651–5663 (2005).
[CrossRef]

M. Wang, K. D. Knobelspiesse, and C. R. McClain, “Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products,” J. Geophys. Res. 110(D10), D10S06 (2005), doi:.
[CrossRef]

2002 (2)

Z. P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
[CrossRef] [PubMed]

M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: Accounting for the effects of ocean surface roughness,” Int. J. Remote Sens. 23(13), 2693–2702 (2002).
[CrossRef]

2000 (2)

1999 (1)

M. Wang, “A sensitivity study of SeaWiFS atmospheric correction algorithm: Effects of spectral band variations,” Remote Sens. Environ. 67(3), 348–359 (1999).
[CrossRef]

1998 (1)

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[CrossRef]

1997 (1)

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102(D14), 17081–17106 (1997).
[CrossRef]

1994 (2)

A. Morel and D. Antoine, “Heating rate within the upper ocean in relation to its bio-optical state,” J. Phys. Oceanogr. 24(7), 1652–1665 (1994).
[CrossRef]

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[CrossRef] [PubMed]

1992 (1)

1989 (1)

S. Sathyendranath, T. Platt, C. M. Caverhill, R. Warnock, and M. Lewis, “Remote sensing of oceanic primary production: Computations using a spectral model,” Deep-Sea Res. 36(3), 431–453 (1989).
[CrossRef]

1988 (2)

H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27(5), 862–871 (1988).
[CrossRef] [PubMed]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[CrossRef]

1973 (1)

Aiken, J.

S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, and D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean color images over turbid waters,” Cont. Shelf Res. 25(4), 539–555 (2005).
[CrossRef]

Antoine, D.

A. Morel and D. Antoine, “Heating rate within the upper ocean in relation to its bio-optical state,” J. Phys. Oceanogr. 24(7), 1652–1665 (1994).
[CrossRef]

Arnone, R. A.

Bailey, S. W.

S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18(7), 7521–7527 (2010).
[CrossRef] [PubMed]

S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102(1-2), 12–23 (2006).
[CrossRef]

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[CrossRef]

Blondeau-Patissier, D.

S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, and D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean color images over turbid waters,” Cont. Shelf Res. 25(4), 539–555 (2005).
[CrossRef]

Brown, J. W.

H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27(5), 862–871 (1988).
[CrossRef] [PubMed]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[CrossRef]

Brown, O. B.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[CrossRef]

Carder, K. L.

Z. P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
[CrossRef] [PubMed]

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[CrossRef]

Caverhill, C. M.

S. Sathyendranath, T. Platt, C. M. Caverhill, R. Warnock, and M. Lewis, “Remote sensing of oceanic primary production: Computations using a spectral model,” Deep-Sea Res. 36(3), 431–453 (1989).
[CrossRef]

Clark, D. K.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[CrossRef]

Ding, J.

M. Zhang, J. Tang, Q. Dong, Q. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[CrossRef]

Dong, Q.

M. Zhang, J. Tang, Q. Dong, Q. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[CrossRef]

Evans, R. H.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[CrossRef]

H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27(5), 862–871 (1988).
[CrossRef] [PubMed]

Franz, B. A.

S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18(7), 7521–7527 (2010).
[CrossRef] [PubMed]

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[CrossRef]

Garver, S. A.

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[CrossRef]

Gentili, B.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[CrossRef]

Gordon, H. R.

Hale, G. M.

Harding, J. L. W.

M. Wang, S. Son, and J. L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009), doi:.
[CrossRef]

Hooker, S. B.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[CrossRef]

Huot, Y.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[CrossRef]

Jiang, L.

W. Shi, M. Wang, and L. Jiang, “Spring-neap tidal effects on satellite ocean color observations in the Bohai Sea, Yellow Sea, and East China Sea,” J. Geophys. Res. 116, C12932 (2011), doi:.
[CrossRef]

Kahru, M.

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[CrossRef]

Knobelspiesse, K. D.

M. Wang, K. D. Knobelspiesse, and C. R. McClain, “Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products,” J. Geophys. Res. 110(D10), D10S06 (2005), doi:.
[CrossRef]

Lavender, S. J.

S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, and D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean color images over turbid waters,” Cont. Shelf Res. 25(4), 539–555 (2005).
[CrossRef]

Lee, Z. P.

Lewis, M.

S. Sathyendranath, T. Platt, C. M. Caverhill, R. Warnock, and M. Lewis, “Remote sensing of oceanic primary production: Computations using a spectral model,” Deep-Sea Res. 36(3), 431–453 (1989).
[CrossRef]

Li, X.

W. Shi, M. Wang, X. Li, and W. G. Pichel, “Ocean sand ridge signatures in the Bohai Sea observed by satellite ocean color and synthetic aperture radar measurements,” Remote Sens. Environ. 115(8), 1926–1934 (2011), doi:.
[CrossRef]

Maritorena, S.

D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39(21), 3582–3591 (2000).
[CrossRef] [PubMed]

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[CrossRef]

McClain, C. R.

C. R. McClain, “A decade of satellite ocean color observations,” Annu. Rev. Mar. Sci. 1(1), 19–42 (2009).
[CrossRef] [PubMed]

M. Wang, K. D. Knobelspiesse, and C. R. McClain, “Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products,” J. Geophys. Res. 110(D10), D10S06 (2005), doi:.
[CrossRef]

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[CrossRef]

Mitchell, B. G.

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[CrossRef]

Moore, G. F.

S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, and D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean color images over turbid waters,” Cont. Shelf Res. 25(4), 539–555 (2005).
[CrossRef]

Morel, A.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[CrossRef]

A. Morel and D. Antoine, “Heating rate within the upper ocean in relation to its bio-optical state,” J. Phys. Oceanogr. 24(7), 1652–1665 (1994).
[CrossRef]

O'Reilly, J. E.

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[CrossRef]

Ovidio, F.

Pichel, W. G.

W. Shi, M. Wang, X. Li, and W. G. Pichel, “Ocean sand ridge signatures in the Bohai Sea observed by satellite ocean color and synthetic aperture radar measurements,” Remote Sens. Environ. 115(8), 1926–1934 (2011), doi:.
[CrossRef]

Pinkerton, M. H.

S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, and D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean color images over turbid waters,” Cont. Shelf Res. 25(4), 539–555 (2005).
[CrossRef]

Platt, T.

Y. Wu, C. Tang, S. Sathyendranath, and T. Platt, “The impact of bio-optical heating on the properties of the upper ocean: A sensitivity study using a 3-D circulation model for the Labrador Sea,” Deep Sea Res. Part II Top. Stud. Oceanogr. 54(23-26), 2630–2642 (2007).
[CrossRef]

S. Sathyendranath, T. Platt, C. M. Caverhill, R. Warnock, and M. Lewis, “Remote sensing of oceanic primary production: Computations using a spectral model,” Deep-Sea Res. 36(3), 431–453 (1989).
[CrossRef]

Querry, M. R.

Rijkeboer, M.

Robinson, W.

Ruddick, K. G.

Sathyendranath, S.

Y. Wu, C. Tang, S. Sathyendranath, and T. Platt, “The impact of bio-optical heating on the properties of the upper ocean: A sensitivity study using a 3-D circulation model for the Labrador Sea,” Deep Sea Res. Part II Top. Stud. Oceanogr. 54(23-26), 2630–2642 (2007).
[CrossRef]

S. Sathyendranath, T. Platt, C. M. Caverhill, R. Warnock, and M. Lewis, “Remote sensing of oceanic primary production: Computations using a spectral model,” Deep-Sea Res. 36(3), 431–453 (1989).
[CrossRef]

Shi, W.

M. Wang, W. Shi, and J. Tang, “Water property monitoring and assessment for China's inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ. 115(3), 841–854 (2011), doi:.
[CrossRef]

W. Shi, M. Wang, and L. Jiang, “Spring-neap tidal effects on satellite ocean color observations in the Bohai Sea, Yellow Sea, and East China Sea,” J. Geophys. Res. 116, C12932 (2011), doi:.
[CrossRef]

W. Shi, M. Wang, X. Li, and W. G. Pichel, “Ocean sand ridge signatures in the Bohai Sea observed by satellite ocean color and synthetic aperture radar measurements,” Remote Sens. Environ. 115(8), 1926–1934 (2011), doi:.
[CrossRef]

W. Shi and M. Wang, “Characterization of global ocean turbidity from Moderate Resolution Imaging Spectroradiometer ocean color observations,” J. Geophys. Res. 115(C11), C11022 (2010), doi:.
[CrossRef]

W. Shi and M. Wang, “Satellite observations of the seasonal sediment plume in central East China Sea,” J. Mar. Syst. 82(4), 280–285 (2010), doi:.
[CrossRef]

W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ. 113(8), 1587–1597 (2009).
[CrossRef]

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithm using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[CrossRef]

M. Wang and W. Shi, “Satellite observed algae blooms in China's Lake Taihu,” Eos Trans. AGU 89(22), 201–202 (2008), doi:.
[CrossRef]

M. Wang, J. Tang, and W. Shi, “MODIS-derived ocean color products along the China east coastal region,” Geophys. Res. Lett. 34(6), L06611 (2007), doi:.
[CrossRef]

M. Wang and W. Shi, “The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing,” Opt. Express 15(24), 15722–15733 (2007).
[CrossRef] [PubMed]

M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005), doi:.
[CrossRef]

Shon, J.

S. Son, M. Wang, and J. Shon, “Satellite observations of optical and biological properties in the Korean dump site of the Yellow Sea,” Remote Sens. Environ. 115(2), 562–572 (2011), doi:.
[CrossRef]

Siegel, D. A.

D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39(21), 3582–3591 (2000).
[CrossRef] [PubMed]

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[CrossRef]

Smith, R. C.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[CrossRef]

Son, S.

S. Son, M. Wang, and J. Shon, “Satellite observations of optical and biological properties in the Korean dump site of the Yellow Sea,” Remote Sens. Environ. 115(2), 562–572 (2011), doi:.
[CrossRef]

S. Son and M. Wang, “Environmental responses to a land reclamation project in South Korea,” Eos Trans. AGU 90(44), 398–399 (2009).
[CrossRef]

M. Wang, S. Son, and J. L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009), doi:.
[CrossRef]

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithm using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[CrossRef]

Song, Q.

M. Zhang, J. Tang, Q. Dong, Q. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[CrossRef]

Tang, C.

Y. Wu, C. Tang, S. Sathyendranath, and T. Platt, “The impact of bio-optical heating on the properties of the upper ocean: A sensitivity study using a 3-D circulation model for the Labrador Sea,” Deep Sea Res. Part II Top. Stud. Oceanogr. 54(23-26), 2630–2642 (2007).
[CrossRef]

Tang, J.

M. Wang, W. Shi, and J. Tang, “Water property monitoring and assessment for China's inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ. 115(3), 841–854 (2011), doi:.
[CrossRef]

M. Zhang, J. Tang, Q. Dong, Q. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[CrossRef]

M. Wang, J. Tang, and W. Shi, “MODIS-derived ocean color products along the China east coastal region,” Geophys. Res. Lett. 34(6), L06611 (2007), doi:.
[CrossRef]

Wang, M.

M. Wang, W. Shi, and J. Tang, “Water property monitoring and assessment for China's inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ. 115(3), 841–854 (2011), doi:.
[CrossRef]

S. Son, M. Wang, and J. Shon, “Satellite observations of optical and biological properties in the Korean dump site of the Yellow Sea,” Remote Sens. Environ. 115(2), 562–572 (2011), doi:.
[CrossRef]

W. Shi, M. Wang, X. Li, and W. G. Pichel, “Ocean sand ridge signatures in the Bohai Sea observed by satellite ocean color and synthetic aperture radar measurements,” Remote Sens. Environ. 115(8), 1926–1934 (2011), doi:.
[CrossRef]

W. Shi, M. Wang, and L. Jiang, “Spring-neap tidal effects on satellite ocean color observations in the Bohai Sea, Yellow Sea, and East China Sea,” J. Geophys. Res. 116, C12932 (2011), doi:.
[CrossRef]

W. Shi and M. Wang, “Satellite observations of the seasonal sediment plume in central East China Sea,” J. Mar. Syst. 82(4), 280–285 (2010), doi:.
[CrossRef]

W. Shi and M. Wang, “Characterization of global ocean turbidity from Moderate Resolution Imaging Spectroradiometer ocean color observations,” J. Geophys. Res. 115(C11), C11022 (2010), doi:.
[CrossRef]

W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ. 113(8), 1587–1597 (2009).
[CrossRef]

S. Son and M. Wang, “Environmental responses to a land reclamation project in South Korea,” Eos Trans. AGU 90(44), 398–399 (2009).
[CrossRef]

M. Wang, S. Son, and J. L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009), doi:.
[CrossRef]

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithm using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[CrossRef]

M. Wang and W. Shi, “Satellite observed algae blooms in China's Lake Taihu,” Eos Trans. AGU 89(22), 201–202 (2008), doi:.
[CrossRef]

M. Wang, J. Tang, and W. Shi, “MODIS-derived ocean color products along the China east coastal region,” Geophys. Res. Lett. 34(6), L06611 (2007), doi:.
[CrossRef]

M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007).
[CrossRef] [PubMed]

M. Wang and W. Shi, “The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing,” Opt. Express 15(24), 15722–15733 (2007).
[CrossRef] [PubMed]

M. Wang, “Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing,” Appl. Opt. 45(35), 8951–8963 (2006).
[CrossRef] [PubMed]

M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Remote Sens. 26(24), 5651–5663 (2005).
[CrossRef]

M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005), doi:.
[CrossRef]

M. Wang, K. D. Knobelspiesse, and C. R. McClain, “Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products,” J. Geophys. Res. 110(D10), D10S06 (2005), doi:.
[CrossRef]

M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: Accounting for the effects of ocean surface roughness,” Int. J. Remote Sens. 23(13), 2693–2702 (2002).
[CrossRef]

D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39(21), 3582–3591 (2000).
[CrossRef] [PubMed]

M. Wang, “A sensitivity study of SeaWiFS atmospheric correction algorithm: Effects of spectral band variations,” Remote Sens. Environ. 67(3), 348–359 (1999).
[CrossRef]

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[CrossRef] [PubMed]

H. R. Gordon and M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component,” Appl. Opt. 31(21), 4247–4260 (1992).
[CrossRef] [PubMed]

Warnock, R.

S. Sathyendranath, T. Platt, C. M. Caverhill, R. Warnock, and M. Lewis, “Remote sensing of oceanic primary production: Computations using a spectral model,” Deep-Sea Res. 36(3), 431–453 (1989).
[CrossRef]

Werdell, P. J.

S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18(7), 7521–7527 (2010).
[CrossRef] [PubMed]

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[CrossRef]

S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102(1-2), 12–23 (2006).
[CrossRef]

Wu, Y.

Y. Wu, C. Tang, S. Sathyendranath, and T. Platt, “The impact of bio-optical heating on the properties of the upper ocean: A sensitivity study using a 3-D circulation model for the Labrador Sea,” Deep Sea Res. Part II Top. Stud. Oceanogr. 54(23-26), 2630–2642 (2007).
[CrossRef]

Zhang, M.

M. Zhang, J. Tang, Q. Dong, Q. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[CrossRef]

Annu. Rev. Mar. Sci. (1)

C. R. McClain, “A decade of satellite ocean color observations,” Annu. Rev. Mar. Sci. 1(1), 19–42 (2009).
[CrossRef] [PubMed]

Appl. Opt. (9)

G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 µm wavelength region,” Appl. Opt. 12(3), 555–563 (1973).
[CrossRef] [PubMed]

H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27(5), 862–871 (1988).
[CrossRef] [PubMed]

H. R. Gordon and M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component,” Appl. Opt. 31(21), 4247–4260 (1992).
[CrossRef] [PubMed]

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[CrossRef] [PubMed]

K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39(6), 897–912 (2000).
[CrossRef] [PubMed]

D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39(21), 3582–3591 (2000).
[CrossRef] [PubMed]

Z. P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
[CrossRef] [PubMed]

M. Wang, “Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing,” Appl. Opt. 45(35), 8951–8963 (2006).
[CrossRef] [PubMed]

M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007).
[CrossRef] [PubMed]

Cont. Shelf Res. (1)

S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, and D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean color images over turbid waters,” Cont. Shelf Res. 25(4), 539–555 (2005).
[CrossRef]

Deep Sea Res. Part II Top. Stud. Oceanogr. (1)

Y. Wu, C. Tang, S. Sathyendranath, and T. Platt, “The impact of bio-optical heating on the properties of the upper ocean: A sensitivity study using a 3-D circulation model for the Labrador Sea,” Deep Sea Res. Part II Top. Stud. Oceanogr. 54(23-26), 2630–2642 (2007).
[CrossRef]

Deep-Sea Res. (1)

S. Sathyendranath, T. Platt, C. M. Caverhill, R. Warnock, and M. Lewis, “Remote sensing of oceanic primary production: Computations using a spectral model,” Deep-Sea Res. 36(3), 431–453 (1989).
[CrossRef]

Eos Trans. AGU (2)

M. Wang and W. Shi, “Satellite observed algae blooms in China's Lake Taihu,” Eos Trans. AGU 89(22), 201–202 (2008), doi:.
[CrossRef]

S. Son and M. Wang, “Environmental responses to a land reclamation project in South Korea,” Eos Trans. AGU 90(44), 398–399 (2009).
[CrossRef]

Geophys. Res. Lett. (2)

M. Wang, J. Tang, and W. Shi, “MODIS-derived ocean color products along the China east coastal region,” Geophys. Res. Lett. 34(6), L06611 (2007), doi:.
[CrossRef]

M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005), doi:.
[CrossRef]

Int. J. Remote Sens. (2)

M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: Accounting for the effects of ocean surface roughness,” Int. J. Remote Sens. 23(13), 2693–2702 (2002).
[CrossRef]

M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Remote Sens. 26(24), 5651–5663 (2005).
[CrossRef]

J. Geophys. Res. (7)

M. Wang, S. Son, and J. L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009), doi:.
[CrossRef]

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[CrossRef]

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102(D14), 17081–17106 (1997).
[CrossRef]

W. Shi and M. Wang, “Characterization of global ocean turbidity from Moderate Resolution Imaging Spectroradiometer ocean color observations,” J. Geophys. Res. 115(C11), C11022 (2010), doi:.
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[CrossRef]

M. Wang, K. D. Knobelspiesse, and C. R. McClain, “Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products,” J. Geophys. Res. 110(D10), D10S06 (2005), doi:.
[CrossRef]

W. Shi, M. Wang, and L. Jiang, “Spring-neap tidal effects on satellite ocean color observations in the Bohai Sea, Yellow Sea, and East China Sea,” J. Geophys. Res. 116, C12932 (2011), doi:.
[CrossRef]

J. Mar. Syst. (1)

W. Shi and M. Wang, “Satellite observations of the seasonal sediment plume in central East China Sea,” J. Mar. Syst. 82(4), 280–285 (2010), doi:.
[CrossRef]

J. Phys. Oceanogr. (1)

A. Morel and D. Antoine, “Heating rate within the upper ocean in relation to its bio-optical state,” J. Phys. Oceanogr. 24(7), 1652–1665 (1994).
[CrossRef]

Opt. Express (2)

Remote Sens. Environ. (9)

M. Zhang, J. Tang, Q. Dong, Q. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[CrossRef]

M. Wang, W. Shi, and J. Tang, “Water property monitoring and assessment for China's inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ. 115(3), 841–854 (2011), doi:.
[CrossRef]

W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ. 113(8), 1587–1597 (2009).
[CrossRef]

W. Shi, M. Wang, X. Li, and W. G. Pichel, “Ocean sand ridge signatures in the Bohai Sea observed by satellite ocean color and synthetic aperture radar measurements,” Remote Sens. Environ. 115(8), 1926–1934 (2011), doi:.
[CrossRef]

S. Son, M. Wang, and J. Shon, “Satellite observations of optical and biological properties in the Korean dump site of the Yellow Sea,” Remote Sens. Environ. 115(2), 562–572 (2011), doi:.
[CrossRef]

M. Wang, “A sensitivity study of SeaWiFS atmospheric correction algorithm: Effects of spectral band variations,” Remote Sens. Environ. 67(3), 348–359 (1999).
[CrossRef]

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[CrossRef]

S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102(1-2), 12–23 (2006).
[CrossRef]

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithm using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[CrossRef]

Other (3)

R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters,” SeaWiFS Postlaunch Tech. Rep. Ser., vol. 22, NASA Tech. Memo. 2003−206892, S. B. Hooker and E. R. Firestone, eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, pp. 51−59 (2003).

IOCCG, “Atmospheric Correction for Remotely-Sensed Ocean-Colour Products,” M. Wang (Ed.), Reports of International Ocean-Colour Coordinating Group, No. 10, IOCCG, Dartmouth, Canada (2010).

J. L. Mueller, “SeaWiFS algorithm for the diffuse attenuation coefficient, K(490), using water-leaving radiances at 490 and 555 nm,” SeaWiFS Postlaunch Tech. Rep. Ser., vol. 11, NASA Tech. Memo. 2000−206892, S. B. Hooker and E. R. Firestone, eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, pp. 24−27 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Map of the western Pacific region, which includes the Bohai Sea, Yellow Sea, and East China Sea with isobaths of 20, 50, and 100 m. The highly turbid waters in this study are outlined in the box with marked pseudo-stations l (33.24°N, 121.87°E) and 2 (33.07°N, 121.43°E) for detailed data analyses.

Fig. 2
Fig. 2

Scatter plots and empirical polynomial fitting functions for (a) nLw(748) vs. Kd(490) and (b) nLw(869) vs. nLw(748). Note that nLw(748), nLw(869), and Kd(490) were derived from MODIS-Aqua measurements (2002 to 2009) using the SWIR atmospheric correction algorithm in this region.

Fig. 3
Fig. 3

Schematic flow chart of the new NIR-corrected atmospheric correction algorithm for MODIS-Aqua ocean color data processing in the western Pacific region.

Fig. 4
Fig. 4

Changes of nLw(748) and nLw(869) estimations as a function of the number of iterations using the NIR-corrected atmospheric correction algorithm for the case of (a) at station 1 and (b) at station 2 for MODIS-Aqua measurements acquired on October 19, 2003. The final Kd(490) values for plots (a) and (b) are 1.96 and 3.49 m−1, respectively.

Fig. 5
Fig. 5

Comparisons of ocean color retrievals on October 19, 2003 derived from the SWIR atmospheric correction (lower panel) and from the NIR-corrected atmospheric correction (upper panel) for Kd(490) (5(a) and 5(h)), nLw(443) (5(b) and 5(i)), nLw(551) (5(c) and 5(j)), nLw(645) (5(d) and 5(k)), nLw(748) (5(e) and 5(l)), nLw(869) (5(f) and 5(m)), and τa(869) (5(g) and 5(n)).

Fig. 6
Fig. 6

nLw(λ) spectra derived from the new NIR-corrected atmospheric correction and the SWIR atmospheric correction algorithm for case of (a) at station 1 and (b) at station 2 for MODIS-Aqua measurements acquired on October 19, 2003. For comparison, nLw(λ) spectra derived from standard-NIR atmospheric correction algorithm are also shown in plots (a) and (b).

Fig. 7
Fig. 7

Matchups of the MODIS-Aqua-measured nLw(λ) spectra (from 2002 to 2010) derived from the new NIR-corrected and SWIR atmospheric correction algorithms for (a) nLw(748) and nLw(869) at station 1, (b) nLw(748) and nLw(869) at station 2, (c) all nLw(λ) in the visible and NIR bands at station 1, and (d) all nLw(λ) in the visible and NIR bands at station 2.

Fig. 8
Fig. 8

Comparison of composites of MODIS-Aqua ocean color retrievals in 2010 derived from the new NIR-corrected and the SWIR atmospheric correction algorithms for nLw(443) (8(a) and 8(g)), nLw(488) (8(b) and 8(h)), nLw(551) (8(c) and 8(i)), nLw(645) (8(d) and 8(j)), nLw(748) (8(e) and 8(k)), and nLw(869) (8(f) and 8(l)).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n L w ( 748 )= c 1 K d ( 490 )+ c 2 K d ( 490 ) 2 + c 3 K d ( 490 ) 3 + c 4 K d ( 490 ) 4 ,
n L w ( 869 )= b 1 n L w ( 748 )+ b 2 n L w ( 748 ) 2 ,

Metrics