Abstract

We demonstrate electrically-controlled active tuning of mid-infrared metamaterial resonances using depletion-type devices. The depletion width in an n-doped GaAs epilayer changes with an electric bias, inducing a change of the permittivity of the substrate and leading to frequency tuning of the resonance. We first present our detailed theoretical analysis and then explain experimental data of bias-dependent metamaterial transmission spectra. This electrical tuning is generally applicable to a variety of infrared metamaterials and plasmonic structures, which can find novel applications in chip-scale active infrared devices.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [CrossRef] [PubMed]
  2. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [CrossRef]
  3. W. Cai and V. M. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2009).
  4. Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
    [CrossRef] [PubMed]
  5. N. I. Zheludev, “A roadmap for metamaterials,” Opt. Photonics News 22(3), 30–35 (2011).
    [CrossRef]
  6. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).
  7. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
    [CrossRef] [PubMed]
  8. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
    [CrossRef] [PubMed]
  9. D. H. Werner, D.-H. Kwon, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices,” Opt. Express 15(6), 3342–3347 (2007).
    [CrossRef] [PubMed]
  10. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
    [CrossRef] [PubMed]
  11. T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
    [CrossRef] [PubMed]
  12. E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S.-Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91(17), 173105 (2007).
    [CrossRef]
  13. D. J. Cho, W. Wu, E. Ponizovskaya, P. Chaturvedi, A. M. Bratkovsky, S.-Y. Wang, X. Zhang, F. Wang, and Y. R. Shen, “Ultrafast modulation of optical metamaterials,” Opt. Express 17(20), 17652–17657 (2009).
    [CrossRef] [PubMed]
  14. H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [CrossRef] [PubMed]
  15. B. S. Passmore, D. G. Allen, S. R. Vangala, W. D. Goodhue, D. Wasserman, and E. A. Shaner, “Mid-infrared doping tunable transmission through subwavelength metal hole arrays on InSb,” Opt. Express 17(12), 10223–10230 (2009).
    [CrossRef] [PubMed]
  16. X. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: Toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
    [CrossRef]
  17. K. Anglin, T. Ribaudo, D. C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” J. Appl. Phys. 109(12), 123103 (2011).
    [CrossRef]
  18. M. Osawa, “Surface-enhanced infrared absorption,” in Near-Field Optics and Surface Plasmon Polaritons, S. Kawata, ed. (Springer-Verlag, 2001). p. 163.
  19. M. Vollmer and K.-P. Möllmann, Infrared Thermal Imaging: Fundamentals, Research, and Applications (Wiley-VCH, 2010).
  20. R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
    [CrossRef]
  21. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1995).
  22. “Semiconductors on NSM,” http://www.ioffe.ru/SVA/NSM/Semicond/ .
  23. A. Raymond, J. L. Robert, and C. Bernard, “The electron effective mass in heavily doped GaAs,” J. Phys. C Solid State Phys. 12(12), 2289–2293 (1979).
    [CrossRef]
  24. M. Cardona, “Electron effective masses of InAs and GaAs as a function of temperature and doping,” Phys. Rev. 121(3), 752–758 (1961).
    [CrossRef]
  25. J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53(10), R123–R181 (1982).
    [CrossRef]
  26. R. F. Pierret, Semiconductor Device Fundamentals (Addison Wesley, 1996)
  27. Lumerical Simulations, http://www.lumerical.com
  28. E. D. Palik, Handbook of Optical Constants and Solids (Academic, 1985).
  29. D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
    [CrossRef]
  30. C. J. Sandroff, R. N. Nottenburg, J.-C. Bischoff, and R. Bhat, “Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation,” Appl. Phys. Lett. 51(1), 33–35 (1987).
    [CrossRef]
  31. T. Ohno, “Sulfur passivation of GaAs surfaces,” Phys. Rev. B Condens. Matter 44(12), 6306–6311 (1991).
    [CrossRef] [PubMed]
  32. E. A. Shaner, J. G. Cederberg, and D. Wasserman, “Electrically tunable extraordinary optical transmission gratings,” Appl. Phys. Lett. 91(18), 181110 (2007).
    [CrossRef]

2011 (4)

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[CrossRef] [PubMed]

N. I. Zheludev, “A roadmap for metamaterials,” Opt. Photonics News 22(3), 30–35 (2011).
[CrossRef]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

K. Anglin, T. Ribaudo, D. C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” J. Appl. Phys. 109(12), 123103 (2011).
[CrossRef]

2010 (2)

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

X. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: Toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[CrossRef]

2009 (5)

2007 (4)

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S.-Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91(17), 173105 (2007).
[CrossRef]

E. A. Shaner, J. G. Cederberg, and D. Wasserman, “Electrically tunable extraordinary optical transmission gratings,” Appl. Phys. Lett. 91(18), 181110 (2007).
[CrossRef]

D. H. Werner, D.-H. Kwon, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices,” Opt. Express 15(6), 3342–3347 (2007).
[CrossRef] [PubMed]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

2006 (2)

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

2001 (1)

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

1991 (1)

T. Ohno, “Sulfur passivation of GaAs surfaces,” Phys. Rev. B Condens. Matter 44(12), 6306–6311 (1991).
[CrossRef] [PubMed]

1987 (1)

C. J. Sandroff, R. N. Nottenburg, J.-C. Bischoff, and R. Bhat, “Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation,” Appl. Phys. Lett. 51(1), 33–35 (1987).
[CrossRef]

1982 (1)

J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53(10), R123–R181 (1982).
[CrossRef]

1979 (1)

A. Raymond, J. L. Robert, and C. Bernard, “The electron effective mass in heavily doped GaAs,” J. Phys. C Solid State Phys. 12(12), 2289–2293 (1979).
[CrossRef]

1961 (1)

M. Cardona, “Electron effective masses of InAs and GaAs as a function of temperature and doping,” Phys. Rev. 121(3), 752–758 (1961).
[CrossRef]

Adams, D. C.

K. Anglin, T. Ribaudo, D. C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” J. Appl. Phys. 109(12), 123103 (2011).
[CrossRef]

Allen, D. G.

Anglin, K.

K. Anglin, T. Ribaudo, D. C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” J. Appl. Phys. 109(12), 123103 (2011).
[CrossRef]

Atwater, H. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[CrossRef] [PubMed]

Averitt, R. D.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Aydin, K.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[CrossRef] [PubMed]

Basov, D. N.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

Bernard, C.

A. Raymond, J. L. Robert, and C. Bernard, “The electron effective mass in heavily doped GaAs,” J. Phys. C Solid State Phys. 12(12), 2289–2293 (1979).
[CrossRef]

Bethea, C. G.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Bhat, R.

C. J. Sandroff, R. N. Nottenburg, J.-C. Bischoff, and R. Bhat, “Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation,” Appl. Phys. Lett. 51(1), 33–35 (1987).
[CrossRef]

Bischoff, J.-C.

C. J. Sandroff, R. N. Nottenburg, J.-C. Bischoff, and R. Bhat, “Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation,” Appl. Phys. Lett. 51(1), 33–35 (1987).
[CrossRef]

Blakemore, J. S.

J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53(10), R123–R181 (1982).
[CrossRef]

Boyd, E. M.

Bratkovsky, A. M.

D. J. Cho, W. Wu, E. Ponizovskaya, P. Chaturvedi, A. M. Bratkovsky, S.-Y. Wang, X. Zhang, F. Wang, and Y. R. Shen, “Ultrafast modulation of optical metamaterials,” Opt. Express 17(20), 17652–17657 (2009).
[CrossRef] [PubMed]

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S.-Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91(17), 173105 (2007).
[CrossRef]

Brener, I.

X. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: Toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[CrossRef]

Briggs, R. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

Capasso, F.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Cardona, M.

M. Cardona, “Electron effective masses of InAs and GaAs as a function of temperature and doping,” Phys. Rev. 121(3), 752–758 (1961).
[CrossRef]

Cederberg, J. G.

E. A. Shaner, J. G. Cederberg, and D. Wasserman, “Electrically tunable extraordinary optical transmission gratings,” Appl. Phys. Lett. 91(18), 181110 (2007).
[CrossRef]

Chae, B.-G.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

Chaturvedi, P.

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Cho, A. Y.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Cho, D. J.

Curti, F. G.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Di Ventra, M.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

Dicken, M. J.

Dooley, S.

K. Anglin, T. Ribaudo, D. C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” J. Appl. Phys. 109(12), 123103 (2011).
[CrossRef]

Driscoll, T.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

Falciglia, J.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Fan, K.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[CrossRef] [PubMed]

Gin, A.

X. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: Toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[CrossRef]

Gmachl, C.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Goodhue, W.

X. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: Toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[CrossRef]

Goodhue, W. D.

K. Anglin, T. Ribaudo, D. C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” J. Appl. Phys. 109(12), 123103 (2011).
[CrossRef]

B. S. Passmore, D. G. Allen, S. R. Vangala, W. D. Goodhue, D. Wasserman, and E. A. Shaner, “Mid-infrared doping tunable transmission through subwavelength metal hole arrays on InSb,” Opt. Express 17(12), 10223–10230 (2009).
[CrossRef] [PubMed]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Hutchinson, A. L.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Jokerst, N. M.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

Kelaita, Y. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

Khoo, I. C.

Kildishev, A. V.

Kim, B.-J.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

Kim, E.

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S.-Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91(17), 173105 (2007).
[CrossRef]

Kim, H.-T.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

Kwon, D.-H.

Langston, W.

X. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: Toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[CrossRef]

Lee, Y.-W.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

Liu, Y.

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[CrossRef] [PubMed]

Ma, J.

Martini, R.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Miao, X.

X. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: Toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

Nottenburg, R. N.

C. J. Sandroff, R. N. Nottenburg, J.-C. Bischoff, and R. Bhat, “Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation,” Appl. Phys. Lett. 51(1), 33–35 (1987).
[CrossRef]

Ohno, T.

T. Ohno, “Sulfur passivation of GaAs surfaces,” Phys. Rev. B Condens. Matter 44(12), 6306–6311 (1991).
[CrossRef] [PubMed]

Padilla, W. J.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Paiella, R.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Palit, S.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

Passmore, B.

X. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: Toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[CrossRef]

Passmore, B. S.

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Ponizovskaya, E.

D. J. Cho, W. Wu, E. Ponizovskaya, P. Chaturvedi, A. M. Bratkovsky, S.-Y. Wang, X. Zhang, F. Wang, and Y. R. Shen, “Ultrafast modulation of optical metamaterials,” Opt. Express 17(20), 17652–17657 (2009).
[CrossRef] [PubMed]

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S.-Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91(17), 173105 (2007).
[CrossRef]

Pryce, I. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[CrossRef] [PubMed]

Qian, X.

K. Anglin, T. Ribaudo, D. C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” J. Appl. Phys. 109(12), 123103 (2011).
[CrossRef]

Raymond, A.

A. Raymond, J. L. Robert, and C. Bernard, “The electron effective mass in heavily doped GaAs,” J. Phys. C Solid State Phys. 12(12), 2289–2293 (1979).
[CrossRef]

Ribaudo, T.

K. Anglin, T. Ribaudo, D. C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” J. Appl. Phys. 109(12), 123103 (2011).
[CrossRef]

Robert, J. L.

A. Raymond, J. L. Robert, and C. Bernard, “The electron effective mass in heavily doped GaAs,” J. Phys. C Solid State Phys. 12(12), 2289–2293 (1979).
[CrossRef]

Sandroff, C. J.

C. J. Sandroff, R. N. Nottenburg, J.-C. Bischoff, and R. Bhat, “Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation,” Appl. Phys. Lett. 51(1), 33–35 (1987).
[CrossRef]

Schurig, D.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

Shalaev, V. M.

Shaner, E.

X. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: Toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[CrossRef]

Shaner, E. A.

K. Anglin, T. Ribaudo, D. C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” J. Appl. Phys. 109(12), 123103 (2011).
[CrossRef]

B. S. Passmore, D. G. Allen, S. R. Vangala, W. D. Goodhue, D. Wasserman, and E. A. Shaner, “Mid-infrared doping tunable transmission through subwavelength metal hole arrays on InSb,” Opt. Express 17(12), 10223–10230 (2009).
[CrossRef] [PubMed]

E. A. Shaner, J. G. Cederberg, and D. Wasserman, “Electrically tunable extraordinary optical transmission gratings,” Appl. Phys. Lett. 91(18), 181110 (2007).
[CrossRef]

Shen, Y. R.

D. J. Cho, W. Wu, E. Ponizovskaya, P. Chaturvedi, A. M. Bratkovsky, S.-Y. Wang, X. Zhang, F. Wang, and Y. R. Shen, “Ultrafast modulation of optical metamaterials,” Opt. Express 17(20), 17652–17657 (2009).
[CrossRef] [PubMed]

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S.-Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91(17), 173105 (2007).
[CrossRef]

Sivco, D. L.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Smith, D. R.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

Strikwerda, A. C.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[CrossRef] [PubMed]

Sweatlock, L. A.

Tao, H.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[CrossRef] [PubMed]

Taylor, A. J.

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Tredicucci, A.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Vangala, S.

X. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: Toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[CrossRef]

Vangala, S. R.

Walavalkar, S.

Wang, F.

Wang, S.-Y.

D. J. Cho, W. Wu, E. Ponizovskaya, P. Chaturvedi, A. M. Bratkovsky, S.-Y. Wang, X. Zhang, F. Wang, and Y. R. Shen, “Ultrafast modulation of optical metamaterials,” Opt. Express 17(20), 17652–17657 (2009).
[CrossRef] [PubMed]

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S.-Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91(17), 173105 (2007).
[CrossRef]

Wasserman, D.

K. Anglin, T. Ribaudo, D. C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” J. Appl. Phys. 109(12), 123103 (2011).
[CrossRef]

B. S. Passmore, D. G. Allen, S. R. Vangala, W. D. Goodhue, D. Wasserman, and E. A. Shaner, “Mid-infrared doping tunable transmission through subwavelength metal hole arrays on InSb,” Opt. Express 17(12), 10223–10230 (2009).
[CrossRef] [PubMed]

E. A. Shaner, J. G. Cederberg, and D. Wasserman, “Electrically tunable extraordinary optical transmission gratings,” Appl. Phys. Lett. 91(18), 181110 (2007).
[CrossRef]

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

Werner, D. H.

Whittaker, E. A.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Williams, R. S.

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S.-Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91(17), 173105 (2007).
[CrossRef]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Wu, W.

D. J. Cho, W. Wu, E. Ponizovskaya, P. Chaturvedi, A. M. Bratkovsky, S.-Y. Wang, X. Zhang, F. Wang, and Y. R. Shen, “Ultrafast modulation of optical metamaterials,” Opt. Express 17(20), 17652–17657 (2009).
[CrossRef] [PubMed]

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S.-Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91(17), 173105 (2007).
[CrossRef]

Yu, Z.

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S.-Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91(17), 173105 (2007).
[CrossRef]

Zhang, X.

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[CrossRef] [PubMed]

D. J. Cho, W. Wu, E. Ponizovskaya, P. Chaturvedi, A. M. Bratkovsky, S.-Y. Wang, X. Zhang, F. Wang, and Y. R. Shen, “Ultrafast modulation of optical metamaterials,” Opt. Express 17(20), 17652–17657 (2009).
[CrossRef] [PubMed]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[CrossRef] [PubMed]

Zheludev, N. I.

N. I. Zheludev, “A roadmap for metamaterials,” Opt. Photonics News 22(3), 30–35 (2011).
[CrossRef]

Zide, J. M.

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

X. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: Toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[CrossRef]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

C. J. Sandroff, R. N. Nottenburg, J.-C. Bischoff, and R. Bhat, “Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation,” Appl. Phys. Lett. 51(1), 33–35 (1987).
[CrossRef]

E. A. Shaner, J. G. Cederberg, and D. Wasserman, “Electrically tunable extraordinary optical transmission gratings,” Appl. Phys. Lett. 91(18), 181110 (2007).
[CrossRef]

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S.-Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91(17), 173105 (2007).
[CrossRef]

Chem. Soc. Rev. (1)

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[CrossRef] [PubMed]

Electron. Lett. (1)

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

J. Appl. Phys. (2)

K. Anglin, T. Ribaudo, D. C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” J. Appl. Phys. 109(12), 123103 (2011).
[CrossRef]

J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53(10), R123–R181 (1982).
[CrossRef]

J. Phys. C Solid State Phys. (1)

A. Raymond, J. L. Robert, and C. Bernard, “The electron effective mass in heavily doped GaAs,” J. Phys. C Solid State Phys. 12(12), 2289–2293 (1979).
[CrossRef]

Nano Lett. (1)

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

Nat. Photonics (2)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

Nature (1)

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Photonics News (1)

N. I. Zheludev, “A roadmap for metamaterials,” Opt. Photonics News 22(3), 30–35 (2011).
[CrossRef]

Phys. Rev. (1)

M. Cardona, “Electron effective masses of InAs and GaAs as a function of temperature and doping,” Phys. Rev. 121(3), 752–758 (1961).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

T. Ohno, “Sulfur passivation of GaAs surfaces,” Phys. Rev. B Condens. Matter 44(12), 6306–6311 (1991).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[CrossRef] [PubMed]

Science (2)

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Other (8)

R. F. Pierret, Semiconductor Device Fundamentals (Addison Wesley, 1996)

Lumerical Simulations, http://www.lumerical.com

E. D. Palik, Handbook of Optical Constants and Solids (Academic, 1985).

C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1995).

“Semiconductors on NSM,” http://www.ioffe.ru/SVA/NSM/Semicond/ .

M. Osawa, “Surface-enhanced infrared absorption,” in Near-Field Optics and Surface Plasmon Polaritons, S. Kawata, ed. (Springer-Verlag, 2001). p. 163.

M. Vollmer and K.-P. Möllmann, Infrared Thermal Imaging: Fundamentals, Research, and Applications (Wiley-VCH, 2010).

W. Cai and V. M. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of the device. (b) Diagram of the substrate and the depletion region in the metal-semiconductor junction. (c) Geometry of the modified split-ring resonator and the electrical bus line: L = 720 nm, W = 130 nm, G = 110 nm. The gold SRR thickness is 60 nm. The polarization of incident light is indicated by the red arrow.

Fig. 2
Fig. 2

Drude model calculations of dielectric constants in n-doped GaAs (for several mid-IR wavelengths). (a) is the real part and (b) is the imaginary part of the dielectric constant.

Fig. 3
Fig. 3

Depletion width change as a function of the reverse gate bias. We assume a Al0.3Ga0.7As barrier. We also plot for a thicker barrier (dotted line) for comparison. The doping level of the n + GaAs epilayer is ND = 5 x 1018 cm−3.

Fig. 4
Fig. 4

(a) Metamaterial transmission spectra obtained from FDTD simulations for the gate bias VG = 0 V and −4 V. (b) Resonance red-shift as a function of a reverse bias to the gate.

Fig. 5
Fig. 5

(a) An optical microscope image of metal contacts (patterned using optical lithography). The outside contact is an ohmic contact, and the inner one is a metal gate contact which is connected to the active area (colored region). The size of the active (SRR) region is 1mm x 1mm. Both metal gate and ohmic contact are later wire-bonded to a chip-carrier for electric biasing. (b) A SEM image of SRR arrays (patterned using electron-beam lithography). The red bar is 2 μm.

Fig. 6
Fig. 6

FTIR measurement of SRR transmission spectra for the gate bias VG = 0 V and −4 V. The dotted vertical line is the center frequency of VG = 0 V. We can see that the spectrum at VG = −4 V is slightly red-shifted.

Fig. 7
Fig. 7

(a) The center frequency of the metamaterial transmission resonance vs. gate bias. The center frequency was determined by Gaussian fitting. The error bar was obtained from the repetition of measurements. (b) IV curve of the same device. The forward and reverse biases show clearly different behaviors.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε= ε ( 1 ω p 2 ω 2 +iωΓ )= ε ( 1 ω p 2 ω 2 + Γ 2 +i ω p 2 Γ ω( ω 2 + Γ 2 ) )
ω p 2 = N q 2 ε 0 ε m *
Γ=1/τ= q μm*
ε(ω)=Re[ε(ω)]+Im[ε(ω)] ε ( 1 ω p 2 ω 2 +i ω p 2 ω 3 Γ )
W depletion = [ 2 ε GaAs ε 0 q N D ( ϕ s ) ] 1/2
V G = ϕ s ε GaAs ε AlGaAs W barrier [ 2q N D ε GaAs ε 0 | ϕ s | ] 1/2 + ϕ MS

Metrics