Abstract

Light-trapping is essential to improve the performance of thin-film solar cells. In this paper, we perform a parametric optimization of 1-D square and sinusoidal grating structures that act as nanophotonic scatterers to increase light absorption in ultra-thin (10nm) solar cells. Our optimization reveals that the short-circuit current density in a device of active-layer thickness 10nm can be improved by a factor of ~5 in the presence of the scattering structure. More complex geometries allow for increased degrees of design freedom and potentially high enhancement of light absorption.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Fraas and L. Partain, Solar Cells and Their Applications (Wiley, 2010).
  2. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
    [CrossRef]
  3. M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes,” IEEE Trans. Electron. Dev. 31(5), 671–678 (1984).
    [CrossRef]
  4. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007).
    [CrossRef] [PubMed]
  5. R. Dewan and D. Knipp, “Light-trapping in thin-film silicon solar cells with integrated diffractive grating,” J. Appl. Phys. 106(7), 074901 (2009).
    [CrossRef]
  6. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982).
    [CrossRef]
  7. P. Campbell and M. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
    [CrossRef]
  8. M. A. Green, J. H. Zhao, A. H. Wang, and S. R. Wenham, “Very high efficiency silicon solar cells – science and technology,” IEEE Trans. Electron. Dev. 46(10), 1940–1947 (1999).
    [CrossRef]
  9. C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt. 34(14), 2476–2482 (1995).
    [CrossRef] [PubMed]
  10. K. R. Catchpole, S. Mokkapati, F. Beck, E.-C. Wang, A. McKinley, A. Basch, and J. Lee, “Plasmonics and nanophotonics for photovoltaics,” MRS Bull. 36(06), 461–467 (2011).
    [CrossRef]
  11. S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010).
    [CrossRef] [PubMed]
  12. L. L. Yang, Y. M. Xuan, and J. J. Tan, “Efficient optical absorption in thin-film solar cells,” Opt. Express 19(S5), A1165–A1174 (2011).
    [CrossRef] [PubMed]
  13. J. Gjessing, E. S. Marstein, and A. Sudbø, “2D back-side diffraction grating for improved light trapping in thin silicon solar cells,” Opt. Express 18(6), 5481–5495 (2010).
    [CrossRef] [PubMed]
  14. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
    [CrossRef]
  15. S. Pillai, K. R. Catchpole, T. Turpke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [CrossRef]
  16. J. R. Nagel and M. A. Scarpulla, “Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles,” Opt. Express 18(S2), A139–A146 (2010).
    [CrossRef] [PubMed]
  17. E. Garnett and P. D. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
    [CrossRef] [PubMed]
  18. J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
    [CrossRef] [PubMed]
  19. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
    [CrossRef] [PubMed]
  20. S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
    [CrossRef]
  21. S. B. Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” MRS Bull. 36(06), 453–460 (2011).
    [CrossRef]
  22. Z. F. Yu, A. Raman, and S. H. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3), A366–A380 (2010).
    [CrossRef] [PubMed]
  23. Z. F. Yu, A. Raman, and S. H. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
    [CrossRef] [PubMed]
  24. J. R. Nagel, S. Blair, and M. A. Scarpulla, “Exact field solution to guided wave propagation in lossy thin films,” Opt. Express 19(21), 20159–20171 (2011).
    [CrossRef] [PubMed]
  25. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bremel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [CrossRef]
  26. MEEP is a free FDTD simulation software package developed at MIT to model electromagnetic systems: http://ab-initio.mit.edu/wiki/index.php/Meep .
  27. Refractive index database. http://refractiveindex.info/ .
  28. American Society for Testing and Materials (ASTM) Terrestrial Reference Spectra for Photovoltaic Performance Evaluation, http://rredc.nrel.gov/solar/spectra/am1.5/ .
  29. J. Lu, S. Boyd, and J. Vučković, “Inverse design of a three-dimensional nanophotonic resonator,” Opt. Express 19(11), 10563–10570 (2011).
    [CrossRef] [PubMed]
  30. S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. (Deerfield Beach Fla.) 20(11), 2044–2049 (2008).
    [CrossRef]
  31. A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F. J. Haug, M. Kalin, D. Rudmann, and A. N. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Prog. Photovolt. Res. Appl. 12(23), 93–111 (2004).
    [CrossRef]

2011

2010

2009

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

R. Dewan and D. Knipp, “Light-trapping in thin-film silicon solar cells with integrated diffractive grating,” J. Appl. Phys. 106(7), 074901 (2009).
[CrossRef]

2008

S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. (Deerfield Beach Fla.) 20(11), 2044–2049 (2008).
[CrossRef]

2007

S. Pillai, K. R. Catchpole, T. Turpke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007).
[CrossRef] [PubMed]

2006

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

2004

A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F. J. Haug, M. Kalin, D. Rudmann, and A. N. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Prog. Photovolt. Res. Appl. 12(23), 93–111 (2004).
[CrossRef]

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

2002

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

1999

M. A. Green, J. H. Zhao, A. H. Wang, and S. R. Wenham, “Very high efficiency silicon solar cells – science and technology,” IEEE Trans. Electron. Dev. 46(10), 1940–1947 (1999).
[CrossRef]

1995

1987

P. Campbell and M. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[CrossRef]

1984

M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes,” IEEE Trans. Electron. Dev. 31(5), 671–678 (1984).
[CrossRef]

1982

Abou-Ras, D.

A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F. J. Haug, M. Kalin, D. Rudmann, and A. N. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Prog. Photovolt. Res. Appl. 12(23), 93–111 (2004).
[CrossRef]

Agrawal, M.

S. B. Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” MRS Bull. 36(06), 453–460 (2011).
[CrossRef]

S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010).
[CrossRef] [PubMed]

Ahn, S. H.

S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. (Deerfield Beach Fla.) 20(11), 2044–2049 (2008).
[CrossRef]

Alamariu, B. A.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Bailat, J.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Basch, A.

K. R. Catchpole, S. Mokkapati, F. Beck, E.-C. Wang, A. McKinley, A. Basch, and J. Lee, “Plasmonics and nanophotonics for photovoltaics,” MRS Bull. 36(06), 461–467 (2011).
[CrossRef]

Batzner, D. L.

A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F. J. Haug, M. Kalin, D. Rudmann, and A. N. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Prog. Photovolt. Res. Appl. 12(23), 93–111 (2004).
[CrossRef]

Beck, F.

K. R. Catchpole, S. Mokkapati, F. Beck, E.-C. Wang, A. McKinley, A. Basch, and J. Lee, “Plasmonics and nanophotonics for photovoltaics,” MRS Bull. 36(06), 461–467 (2011).
[CrossRef]

Bermel, P.

Blair, S.

Boyd, S.

Bremel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bremel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Burkhard, G. F.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Campbell, P.

P. Campbell and M. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[CrossRef]

Catchpole, K. R.

K. R. Catchpole, S. Mokkapati, F. Beck, E.-C. Wang, A. McKinley, A. Basch, and J. Lee, “Plasmonics and nanophotonics for photovoltaics,” MRS Bull. 36(06), 461–467 (2011).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Turpke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Chen, G.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

Connor, S. T.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Cui, Y.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Dewan, R.

R. Dewan and D. Knipp, “Light-trapping in thin-film silicon solar cells with integrated diffractive grating,” J. Appl. Phys. 106(7), 074901 (2009).
[CrossRef]

Droz, C.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Duan, X.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Fan, S. H.

Z. F. Yu, A. Raman, and S. H. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3), A366–A380 (2010).
[CrossRef] [PubMed]

Z. F. Yu, A. Raman, and S. H. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

Feng, N.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Garnett, E.

E. Garnett and P. D. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Gjessing, J.

Green, M.

P. Campbell and M. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[CrossRef]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Turpke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

M. A. Green, J. H. Zhao, A. H. Wang, and S. R. Wenham, “Very high efficiency silicon solar cells – science and technology,” IEEE Trans. Electron. Dev. 46(10), 1940–1947 (1999).
[CrossRef]

M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes,” IEEE Trans. Electron. Dev. 31(5), 671–678 (1984).
[CrossRef]

Guo, L. J.

S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. (Deerfield Beach Fla.) 20(11), 2044–2049 (2008).
[CrossRef]

Haug, F. J.

A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F. J. Haug, M. Kalin, D. Rudmann, and A. N. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Prog. Photovolt. Res. Appl. 12(23), 93–111 (2004).
[CrossRef]

Heine, C.

Hong, C.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Hsu, C. M.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Hu, L.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bremel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bremel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007).
[CrossRef] [PubMed]

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bremel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Kalin, M.

A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F. J. Haug, M. Kalin, D. Rudmann, and A. N. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Prog. Photovolt. Res. Appl. 12(23), 93–111 (2004).
[CrossRef]

Kimerling, L. C.

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007).
[CrossRef] [PubMed]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Knipp, D.

R. Dewan and D. Knipp, “Light-trapping in thin-film silicon solar cells with integrated diffractive grating,” J. Appl. Phys. 106(7), 074901 (2009).
[CrossRef]

Kroll, U.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Lee, J.

K. R. Catchpole, S. Mokkapati, F. Beck, E.-C. Wang, A. McKinley, A. Basch, and J. Lee, “Plasmonics and nanophotonics for photovoltaics,” MRS Bull. 36(06), 461–467 (2011).
[CrossRef]

Lee, J.-Y.

S. B. Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” MRS Bull. 36(06), 453–460 (2011).
[CrossRef]

Liu, J.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Lu, J.

Luo, C.

Mallick, S. B.

S. B. Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” MRS Bull. 36(06), 453–460 (2011).
[CrossRef]

S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010).
[CrossRef] [PubMed]

Marstein, E. S.

McGehee, M.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

McKinley, A.

K. R. Catchpole, S. Mokkapati, F. Beck, E.-C. Wang, A. McKinley, A. Basch, and J. Lee, “Plasmonics and nanophotonics for photovoltaics,” MRS Bull. 36(06), 461–467 (2011).
[CrossRef]

Meier, J.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Mokkapati, S.

K. R. Catchpole, S. Mokkapati, F. Beck, E.-C. Wang, A. McKinley, A. Basch, and J. Lee, “Plasmonics and nanophotonics for photovoltaics,” MRS Bull. 36(06), 461–467 (2011).
[CrossRef]

Morf, R. H.

Nagel, J. R.

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bremel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Peumans, P.

S. B. Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” MRS Bull. 36(06), 453–460 (2011).
[CrossRef]

S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010).
[CrossRef] [PubMed]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Turpke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Raman, A.

Z. F. Yu, A. Raman, and S. H. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3), A366–A380 (2010).
[CrossRef] [PubMed]

Z. F. Yu, A. Raman, and S. H. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Romeo, A.

A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F. J. Haug, M. Kalin, D. Rudmann, and A. N. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Prog. Photovolt. Res. Appl. 12(23), 93–111 (2004).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bremel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Rudmann, D.

A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F. J. Haug, M. Kalin, D. Rudmann, and A. N. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Prog. Photovolt. Res. Appl. 12(23), 93–111 (2004).
[CrossRef]

Scarpulla, M. A.

Schade, H.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Sergeant, N. P.

S. B. Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” MRS Bull. 36(06), 453–460 (2011).
[CrossRef]

Shah, A. V.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Sudbø, A.

Tan, J. J.

Terheggen, M.

A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F. J. Haug, M. Kalin, D. Rudmann, and A. N. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Prog. Photovolt. Res. Appl. 12(23), 93–111 (2004).
[CrossRef]

Tiwari, A. N.

A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F. J. Haug, M. Kalin, D. Rudmann, and A. N. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Prog. Photovolt. Res. Appl. 12(23), 93–111 (2004).
[CrossRef]

Turpke, T.

S. Pillai, K. R. Catchpole, T. Turpke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Vallat-Sauvain, E.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Vanecek, M.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Vuckovic, J.

Wang, A. H.

M. A. Green, J. H. Zhao, A. H. Wang, and S. R. Wenham, “Very high efficiency silicon solar cells – science and technology,” IEEE Trans. Electron. Dev. 46(10), 1940–1947 (1999).
[CrossRef]

Wang, E.-C.

K. R. Catchpole, S. Mokkapati, F. Beck, E.-C. Wang, A. McKinley, A. Basch, and J. Lee, “Plasmonics and nanophotonics for photovoltaics,” MRS Bull. 36(06), 461–467 (2011).
[CrossRef]

Wang, Q.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Wenham, S. R.

M. A. Green, J. H. Zhao, A. H. Wang, and S. R. Wenham, “Very high efficiency silicon solar cells – science and technology,” IEEE Trans. Electron. Dev. 46(10), 1940–1947 (1999).
[CrossRef]

Wyrsch, N.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Xu, Y. Q.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Xuan, Y. M.

Yablonovitch, E.

Yang, L. L.

Yang, P. D.

E. Garnett and P. D. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Yi, Y.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Yu, Z. F.

Z. F. Yu, A. Raman, and S. H. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3), A366–A380 (2010).
[CrossRef] [PubMed]

Z. F. Yu, A. Raman, and S. H. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Zeng, L.

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007).
[CrossRef] [PubMed]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Zhao, J. H.

M. A. Green, J. H. Zhao, A. H. Wang, and S. R. Wenham, “Very high efficiency silicon solar cells – science and technology,” IEEE Trans. Electron. Dev. 46(10), 1940–1947 (1999).
[CrossRef]

Zhu, J.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.)

S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. (Deerfield Beach Fla.) 20(11), 2044–2049 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Comput. Phys. Commun.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bremel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

IEEE Trans. Electron. Dev.

M. A. Green, J. H. Zhao, A. H. Wang, and S. R. Wenham, “Very high efficiency silicon solar cells – science and technology,” IEEE Trans. Electron. Dev. 46(10), 1940–1947 (1999).
[CrossRef]

M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes,” IEEE Trans. Electron. Dev. 31(5), 671–678 (1984).
[CrossRef]

J. Appl. Phys.

R. Dewan and D. Knipp, “Light-trapping in thin-film silicon solar cells with integrated diffractive grating,” J. Appl. Phys. 106(7), 074901 (2009).
[CrossRef]

P. Campbell and M. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Turpke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

J. Opt. Soc. Am.

MRS Bull.

K. R. Catchpole, S. Mokkapati, F. Beck, E.-C. Wang, A. McKinley, A. Basch, and J. Lee, “Plasmonics and nanophotonics for photovoltaics,” MRS Bull. 36(06), 461–467 (2011).
[CrossRef]

S. B. Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” MRS Bull. 36(06), 453–460 (2011).
[CrossRef]

Nano Lett.

E. Garnett and P. D. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

Opt. Express

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007).
[CrossRef] [PubMed]

J. Gjessing, E. S. Marstein, and A. Sudbø, “2D back-side diffraction grating for improved light trapping in thin silicon solar cells,” Opt. Express 18(6), 5481–5495 (2010).
[CrossRef] [PubMed]

S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010).
[CrossRef] [PubMed]

J. R. Nagel and M. A. Scarpulla, “Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles,” Opt. Express 18(S2), A139–A146 (2010).
[CrossRef] [PubMed]

Z. F. Yu, A. Raman, and S. H. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3), A366–A380 (2010).
[CrossRef] [PubMed]

J. Lu, S. Boyd, and J. Vučković, “Inverse design of a three-dimensional nanophotonic resonator,” Opt. Express 19(11), 10563–10570 (2011).
[CrossRef] [PubMed]

L. L. Yang, Y. M. Xuan, and J. J. Tan, “Efficient optical absorption in thin-film solar cells,” Opt. Express 19(S5), A1165–A1174 (2011).
[CrossRef] [PubMed]

J. R. Nagel, S. Blair, and M. A. Scarpulla, “Exact field solution to guided wave propagation in lossy thin films,” Opt. Express 19(21), 20159–20171 (2011).
[CrossRef] [PubMed]

Phys. Rev. B

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

Z. F. Yu, A. Raman, and S. H. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Prog. Photovolt. Res. Appl.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F. J. Haug, M. Kalin, D. Rudmann, and A. N. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Prog. Photovolt. Res. Appl. 12(23), 93–111 (2004).
[CrossRef]

Other

L. Fraas and L. Partain, Solar Cells and Their Applications (Wiley, 2010).

MEEP is a free FDTD simulation software package developed at MIT to model electromagnetic systems: http://ab-initio.mit.edu/wiki/index.php/Meep .

Refractive index database. http://refractiveindex.info/ .

American Society for Testing and Materials (ASTM) Terrestrial Reference Spectra for Photovoltaic Performance Evaluation, http://rredc.nrel.gov/solar/spectra/am1.5/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Square-grating geometry for light and current enhancement. Inset shows the simulated geometry. The enhancement factors are computed as a function of the active-layer thickness. Note that the nanophotonic enhancement is highest when the active layer is thinnest. (b) Spectral-enhancement factor (J)λ shows strong enhancement for an incident wavelength of 500nm, which is close to the peak of the AM1.5 spectrum. This simulation was performed with an active-layer thickness of 10nm. The other parameters were Λ = 400nm, duty-cycle = 0.6, tc = 30nm, and ts = 90nm. The dashed black line at the bottom represents 1.

Fig. 2
Fig. 2

Parametric optimization of the square-grating geometry for light and current enhancement. The enhancement factors are plotted as a function of (a) the grating period, Λ, (b) the grating duty-cycle, (c) the cladding thickness, tc and (d) the scattering-layer thickness, ts. The default parameters were Λ = 400nm, duty-cycle = 0.5, tc = 30nm, and ts = 80nm.

Fig. 3
Fig. 3

Parametric optimization of the sinusoidal-grating geometry for light and current enhancement. (a) Schematic of the proposed geometry. The enhancement factors are plotted as a function of (b) the grating period, Λ, (c) the cladding thickness, tc and (d) the scattering-layer thickness, ts. The default parameters were Λ = 400nm, tc = 30nm, and ts = 90nm.

Fig. 4
Fig. 4

Investigation of alternative geometries. The schematic of the geometry is shown on the top. The bottom figure shows a plot of the normalized spectrally-cumulative intensity distribution within the active layer. (a) Triangular-grating. (b) Undercut-trapezoidal grating. (c) Trapezoidal grating. The parameter values were Λ = 400nm, tc = 30nm, ts = 90nm, W = 240nm, θ1 = 77.5° and θ2 = 66°. The inset images show the normalized spectrally-cumulative intensity within the active layer.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ¯ λ ( x,z )= λ I( λ,x,z )dλ ,
S= 1 Λ active I ¯ λ ( x,z )dxdz ,
j sc = q t a Λ active ( λ Φ( λ,x,z )IQE( λ )dλ )dxdz ,
Φ( λ,x,z )= I( λ,x,z ) hc/λ ,
F λ = 1 Λ active I( λ,x,z )dxdz 1 Λ ref active I ref ( λ,x,z )dxdz and
J λ = q t a Λ active Φ( λ,x,z )IQE( λ )dxdz q t a Λ ref active Φ ref ( λ,x,z )IQE( λ )dxdz ,where
Φ ref ( λ,x,z )= I ref ( λ,x,z ) hc/λ .

Metrics