Abstract

We report the experimental implementation of a wireless transmission system with a 146-GHz carrier frequency which is generated by optical heterodyning the two modes from a monolithically integrated quantum dash dual-DFB source. The monolithic structure of the device and the inherent low noise characteristics of quantum dash gain material allow us to demonstrate the transmission of a 1 Gbps ON-OFF keyed data signal with the two wavelengths in a free-running state at 146-GHz carrier wave frequency. The tuning range of the device fully covers the W-band (75 – 110 GHz) and the F-band (90 – 140 GHz).

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Wake, M. Webster, G. Wimpenny, K. Beacham, and L. Crawford, ‘Radio over fiber for mobile communications,’ in Proc. IEEE Int. Top. Meeting on Microwave Photonics, MWP'04, 157- 160 (Oct. 2004).
  2. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
    [CrossRef]
  3. ‘Millimeter Wave Propagation: Spectrum Management’ Federal Communications Commission, Office of Engineering and Technology, Bull. 70 (1997).
  4. J. Yu, G.-K. Chang, Z. Jia, A. Chowdhury, M.-F. Huang, H.-C. Chien, Y.-T. Hsueh, W. Jian, C. Liu, and Z. Dong, “Cost-Effective Optical Millimeter Technologies and Field Demonstrations for Very High Throughput Wireless-Over-Fiber Access Systems,” J. Lightwave Technol. 28(16), 2376–2397 (2010).
    [CrossRef]
  5. www.toptica.com/products/terahertz_generation .
  6. D. Wake, C. R. Lima, and P. A. Davies, “Transmission of 60-GHz signals over 100 km of optical fiber using a dual-mode semiconductor laser source,” IEEE Photon. Technol. Lett. 8(4), 578–580 (1996).
    [CrossRef]
  7. A. C. Bordonalli, B. Cai, A. J. Seeds, and P. J. Williams, “Generation of microwave signals by active mode locking in a gain bandwidth restricted laser structure,” IEEE Photon. Technol. Lett. 8(1), 151–153 (1996).
    [CrossRef]
  8. J. Huang, C. Sun, B. Xiong, and Y. Luo, “Y-branch integrated dual wavelength laser diode for microwave generation by sideband injection locking,” Opt. Express 17(23), 20727–20734 (2009).
    [CrossRef] [PubMed]
  9. H. Shams, P. Perry, P. M. Anandarajah, and L. P. Barry, “Modulated Millimeter-Wave Generation by External Injection of a Gain Switched Laser,” IEEE Photon. Technol. Lett. 23(7), 447–449 (2011).
    [CrossRef]
  10. www.iphos-project.eu .
  11. F. Van Dijk, A. Accard, A. Enard, and O. Drisse, D. Make and, F. Lelarge ‘Monolithic dual wavelength DFB for narrow linewidth heterodyne beat-note generation’ in Proc. IEEE Int. Top. Meeting on Microwave Photonics, MWP'11.Oct. 2011.
  12. A. Hirata and H. Takahashi, K. Okamoto and, T. Nagatsuma, ‘Low-phase noise photonic millimeter-wave generator using an AWG integrated with a 3-dB combiner’ IEEE International Topical Meeting on Microwave Photonics, 2004. MWP'04. 209 – 212, 4–6 Oct. 2004.
  13. E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Traveling-wave Uni-Traveling Carrier photodiodes for continuous wave THz generation,” Opt. Express 18(11), 11105–11110 (2010).
    [CrossRef] [PubMed]

2011

H. Shams, P. Perry, P. M. Anandarajah, and L. P. Barry, “Modulated Millimeter-Wave Generation by External Injection of a Gain Switched Laser,” IEEE Photon. Technol. Lett. 23(7), 447–449 (2011).
[CrossRef]

2010

2009

1996

D. Wake, C. R. Lima, and P. A. Davies, “Transmission of 60-GHz signals over 100 km of optical fiber using a dual-mode semiconductor laser source,” IEEE Photon. Technol. Lett. 8(4), 578–580 (1996).
[CrossRef]

A. C. Bordonalli, B. Cai, A. J. Seeds, and P. J. Williams, “Generation of microwave signals by active mode locking in a gain bandwidth restricted laser structure,” IEEE Photon. Technol. Lett. 8(1), 151–153 (1996).
[CrossRef]

Anandarajah, P. M.

H. Shams, P. Perry, P. M. Anandarajah, and L. P. Barry, “Modulated Millimeter-Wave Generation by External Injection of a Gain Switched Laser,” IEEE Photon. Technol. Lett. 23(7), 447–449 (2011).
[CrossRef]

Barry, L. P.

H. Shams, P. Perry, P. M. Anandarajah, and L. P. Barry, “Modulated Millimeter-Wave Generation by External Injection of a Gain Switched Laser,” IEEE Photon. Technol. Lett. 23(7), 447–449 (2011).
[CrossRef]

Bordonalli, A. C.

A. C. Bordonalli, B. Cai, A. J. Seeds, and P. J. Williams, “Generation of microwave signals by active mode locking in a gain bandwidth restricted laser structure,” IEEE Photon. Technol. Lett. 8(1), 151–153 (1996).
[CrossRef]

Cai, B.

A. C. Bordonalli, B. Cai, A. J. Seeds, and P. J. Williams, “Generation of microwave signals by active mode locking in a gain bandwidth restricted laser structure,” IEEE Photon. Technol. Lett. 8(1), 151–153 (1996).
[CrossRef]

Chang, G.-K.

Chien, H.-C.

Chowdhury, A.

Davies, P. A.

D. Wake, C. R. Lima, and P. A. Davies, “Transmission of 60-GHz signals over 100 km of optical fiber using a dual-mode semiconductor laser source,” IEEE Photon. Technol. Lett. 8(4), 578–580 (1996).
[CrossRef]

Dong, Z.

Federici, J.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[CrossRef]

Hsueh, Y.-T.

Huang, J.

Huang, M.-F.

Jia, Z.

Jian, W.

Lima, C. R.

D. Wake, C. R. Lima, and P. A. Davies, “Transmission of 60-GHz signals over 100 km of optical fiber using a dual-mode semiconductor laser source,” IEEE Photon. Technol. Lett. 8(4), 578–580 (1996).
[CrossRef]

Liu, C.

Luo, Y.

Moeller, L.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[CrossRef]

Moodie, D. G.

Perry, P.

H. Shams, P. Perry, P. M. Anandarajah, and L. P. Barry, “Modulated Millimeter-Wave Generation by External Injection of a Gain Switched Laser,” IEEE Photon. Technol. Lett. 23(7), 447–449 (2011).
[CrossRef]

Renaud, C. C.

Robertson, M. J.

Rouvalis, E.

Seeds, A. J.

E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Traveling-wave Uni-Traveling Carrier photodiodes for continuous wave THz generation,” Opt. Express 18(11), 11105–11110 (2010).
[CrossRef] [PubMed]

A. C. Bordonalli, B. Cai, A. J. Seeds, and P. J. Williams, “Generation of microwave signals by active mode locking in a gain bandwidth restricted laser structure,” IEEE Photon. Technol. Lett. 8(1), 151–153 (1996).
[CrossRef]

Shams, H.

H. Shams, P. Perry, P. M. Anandarajah, and L. P. Barry, “Modulated Millimeter-Wave Generation by External Injection of a Gain Switched Laser,” IEEE Photon. Technol. Lett. 23(7), 447–449 (2011).
[CrossRef]

Sun, C.

Wake, D.

D. Wake, C. R. Lima, and P. A. Davies, “Transmission of 60-GHz signals over 100 km of optical fiber using a dual-mode semiconductor laser source,” IEEE Photon. Technol. Lett. 8(4), 578–580 (1996).
[CrossRef]

Williams, P. J.

A. C. Bordonalli, B. Cai, A. J. Seeds, and P. J. Williams, “Generation of microwave signals by active mode locking in a gain bandwidth restricted laser structure,” IEEE Photon. Technol. Lett. 8(1), 151–153 (1996).
[CrossRef]

Xiong, B.

Yu, J.

IEEE Photon. Technol. Lett.

H. Shams, P. Perry, P. M. Anandarajah, and L. P. Barry, “Modulated Millimeter-Wave Generation by External Injection of a Gain Switched Laser,” IEEE Photon. Technol. Lett. 23(7), 447–449 (2011).
[CrossRef]

D. Wake, C. R. Lima, and P. A. Davies, “Transmission of 60-GHz signals over 100 km of optical fiber using a dual-mode semiconductor laser source,” IEEE Photon. Technol. Lett. 8(4), 578–580 (1996).
[CrossRef]

A. C. Bordonalli, B. Cai, A. J. Seeds, and P. J. Williams, “Generation of microwave signals by active mode locking in a gain bandwidth restricted laser structure,” IEEE Photon. Technol. Lett. 8(1), 151–153 (1996).
[CrossRef]

J. Appl. Phys.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

D. Wake, M. Webster, G. Wimpenny, K. Beacham, and L. Crawford, ‘Radio over fiber for mobile communications,’ in Proc. IEEE Int. Top. Meeting on Microwave Photonics, MWP'04, 157- 160 (Oct. 2004).

www.toptica.com/products/terahertz_generation .

‘Millimeter Wave Propagation: Spectrum Management’ Federal Communications Commission, Office of Engineering and Technology, Bull. 70 (1997).

www.iphos-project.eu .

F. Van Dijk, A. Accard, A. Enard, and O. Drisse, D. Make and, F. Lelarge ‘Monolithic dual wavelength DFB for narrow linewidth heterodyne beat-note generation’ in Proc. IEEE Int. Top. Meeting on Microwave Photonics, MWP'11.Oct. 2011.

A. Hirata and H. Takahashi, K. Okamoto and, T. Nagatsuma, ‘Low-phase noise photonic millimeter-wave generator using an AWG integrated with a 3-dB combiner’ IEEE International Topical Meeting on Microwave Photonics, 2004. MWP'04. 209 – 212, 4–6 Oct. 2004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Picture of the dual wavelength source, composed of two DFB lasers (DFB1 and DFB2) combined through a Y-coupler.

Fig. 2
Fig. 2

Dependence of the frequency spacing between DFB1 and DFB2 wavelengths as the DFB1 current is varied at various fixed values of DFB2 current.

Fig. 3
Fig. 3

Optical spectra obtained for various combinations of IDFB1 and IDFB2 currents generating increasing frequency spacing.

Fig. 4
Fig. 4

Schematic diagram for the experimental 146-GHz wireless transmission system.

Fig. 5
Fig. 5

Traces of the IF spectrum at 2.5 GHz.

Fig. 6
Fig. 6

Eye diagram from the envelope of the PRBS data signal under different biasing conditions of the UTC-PD.

Metrics