Abstract

We demonstrate a spectroscopic gas sensor using an optical fiber probe with a replaceable insert. The probe consists of a hollow-core photonic bandgap fiber (HC-PBGF) with a core diameter of 10.9 μm and a glass tube where a 2-μm hollow core fiber (HCF) with a gold coated end facet can be inserted. The HCF is designed to function as both a gate where gases can enter the HC-PBGF and a mirror reflecting the guided light back to the HC-PBGF. The opposite distal end of the probe is also designed to be able to regulate the gas pressure within the HC-PBGF for a high gas flow rate, while still transmitting the reflected light to the analysis instrument. The remote sensing probe, we believe, has much potential for detecting gases in hazardous environments.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. L. Hoo, W. Jin, H. L. Ho, J. Ju, and D. N. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sens. Actuators B Chem. 105(2), 183–186 (2005).
    [CrossRef]
  2. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004).
    [CrossRef] [PubMed]
  3. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
    [CrossRef] [PubMed]
  4. J. Henningsen, J. Hald, and J. C. Peterson, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13(26), 10475–10482 (2005).
    [CrossRef] [PubMed]
  5. F. Benabid, P. Light, F. Couny, and P. Russell, “Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF,” Opt. Express 13(15), 5694–5703 (2005).
    [CrossRef] [PubMed]
  6. C. J. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, “Photonic band-gap fiber gas cell fabricated using femtosecond micromachining,” Opt. Express 15(11), 6690–6695 (2007).
    [CrossRef] [PubMed]
  7. R. M. Wynne, B. Barabadi, K. J. Creedon, and A. Ortega, “Sub-minute response time of a hollow-core photonic bandgap fiber gas sensor,” J. Lightwave Technol. 27(11), 1590–1596 (2009).
    [CrossRef]
  8. Y. L. Hoo, S. Liu, H. L. Ho, and W. Jin, “Fast response microstructured optical fiber methane sensor with multiple side-openings,” IEEE Photonics Technol. Lett. 22(5), 296–298 (2010).
    [CrossRef]
  9. X. Li, J. Pawlat, J. Liang, and T. Ueda, “Measurement of low gas concentrations using photonic bandgap fiber cell,” IEEE Sens. J. 10(6), 1156–1161 (2010).
    [CrossRef]
  10. T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: Spectral properties, macrobending loss, and practical handling,” J. Lightwave Technol. 22(1), 11–15 (2004).
    [CrossRef]
  11. J. Lægsgaard, N. A. Mortensen, J. Riishede, and A. Bjarklev, “Material effects in air-guiding photonic bandgap fibers,” J. Opt. Soc. Am. B 20(10), 2046–2051 (2003).
    [CrossRef]
  12. G. Humbert, J. C. Knight, G. Bouwmans, P. S. J. Russell, D. P. Williams, P. J. Roberts, and B. J. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12(8), 1477–1484 (2004).
    [CrossRef] [PubMed]
  13. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Photonic crystals as optical fibres - physics and applications,” Opt. Mater. 11(2-3), 143–151 (1999).
    [CrossRef]
  14. J. Lægsgaard and A. Bjarklev, “Microstructured optical fibers - fundamentals and applications,” J. Am. Ceram. Soc. 89(1), 2–12 (2006).
    [CrossRef]
  15. W. C. Swann and S. L. Gilbert, “Pressure-induced shift and broadening of 1510-1540-nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B 17(7), 1263–1270 (2000).
    [CrossRef]

2010

Y. L. Hoo, S. Liu, H. L. Ho, and W. Jin, “Fast response microstructured optical fiber methane sensor with multiple side-openings,” IEEE Photonics Technol. Lett. 22(5), 296–298 (2010).
[CrossRef]

X. Li, J. Pawlat, J. Liang, and T. Ueda, “Measurement of low gas concentrations using photonic bandgap fiber cell,” IEEE Sens. J. 10(6), 1156–1161 (2010).
[CrossRef]

2009

2007

2006

J. Lægsgaard and A. Bjarklev, “Microstructured optical fibers - fundamentals and applications,” J. Am. Ceram. Soc. 89(1), 2–12 (2006).
[CrossRef]

2005

Y. L. Hoo, W. Jin, H. L. Ho, J. Ju, and D. N. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sens. Actuators B Chem. 105(2), 183–186 (2005).
[CrossRef]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

F. Benabid, P. Light, F. Couny, and P. Russell, “Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF,” Opt. Express 13(15), 5694–5703 (2005).
[CrossRef] [PubMed]

J. Henningsen, J. Hald, and J. C. Peterson, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13(26), 10475–10482 (2005).
[CrossRef] [PubMed]

2004

2003

2000

1999

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Photonic crystals as optical fibres - physics and applications,” Opt. Mater. 11(2-3), 143–151 (1999).
[CrossRef]

Barabadi, B.

Benabid, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

F. Benabid, P. Light, F. Couny, and P. Russell, “Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF,” Opt. Express 13(15), 5694–5703 (2005).
[CrossRef] [PubMed]

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Photonic crystals as optical fibres - physics and applications,” Opt. Mater. 11(2-3), 143–151 (1999).
[CrossRef]

Bjarklev, A.

Bouwmans, G.

Broaddus, D. H.

Broeng, J.

Couny, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

F. Benabid, P. Light, F. Couny, and P. Russell, “Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF,” Opt. Express 13(15), 5694–5703 (2005).
[CrossRef] [PubMed]

Creedon, K. J.

Cregan, R. F.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Photonic crystals as optical fibres - physics and applications,” Opt. Mater. 11(2-3), 143–151 (1999).
[CrossRef]

de Sandro, J.-P.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Photonic crystals as optical fibres - physics and applications,” Opt. Mater. 11(2-3), 143–151 (1999).
[CrossRef]

Folkenberg, J. R.

Gaeta, A. L.

Gilbert, S. L.

Hald, J.

Hansen, T. P.

Henningsen, J.

Hensley, C. J.

Ho, H. L.

Y. L. Hoo, S. Liu, H. L. Ho, and W. Jin, “Fast response microstructured optical fiber methane sensor with multiple side-openings,” IEEE Photonics Technol. Lett. 22(5), 296–298 (2010).
[CrossRef]

Y. L. Hoo, W. Jin, H. L. Ho, J. Ju, and D. N. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sens. Actuators B Chem. 105(2), 183–186 (2005).
[CrossRef]

Hoo, Y. L.

Y. L. Hoo, S. Liu, H. L. Ho, and W. Jin, “Fast response microstructured optical fiber methane sensor with multiple side-openings,” IEEE Photonics Technol. Lett. 22(5), 296–298 (2010).
[CrossRef]

Y. L. Hoo, W. Jin, H. L. Ho, J. Ju, and D. N. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sens. Actuators B Chem. 105(2), 183–186 (2005).
[CrossRef]

Humbert, G.

Jakobsen, C.

Jin, W.

Y. L. Hoo, S. Liu, H. L. Ho, and W. Jin, “Fast response microstructured optical fiber methane sensor with multiple side-openings,” IEEE Photonics Technol. Lett. 22(5), 296–298 (2010).
[CrossRef]

Y. L. Hoo, W. Jin, H. L. Ho, J. Ju, and D. N. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sens. Actuators B Chem. 105(2), 183–186 (2005).
[CrossRef]

Ju, J.

Y. L. Hoo, W. Jin, H. L. Ho, J. Ju, and D. N. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sens. Actuators B Chem. 105(2), 183–186 (2005).
[CrossRef]

Knight, J. C.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

G. Humbert, J. C. Knight, G. Bouwmans, P. S. J. Russell, D. P. Williams, P. J. Roberts, and B. J. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12(8), 1477–1484 (2004).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Photonic crystals as optical fibres - physics and applications,” Opt. Mater. 11(2-3), 143–151 (1999).
[CrossRef]

Lægsgaard, J.

J. Lægsgaard and A. Bjarklev, “Microstructured optical fibers - fundamentals and applications,” J. Am. Ceram. Soc. 89(1), 2–12 (2006).
[CrossRef]

J. Lægsgaard, N. A. Mortensen, J. Riishede, and A. Bjarklev, “Material effects in air-guiding photonic bandgap fibers,” J. Opt. Soc. Am. B 20(10), 2046–2051 (2003).
[CrossRef]

Li, X.

X. Li, J. Pawlat, J. Liang, and T. Ueda, “Measurement of low gas concentrations using photonic bandgap fiber cell,” IEEE Sens. J. 10(6), 1156–1161 (2010).
[CrossRef]

Liang, J.

X. Li, J. Pawlat, J. Liang, and T. Ueda, “Measurement of low gas concentrations using photonic bandgap fiber cell,” IEEE Sens. J. 10(6), 1156–1161 (2010).
[CrossRef]

Light, P.

Liu, S.

Y. L. Hoo, S. Liu, H. L. Ho, and W. Jin, “Fast response microstructured optical fiber methane sensor with multiple side-openings,” IEEE Photonics Technol. Lett. 22(5), 296–298 (2010).
[CrossRef]

Ludvigsen, H.

Mangan, B. J.

Mortensen, N. A.

Nielsen, M. D.

Ortega, A.

Pawlat, J.

X. Li, J. Pawlat, J. Liang, and T. Ueda, “Measurement of low gas concentrations using photonic bandgap fiber cell,” IEEE Sens. J. 10(6), 1156–1161 (2010).
[CrossRef]

Petersen, J. C.

Peterson, J. C.

Riishede, J.

Ritari, T.

Roberts, P. J.

Russell, P.

Russell, P. S. J.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

G. Humbert, J. C. Knight, G. Bouwmans, P. S. J. Russell, D. P. Williams, P. J. Roberts, and B. J. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12(8), 1477–1484 (2004).
[CrossRef] [PubMed]

Russell, P. St. J.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Photonic crystals as optical fibres - physics and applications,” Opt. Mater. 11(2-3), 143–151 (1999).
[CrossRef]

Schaffer, C. B.

Simonsen, H. R.

Skovgaard, P. M. W.

Sørensen, T.

Swann, W. C.

Tuominen, J.

Ueda, T.

X. Li, J. Pawlat, J. Liang, and T. Ueda, “Measurement of low gas concentrations using photonic bandgap fiber cell,” IEEE Sens. J. 10(6), 1156–1161 (2010).
[CrossRef]

Vienne, G.

Wang, D. N.

Y. L. Hoo, W. Jin, H. L. Ho, J. Ju, and D. N. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sens. Actuators B Chem. 105(2), 183–186 (2005).
[CrossRef]

Williams, D. P.

Wynne, R. M.

IEEE Photonics Technol. Lett.

Y. L. Hoo, S. Liu, H. L. Ho, and W. Jin, “Fast response microstructured optical fiber methane sensor with multiple side-openings,” IEEE Photonics Technol. Lett. 22(5), 296–298 (2010).
[CrossRef]

IEEE Sens. J.

X. Li, J. Pawlat, J. Liang, and T. Ueda, “Measurement of low gas concentrations using photonic bandgap fiber cell,” IEEE Sens. J. 10(6), 1156–1161 (2010).
[CrossRef]

J. Am. Ceram. Soc.

J. Lægsgaard and A. Bjarklev, “Microstructured optical fibers - fundamentals and applications,” J. Am. Ceram. Soc. 89(1), 2–12 (2006).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nature

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Mater.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Photonic crystals as optical fibres - physics and applications,” Opt. Mater. 11(2-3), 143–151 (1999).
[CrossRef]

Sens. Actuators B Chem.

Y. L. Hoo, W. Jin, H. L. Ho, J. Ju, and D. N. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sens. Actuators B Chem. 105(2), 183–186 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic structure of gas sensing probe with replaceable insert.

Fig. 2
Fig. 2

A schematic diagram of processed connector for suctioning gas at the outlet.

Fig. 3
Fig. 3

Remote gas sensing system using the PBGF probe with a replaceable insert (SLED: super-luminescent light-emitting diode, SMF: single-mode fiber, OSA: optical spectrum analyzer, PBGF: photonic bandgap fiber.)

Fig. 4
Fig. 4

Absorption transmission spectra with respect to filling time (R7, R8, R9, R10 indicate absorption spectral lines from the R branch.)

Fig. 5
Fig. 5

Comparison of normalized absorption transmission for 10% C2H2 R9 peak as a function of time for two pressure differences of 0.7 and 0.4 bar, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T= 32 ΔP ( L D ) 2 μ

Metrics