Abstract

We propose a new scanhead design for combined ultrasound (US)/photoacoustic (PA) imaging that can be applied to dual-modality microscopy and biomedical imaging. Both imaging modalities employ the optical generation and detection of acoustic waves. The scanhead consists of an optical fiber with an axicon tip for excitation, and a microring for acoustic detection. No conventional piezoelectric device is needed, and the cost of the design makes it suitable for one-time, disposable use. Furthermore, a single laser pulse is employed to generate both US and PA signals. A subband imaging method can be applied to the receiver to enhance the contrast between the US and PA signals. Phantom data demonstrate the feasibility of this approach.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. W. Drinkwater and P. D. Wilcox, “Ultrasonic arrays for non-destructive evaluation: a review,” NDT Int. 39(7), 525–541 (2006).
    [CrossRef]
  2. S. J. Song, H. J. Shin, and Y. H. Jang, “Development of an ultrasonic phased array system for nondestructive tests of nuclear power plant components,” Nucl. Eng. Des. 214(1–2), 151–161 (2002).
    [CrossRef]
  3. G. Grégoire, V. Tournat, D. Mounier, and V. E. Gusev, “Nonlinear photothermal and photoacoustic processes for crack detection,” Eur. Phys. J. Spec. Top. 153(1), 313–315 (2008).
    [CrossRef]
  4. S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
    [CrossRef] [PubMed]
  5. W. Wei, X. Li, Q. Zhou, K. K. Shung, and Z. Chen, “Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging,” J. Biomed. Opt. 16(10), 106001 (2011).
    [CrossRef] [PubMed]
  6. S. Mallidi, A. B. Karpiouk, S. R. Aglyamov, S. Sethuraman, and S. Y. Emelianov, “Measurement of blood perfusion using photoacoustic, ultrasound, and strain imaging,” Proc. SPIE 6437, 643707, 643707-9 (2007).
    [CrossRef]
  7. K. Homan, J. Shah, S. Gomez, H. Gensler, A. B. Karpiouk, L. Brannon-Peppas, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging of pancreatic cancer using nanocage contrast agents,” Proc. SPIE 7177, 71771M, 71771M-6 (2009).
    [CrossRef]
  8. S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt. 15(1), 011101 (2010).
    [CrossRef] [PubMed]
  9. J. Shah, S. Park, S. R. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
    [CrossRef] [PubMed]
  10. S. Kim, Y. S. Chen, G. P. Luke, M. Mehrmohammadi, J. R. Cook, and S. Y. Emelianov, “Ultrasound and photoacoustic image-guided photothermal therapy using silica-coated gold nanorods: in-vivo study,” Proc. of IEEE IUS, 233–236 (2010).
  11. J. M. Cannata, J. A. Williams, T. A. Qifa Zhou, Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
    [CrossRef] [PubMed]
  12. T. Buma, M. Spisar, and M. O’Donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett. 79(4), 548–550 (2001).
    [CrossRef]
  13. Y. Hou, J. S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89(9), 093901 (2006).
    [CrossRef]
  14. Y. Hou, J. S. Kim, S. Ashkenazi, S. W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
    [CrossRef]
  15. K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic X-waves using axicon transducers,” Appl. Phys. Lett. 94(6), 064108 (2009).
    [CrossRef]
  16. S. Resink, J. Jose, R. G. H. Willemink, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Multiple passive element enriched photoacoustic computed tomography,” Opt. Lett. 36(15), 2809–2811 (2011).
    [CrossRef] [PubMed]
  17. J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 160–169 (2000).
    [CrossRef] [PubMed]
  18. P. C. Beard and T. N. Mills, “A 2D optical ultrasound array using a polymer film sensing interferometer,” Proc. of IEEE IUS, 1183–1186 (2000).
  19. E. Zhang, J. Laufer, and P. C. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
    [CrossRef] [PubMed]
  20. H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors 10(12), 11248–11258 (2010).
    [CrossRef] [PubMed]
  21. V. Wilkens, “Characterization of an optical multilayer hydrophone with constant frequency response in the range from 1 to 75 MHz,” J. Acoust. Soc. Am. 113(3), 1431–1438 (2003).
    [CrossRef] [PubMed]
  22. R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
    [CrossRef] [PubMed]
  23. C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
    [CrossRef] [PubMed]
  24. S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
    [CrossRef] [PubMed]
  25. P. C. Li, C. W. Wei, and Y. L. Sheu, “Subband photoacoustic imaging for contrast improvement,” Opt. Express 16(25), 20215–20226 (2008).
    [CrossRef] [PubMed]
  26. M. Xu, Y. Xu, and L. V. Wang, “Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries,” IEEE Trans. Biomed. Eng. 50(9), 1086–1099 (2003).
    [CrossRef] [PubMed]

2011 (2)

W. Wei, X. Li, Q. Zhou, K. K. Shung, and Z. Chen, “Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging,” J. Biomed. Opt. 16(10), 106001 (2011).
[CrossRef] [PubMed]

S. Resink, J. Jose, R. G. H. Willemink, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Multiple passive element enriched photoacoustic computed tomography,” Opt. Lett. 36(15), 2809–2811 (2011).
[CrossRef] [PubMed]

2010 (3)

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[CrossRef] [PubMed]

H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors 10(12), 11248–11258 (2010).
[CrossRef] [PubMed]

S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt. 15(1), 011101 (2010).
[CrossRef] [PubMed]

2009 (2)

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic X-waves using axicon transducers,” Appl. Phys. Lett. 94(6), 064108 (2009).
[CrossRef]

K. Homan, J. Shah, S. Gomez, H. Gensler, A. B. Karpiouk, L. Brannon-Peppas, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging of pancreatic cancer using nanocage contrast agents,” Proc. SPIE 7177, 71771M, 71771M-6 (2009).
[CrossRef]

2008 (5)

J. Shah, S. Park, S. R. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

G. Grégoire, V. Tournat, D. Mounier, and V. E. Gusev, “Nonlinear photothermal and photoacoustic processes for crack detection,” Eur. Phys. J. Spec. Top. 153(1), 313–315 (2008).
[CrossRef]

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[CrossRef] [PubMed]

E. Zhang, J. Laufer, and P. C. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[CrossRef] [PubMed]

P. C. Li, C. W. Wei, and Y. L. Sheu, “Subband photoacoustic imaging for contrast improvement,” Opt. Express 16(25), 20215–20226 (2008).
[CrossRef] [PubMed]

2007 (4)

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[CrossRef] [PubMed]

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[CrossRef] [PubMed]

S. Mallidi, A. B. Karpiouk, S. R. Aglyamov, S. Sethuraman, and S. Y. Emelianov, “Measurement of blood perfusion using photoacoustic, ultrasound, and strain imaging,” Proc. SPIE 6437, 643707, 643707-9 (2007).
[CrossRef]

Y. Hou, J. S. Kim, S. Ashkenazi, S. W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[CrossRef]

2006 (3)

Y. Hou, J. S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89(9), 093901 (2006).
[CrossRef]

B. W. Drinkwater and P. D. Wilcox, “Ultrasonic arrays for non-destructive evaluation: a review,” NDT Int. 39(7), 525–541 (2006).
[CrossRef]

J. M. Cannata, J. A. Williams, T. A. Qifa Zhou, Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[CrossRef] [PubMed]

2003 (2)

V. Wilkens, “Characterization of an optical multilayer hydrophone with constant frequency response in the range from 1 to 75 MHz,” J. Acoust. Soc. Am. 113(3), 1431–1438 (2003).
[CrossRef] [PubMed]

M. Xu, Y. Xu, and L. V. Wang, “Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries,” IEEE Trans. Biomed. Eng. 50(9), 1086–1099 (2003).
[CrossRef] [PubMed]

2002 (1)

S. J. Song, H. J. Shin, and Y. H. Jang, “Development of an ultrasonic phased array system for nondestructive tests of nuclear power plant components,” Nucl. Eng. Des. 214(1–2), 151–161 (2002).
[CrossRef]

2001 (1)

T. Buma, M. Spisar, and M. O’Donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett. 79(4), 548–550 (2001).
[CrossRef]

2000 (1)

J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 160–169 (2000).
[CrossRef] [PubMed]

Aglyamov, S. R.

J. Shah, S. Park, S. R. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[CrossRef] [PubMed]

S. Mallidi, A. B. Karpiouk, S. R. Aglyamov, S. Sethuraman, and S. Y. Emelianov, “Measurement of blood perfusion using photoacoustic, ultrasound, and strain imaging,” Proc. SPIE 6437, 643707, 643707-9 (2007).
[CrossRef]

Amirian, J. H.

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[CrossRef] [PubMed]

Ashkenazi, S.

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[CrossRef] [PubMed]

Y. Hou, J. S. Kim, S. Ashkenazi, S. W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[CrossRef]

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[CrossRef] [PubMed]

Y. Hou, J. S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89(9), 093901 (2006).
[CrossRef]

Beard, P. C.

Brannon-Peppas, L.

K. Homan, J. Shah, S. Gomez, H. Gensler, A. B. Karpiouk, L. Brannon-Peppas, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging of pancreatic cancer using nanocage contrast agents,” Proc. SPIE 7177, 71771M, 71771M-6 (2009).
[CrossRef]

Buma, T.

T. Buma, M. Spisar, and M. O’Donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett. 79(4), 548–550 (2001).
[CrossRef]

J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 160–169 (2000).
[CrossRef] [PubMed]

Burgholzer, P.

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[CrossRef] [PubMed]

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic X-waves using axicon transducers,” Appl. Phys. Lett. 94(6), 064108 (2009).
[CrossRef]

Cannata, J. M.

J. M. Cannata, J. A. Williams, T. A. Qifa Zhou, Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[CrossRef] [PubMed]

Chao, C. Y.

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[CrossRef] [PubMed]

Chen, S. L.

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[CrossRef] [PubMed]

Chen, Z.

W. Wei, X. Li, Q. Zhou, K. K. Shung, and Z. Chen, “Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging,” J. Biomed. Opt. 16(10), 106001 (2011).
[CrossRef] [PubMed]

Drinkwater, B. W.

B. W. Drinkwater and P. D. Wilcox, “Ultrasonic arrays for non-destructive evaluation: a review,” NDT Int. 39(7), 525–541 (2006).
[CrossRef]

Emelianov, S. Y.

K. Homan, J. Shah, S. Gomez, H. Gensler, A. B. Karpiouk, L. Brannon-Peppas, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging of pancreatic cancer using nanocage contrast agents,” Proc. SPIE 7177, 71771M, 71771M-6 (2009).
[CrossRef]

J. Shah, S. Park, S. R. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[CrossRef] [PubMed]

S. Mallidi, A. B. Karpiouk, S. R. Aglyamov, S. Sethuraman, and S. Y. Emelianov, “Measurement of blood perfusion using photoacoustic, ultrasound, and strain imaging,” Proc. SPIE 6437, 643707, 643707-9 (2007).
[CrossRef]

Gensler, H.

K. Homan, J. Shah, S. Gomez, H. Gensler, A. B. Karpiouk, L. Brannon-Peppas, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging of pancreatic cancer using nanocage contrast agents,” Proc. SPIE 7177, 71771M, 71771M-6 (2009).
[CrossRef]

Gomez, S.

K. Homan, J. Shah, S. Gomez, H. Gensler, A. B. Karpiouk, L. Brannon-Peppas, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging of pancreatic cancer using nanocage contrast agents,” Proc. SPIE 7177, 71771M, 71771M-6 (2009).
[CrossRef]

Gratt, S.

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic X-waves using axicon transducers,” Appl. Phys. Lett. 94(6), 064108 (2009).
[CrossRef]

Grégoire, G.

G. Grégoire, V. Tournat, D. Mounier, and V. E. Gusev, “Nonlinear photothermal and photoacoustic processes for crack detection,” Eur. Phys. J. Spec. Top. 153(1), 313–315 (2008).
[CrossRef]

Grossauer, H.

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[CrossRef] [PubMed]

Guo, L. J.

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[CrossRef] [PubMed]

Y. Hou, J. S. Kim, S. Ashkenazi, S. W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[CrossRef]

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[CrossRef] [PubMed]

Y. Hou, J. S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89(9), 093901 (2006).
[CrossRef]

Gusev, V. E.

G. Grégoire, V. Tournat, D. Mounier, and V. E. Gusev, “Nonlinear photothermal and photoacoustic processes for crack detection,” Eur. Phys. J. Spec. Top. 153(1), 313–315 (2008).
[CrossRef]

Hamilton, J. D.

J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 160–169 (2000).
[CrossRef] [PubMed]

Holotta, M.

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[CrossRef] [PubMed]

Homan, K.

K. Homan, J. Shah, S. Gomez, H. Gensler, A. B. Karpiouk, L. Brannon-Peppas, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging of pancreatic cancer using nanocage contrast agents,” Proc. SPIE 7177, 71771M, 71771M-6 (2009).
[CrossRef]

Hou, Y.

Y. Hou, J. S. Kim, S. Ashkenazi, S. W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[CrossRef]

Y. Hou, J. S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89(9), 093901 (2006).
[CrossRef]

Hu, S.

S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt. 15(1), 011101 (2010).
[CrossRef] [PubMed]

Huang, S. W.

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[CrossRef] [PubMed]

Y. Hou, J. S. Kim, S. Ashkenazi, S. W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[CrossRef]

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[CrossRef] [PubMed]

Jang, Y. H.

S. J. Song, H. J. Shin, and Y. H. Jang, “Development of an ultrasonic phased array system for nondestructive tests of nuclear power plant components,” Nucl. Eng. Des. 214(1–2), 151–161 (2002).
[CrossRef]

Johnston, K.

J. Shah, S. Park, S. R. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

Jose, J.

Karpiouk, A. B.

K. Homan, J. Shah, S. Gomez, H. Gensler, A. B. Karpiouk, L. Brannon-Peppas, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging of pancreatic cancer using nanocage contrast agents,” Proc. SPIE 7177, 71771M, 71771M-6 (2009).
[CrossRef]

S. Mallidi, A. B. Karpiouk, S. R. Aglyamov, S. Sethuraman, and S. Y. Emelianov, “Measurement of blood perfusion using photoacoustic, ultrasound, and strain imaging,” Proc. SPIE 6437, 643707, 643707-9 (2007).
[CrossRef]

Kim, J. S.

Y. Hou, J. S. Kim, S. Ashkenazi, S. W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[CrossRef]

Y. Hou, J. S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89(9), 093901 (2006).
[CrossRef]

Kremser, C.

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[CrossRef] [PubMed]

Kumakura, K.

H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors 10(12), 11248–11258 (2010).
[CrossRef] [PubMed]

Larson, T.

J. Shah, S. Park, S. R. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

Laufer, J.

Li, P. C.

Li, X.

W. Wei, X. Li, Q. Zhou, K. K. Shung, and Z. Chen, “Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging,” J. Biomed. Opt. 16(10), 106001 (2011).
[CrossRef] [PubMed]

Ling, T.

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[CrossRef] [PubMed]

Ma, L.

J. Shah, S. Park, S. R. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

Mallidi, S.

S. Mallidi, A. B. Karpiouk, S. R. Aglyamov, S. Sethuraman, and S. Y. Emelianov, “Measurement of blood perfusion using photoacoustic, ultrasound, and strain imaging,” Proc. SPIE 6437, 643707, 643707-9 (2007).
[CrossRef]

Manohar, S.

Maxwell, A.

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[CrossRef] [PubMed]

Milner, T.

J. Shah, S. Park, S. R. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

Mounier, D.

G. Grégoire, V. Tournat, D. Mounier, and V. E. Gusev, “Nonlinear photothermal and photoacoustic processes for crack detection,” Eur. Phys. J. Spec. Top. 153(1), 313–315 (2008).
[CrossRef]

Nuster, R.

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[CrossRef] [PubMed]

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic X-waves using axicon transducers,” Appl. Phys. Lett. 94(6), 064108 (2009).
[CrossRef]

O’Donnell, M.

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[CrossRef] [PubMed]

Y. Hou, J. S. Kim, S. Ashkenazi, S. W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[CrossRef]

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[CrossRef] [PubMed]

Y. Hou, J. S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89(9), 093901 (2006).
[CrossRef]

T. Buma, M. Spisar, and M. O’Donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett. 79(4), 548–550 (2001).
[CrossRef]

J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 160–169 (2000).
[CrossRef] [PubMed]

Ogihara, S.

H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors 10(12), 11248–11258 (2010).
[CrossRef] [PubMed]

Paltauf, G.

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[CrossRef] [PubMed]

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic X-waves using axicon transducers,” Appl. Phys. Lett. 94(6), 064108 (2009).
[CrossRef]

Park, S.

J. Shah, S. Park, S. R. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

Passler, K.

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic X-waves using axicon transducers,” Appl. Phys. Lett. 94(6), 064108 (2009).
[CrossRef]

Qifa Zhou, T. A.

J. M. Cannata, J. A. Williams, T. A. Qifa Zhou, Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[CrossRef] [PubMed]

Resink, S.

Ritter,

J. M. Cannata, J. A. Williams, T. A. Qifa Zhou, Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[CrossRef] [PubMed]

Sethuraman, S.

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[CrossRef] [PubMed]

S. Mallidi, A. B. Karpiouk, S. R. Aglyamov, S. Sethuraman, and S. Y. Emelianov, “Measurement of blood perfusion using photoacoustic, ultrasound, and strain imaging,” Proc. SPIE 6437, 643707, 643707-9 (2007).
[CrossRef]

Shah, J.

K. Homan, J. Shah, S. Gomez, H. Gensler, A. B. Karpiouk, L. Brannon-Peppas, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging of pancreatic cancer using nanocage contrast agents,” Proc. SPIE 7177, 71771M, 71771M-6 (2009).
[CrossRef]

J. Shah, S. Park, S. R. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

Sheu, Y. L.

Shin, H. J.

S. J. Song, H. J. Shin, and Y. H. Jang, “Development of an ultrasonic phased array system for nondestructive tests of nuclear power plant components,” Nucl. Eng. Des. 214(1–2), 151–161 (2002).
[CrossRef]

Shung, K. K.

W. Wei, X. Li, Q. Zhou, K. K. Shung, and Z. Chen, “Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging,” J. Biomed. Opt. 16(10), 106001 (2011).
[CrossRef] [PubMed]

J. M. Cannata, J. A. Williams, T. A. Qifa Zhou, Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[CrossRef] [PubMed]

Slump, C. H.

Smalling, R. W.

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[CrossRef] [PubMed]

Sokolov, K.

J. Shah, S. Park, S. R. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

Song, S. J.

S. J. Song, H. J. Shin, and Y. H. Jang, “Development of an ultrasonic phased array system for nondestructive tests of nuclear power plant components,” Nucl. Eng. Des. 214(1–2), 151–161 (2002).
[CrossRef]

Spisar, M.

T. Buma, M. Spisar, and M. O’Donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett. 79(4), 548–550 (2001).
[CrossRef]

J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 160–169 (2000).
[CrossRef] [PubMed]

Steenbergen, W.

Tournat, V.

G. Grégoire, V. Tournat, D. Mounier, and V. E. Gusev, “Nonlinear photothermal and photoacoustic processes for crack detection,” Eur. Phys. J. Spec. Top. 153(1), 313–315 (2008).
[CrossRef]

Tsuda, H.

H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors 10(12), 11248–11258 (2010).
[CrossRef] [PubMed]

van Leeuwen, T. G.

Wang, L. V.

S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt. 15(1), 011101 (2010).
[CrossRef] [PubMed]

M. Xu, Y. Xu, and L. V. Wang, “Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries,” IEEE Trans. Biomed. Eng. 50(9), 1086–1099 (2003).
[CrossRef] [PubMed]

Wei, C. W.

Wei, W.

W. Wei, X. Li, Q. Zhou, K. K. Shung, and Z. Chen, “Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging,” J. Biomed. Opt. 16(10), 106001 (2011).
[CrossRef] [PubMed]

Wilcox, P. D.

B. W. Drinkwater and P. D. Wilcox, “Ultrasonic arrays for non-destructive evaluation: a review,” NDT Int. 39(7), 525–541 (2006).
[CrossRef]

Wilkens, V.

V. Wilkens, “Characterization of an optical multilayer hydrophone with constant frequency response in the range from 1 to 75 MHz,” J. Acoust. Soc. Am. 113(3), 1431–1438 (2003).
[CrossRef] [PubMed]

Willemink, R. G. H.

Williams, J. A.

J. M. Cannata, J. A. Williams, T. A. Qifa Zhou, Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[CrossRef] [PubMed]

Xu, M.

M. Xu, Y. Xu, and L. V. Wang, “Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries,” IEEE Trans. Biomed. Eng. 50(9), 1086–1099 (2003).
[CrossRef] [PubMed]

Xu, Y.

M. Xu, Y. Xu, and L. V. Wang, “Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries,” IEEE Trans. Biomed. Eng. 50(9), 1086–1099 (2003).
[CrossRef] [PubMed]

Zhang, E.

Zhou, Q.

W. Wei, X. Li, Q. Zhou, K. K. Shung, and Z. Chen, “Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging,” J. Biomed. Opt. 16(10), 106001 (2011).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008).
[CrossRef] [PubMed]

T. Buma, M. Spisar, and M. O’Donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett. 79(4), 548–550 (2001).
[CrossRef]

Y. Hou, J. S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89(9), 093901 (2006).
[CrossRef]

Y. Hou, J. S. Kim, S. Ashkenazi, S. W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[CrossRef]

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic X-waves using axicon transducers,” Appl. Phys. Lett. 94(6), 064108 (2009).
[CrossRef]

Eur. Phys. J. Spec. Top. (1)

G. Grégoire, V. Tournat, D. Mounier, and V. E. Gusev, “Nonlinear photothermal and photoacoustic processes for crack detection,” Eur. Phys. J. Spec. Top. 153(1), 313–315 (2008).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

M. Xu, Y. Xu, and L. V. Wang, “Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries,” IEEE Trans. Biomed. Eng. 50(9), 1086–1099 (2003).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (4)

J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 160–169 (2000).
[CrossRef] [PubMed]

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[CrossRef] [PubMed]

J. M. Cannata, J. A. Williams, T. A. Qifa Zhou, Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[CrossRef] [PubMed]

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[CrossRef] [PubMed]

J. Acoust. Soc. Am. (1)

V. Wilkens, “Characterization of an optical multilayer hydrophone with constant frequency response in the range from 1 to 75 MHz,” J. Acoust. Soc. Am. 113(3), 1431–1438 (2003).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[CrossRef] [PubMed]

W. Wei, X. Li, Q. Zhou, K. K. Shung, and Z. Chen, “Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging,” J. Biomed. Opt. 16(10), 106001 (2011).
[CrossRef] [PubMed]

S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt. 15(1), 011101 (2010).
[CrossRef] [PubMed]

J. Shah, S. Park, S. R. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

NDT Int. (1)

B. W. Drinkwater and P. D. Wilcox, “Ultrasonic arrays for non-destructive evaluation: a review,” NDT Int. 39(7), 525–541 (2006).
[CrossRef]

Nucl. Eng. Des. (1)

S. J. Song, H. J. Shin, and Y. H. Jang, “Development of an ultrasonic phased array system for nondestructive tests of nuclear power plant components,” Nucl. Eng. Des. 214(1–2), 151–161 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (2)

S. Mallidi, A. B. Karpiouk, S. R. Aglyamov, S. Sethuraman, and S. Y. Emelianov, “Measurement of blood perfusion using photoacoustic, ultrasound, and strain imaging,” Proc. SPIE 6437, 643707, 643707-9 (2007).
[CrossRef]

K. Homan, J. Shah, S. Gomez, H. Gensler, A. B. Karpiouk, L. Brannon-Peppas, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging of pancreatic cancer using nanocage contrast agents,” Proc. SPIE 7177, 71771M, 71771M-6 (2009).
[CrossRef]

Sensors (1)

H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors 10(12), 11248–11258 (2010).
[CrossRef] [PubMed]

Other (2)

S. Kim, Y. S. Chen, G. P. Luke, M. Mehrmohammadi, J. R. Cook, and S. Y. Emelianov, “Ultrasound and photoacoustic image-guided photothermal therapy using silica-coated gold nanorods: in-vivo study,” Proc. of IEEE IUS, 233–236 (2010).

P. C. Beard and T. N. Mills, “A 2D optical ultrasound array using a polymer film sensing interferometer,” Proc. of IEEE IUS, 1183–1186 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Experimental setup of the all-optical US/PA imaging system, the mechanisms of US imaging (b) and PA imaging (c), photograph (d) and schematic diagram (e) of the microring device. SMF, single-mode fiber; MMF, multimode fiber.

Fig. 2
Fig. 2

Configuration of the grid phantom. (the red rectangle indicates the scanning area).

Fig. 3
Fig. 3

Frequency responses of the two BP filters for subband imaging.

Fig. 4
Fig. 4

Hair-phantom images before (a) and after (b) reconstruction.

Fig. 5
Fig. 5

US, PA, and fusion images of the grid phantom.

Fig. 6
Fig. 6

PA frequency responses of the carbon black and silicon wafer. Red shading, 12- to 15-MHz BP filter; blue shading, 20- to 23-MHz BP filter.

Fig. 7
Fig. 7

(a) Original image, (b) enhanced US image obtained by the 12- to 15-MHz BP filter, (c) enhanced PA image obtained by the 20- to 23-MHz BP filter, and (d) fusion image.

Metrics