Abstract

In this paper we describe the luminescence properties of Si nanowires (NWs) prepared by a maskless synthesis technique, based on the Au-catalyzed wet etching of Si substrates by an aqueous solution of H2O2 and HF. A strong room temperature photoluminescence (PL), centered at about 690 nm, is observed when Si NWs are optically excited. The detailed analysis of the steady-state and time-resolved PL properties of the system as a function of aging, temperature and pump power allows to demonstrate that the emission is due to the radiative recombination of quantum confined excitons. These results open the route towards novel applications of Si NWs in photonics as efficient light sources.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Gösele, “How clean is too clean?” Nature 440(7080), 34–35 (2006).
    [CrossRef] [PubMed]
  2. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
    [CrossRef] [PubMed]
  3. X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee, and S. T. Lee, “Silicon nanowires as chemical sensors,” Chem. Phys. Lett. 369(1–2), 220–224 (2003).
    [CrossRef]
  4. L. Pavesi and R. Turan, Silicon Nanocrystals. Fundamentals, Synthesis and Applications (Wiley-VCH, Weinheim, 2010).
  5. R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
    [CrossRef]
  6. B. J. Kim, J. Tersoff, S. Kodambaka, M. C. Reuter, E. A. Stach, and F. M. Ross, “Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth,” Science 322(5904), 1070–1073 (2008).
    [CrossRef] [PubMed]
  7. V. Schmidt, S. Senz, and U. Gösele, “Diameter-dependent growth direction of epitaxial silicon nanowires,” Nano Lett. 5(5), 931–935 (2005).
    [CrossRef] [PubMed]
  8. M. Shao, L. Cheng, M. Zhang, D. D. D. Ma, J. A. Zapien, S.-T. Lee, and X. Zhang, “Nitrogen-doped silicon nanowires: synthesis and their blue cathodoluminescence and photoluminescence,” Appl. Phys. Lett. 95(14), 143110 (2009).
    [CrossRef]
  9. O. Demichel, V. Calvo, N. Pauc, A. Besson, P. Noé, F. Oehler, P. Gentile, and N. Magnea, “Recombination dynamics of spatially confined electron-hole system in luminescent gold catalyzed silicon nanowires,” Nano Lett. 9(7), 2575–2578 (2009).
    [CrossRef] [PubMed]
  10. S. S. Walavalkar, C. E. Hofmann, A. P. Homyk, M. D. Henry, H. A. Atwater, and A. Scherer, “Tunable visible and near-IR emission from sub-10 nm etched single-crystal Si nanopillars,” Nano Lett. 10(11), 4423–4428 (2010).
    [CrossRef] [PubMed]
  11. J. Valenta, B. Bruhn, and J. Linnros, “Coexistence of 1D and quasi-0D photoluminescence from single silicon nanowires,” Nano Lett. 11(7), 3003–3009 (2011).
    [CrossRef] [PubMed]
  12. A. R. Guichard, D. N. Barsic, S. Sharma, T. I. Kamins, and M. L. Brongersma, “Tunable light emission from quantum-confined excitons in TiSi2-catalyzed silicon nanowires,” Nano Lett. 6(9), 2140–2144 (2006).
    [CrossRef] [PubMed]
  13. K. Q. Peng, Y. Wu, H. Fang, X. Y. Zhong, Y. Xu, and J. Zhu, “Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays,” Angew. Chem. Int. Ed. Engl. 44(18), 2737–2742 (2005).
    [CrossRef] [PubMed]
  14. Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer, and U. Gösele, “Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon,” J. Phys. Chem. C 114(24), 10683–10690 (2010).
    [CrossRef]
  15. K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
    [CrossRef] [PubMed]
  16. V. A. Sivakov, F. Voigt, A. Berger, G. Bauer, and S. H. Christiansen, “Roughness of silicon nanowire sidewalls and room temperature photoluminescence,” Phys. Rev. B 82(12), 125446 (2010).
    [CrossRef]
  17. S. L. Cheng, C. H. Chung, and Y. H. Chang, “Formation kinetics and structures of high-density vertical Si nanowires on (111)Si substrates,” J. Ceram. Process. Res. 10(3), 243–247 (2009).
  18. Z. Huang, T. Shimizu, S. Senz, Z. Zhang, X. Zhang, W. Lee, N. Geyer, and U. Gösele, “Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions,” Nano Lett. 9(7), 2519–2525 (2009).
    [CrossRef] [PubMed]
  19. H. Fang, Y. Wu, J. Zhao, and J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays,” Nanotechnology 17(15), 3768–3774 (2006).
    [CrossRef]
  20. A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, and O. M. Maragò, “Size-scaling in optical trapping of silicon nanowires,” Nano Lett. 11(11), 4879–4884 (2011).
    [CrossRef] [PubMed]
  21. A. C. Dillon, P. Gupta, M. B. Robinson, A. S. Bracker, and S. M. George, “FTIR studies of water and ammonia decomposition on silicon surfaces,” J. Electron Spectrosc. Relat. Phenom. 54-55, 1085–1095 (1990).
    [CrossRef]
  22. M. S. Brandt, H. D. Fuchs, M. Stutzmann, J. Weber, and M. Cardona, “The origin of visible luminescence from ‘porous silicon’: a new interpretation,” Solid State Commun. 81(4), 307–312 (1992).
    [CrossRef]
  23. M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, “Size-dependent electron-hole exchange interaction in Si nanocrystals,” Appl. Phys. Lett. 76(3), 351–353 (2000).
    [CrossRef]
  24. P. D. J. Calcott, K. J. Nash, L. T. Canham, M. J. Kane, and D. Brumhead, “Identification of radiative transitions in highly porous silicon,” J. Phys. Condens. Matter 5(7), L91–L98 (1993).
    [CrossRef]
  25. V. Vinciguerra, G. Franzò, F. Priolo, F. Iacona, and C. Spinella, “Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices,” J. Appl. Phys. 87(11), 8165–8173 (2000).
    [CrossRef]
  26. M. Palummo, F. Iori, R. Del Sole, and S. Ossicini, “Giant excitonic exchange splitting in Si nanowires: First-principles calculations,” Phys. Rev. B 81(12), 121303 (2010).
    [CrossRef]
  27. G. Franzò, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, “Electroluminescence of silicon nanocrystals in MOS structures,” Appl. Phys., A Mater. Sci. Process. 74(1), 1–5 (2002).
    [CrossRef]

2011 (2)

J. Valenta, B. Bruhn, and J. Linnros, “Coexistence of 1D and quasi-0D photoluminescence from single silicon nanowires,” Nano Lett. 11(7), 3003–3009 (2011).
[CrossRef] [PubMed]

A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, and O. M. Maragò, “Size-scaling in optical trapping of silicon nanowires,” Nano Lett. 11(11), 4879–4884 (2011).
[CrossRef] [PubMed]

2010 (4)

M. Palummo, F. Iori, R. Del Sole, and S. Ossicini, “Giant excitonic exchange splitting in Si nanowires: First-principles calculations,” Phys. Rev. B 81(12), 121303 (2010).
[CrossRef]

Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer, and U. Gösele, “Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon,” J. Phys. Chem. C 114(24), 10683–10690 (2010).
[CrossRef]

V. A. Sivakov, F. Voigt, A. Berger, G. Bauer, and S. H. Christiansen, “Roughness of silicon nanowire sidewalls and room temperature photoluminescence,” Phys. Rev. B 82(12), 125446 (2010).
[CrossRef]

S. S. Walavalkar, C. E. Hofmann, A. P. Homyk, M. D. Henry, H. A. Atwater, and A. Scherer, “Tunable visible and near-IR emission from sub-10 nm etched single-crystal Si nanopillars,” Nano Lett. 10(11), 4423–4428 (2010).
[CrossRef] [PubMed]

2009 (4)

M. Shao, L. Cheng, M. Zhang, D. D. D. Ma, J. A. Zapien, S.-T. Lee, and X. Zhang, “Nitrogen-doped silicon nanowires: synthesis and their blue cathodoluminescence and photoluminescence,” Appl. Phys. Lett. 95(14), 143110 (2009).
[CrossRef]

O. Demichel, V. Calvo, N. Pauc, A. Besson, P. Noé, F. Oehler, P. Gentile, and N. Magnea, “Recombination dynamics of spatially confined electron-hole system in luminescent gold catalyzed silicon nanowires,” Nano Lett. 9(7), 2575–2578 (2009).
[CrossRef] [PubMed]

S. L. Cheng, C. H. Chung, and Y. H. Chang, “Formation kinetics and structures of high-density vertical Si nanowires on (111)Si substrates,” J. Ceram. Process. Res. 10(3), 243–247 (2009).

Z. Huang, T. Shimizu, S. Senz, Z. Zhang, X. Zhang, W. Lee, N. Geyer, and U. Gösele, “Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions,” Nano Lett. 9(7), 2519–2525 (2009).
[CrossRef] [PubMed]

2008 (1)

B. J. Kim, J. Tersoff, S. Kodambaka, M. C. Reuter, E. A. Stach, and F. M. Ross, “Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth,” Science 322(5904), 1070–1073 (2008).
[CrossRef] [PubMed]

2007 (1)

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

2006 (3)

U. Gösele, “How clean is too clean?” Nature 440(7080), 34–35 (2006).
[CrossRef] [PubMed]

H. Fang, Y. Wu, J. Zhao, and J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays,” Nanotechnology 17(15), 3768–3774 (2006).
[CrossRef]

A. R. Guichard, D. N. Barsic, S. Sharma, T. I. Kamins, and M. L. Brongersma, “Tunable light emission from quantum-confined excitons in TiSi2-catalyzed silicon nanowires,” Nano Lett. 6(9), 2140–2144 (2006).
[CrossRef] [PubMed]

2005 (3)

K. Q. Peng, Y. Wu, H. Fang, X. Y. Zhong, Y. Xu, and J. Zhu, “Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays,” Angew. Chem. Int. Ed. Engl. 44(18), 2737–2742 (2005).
[CrossRef] [PubMed]

K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

V. Schmidt, S. Senz, and U. Gösele, “Diameter-dependent growth direction of epitaxial silicon nanowires,” Nano Lett. 5(5), 931–935 (2005).
[CrossRef] [PubMed]

2003 (1)

X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee, and S. T. Lee, “Silicon nanowires as chemical sensors,” Chem. Phys. Lett. 369(1–2), 220–224 (2003).
[CrossRef]

2002 (1)

G. Franzò, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, “Electroluminescence of silicon nanocrystals in MOS structures,” Appl. Phys., A Mater. Sci. Process. 74(1), 1–5 (2002).
[CrossRef]

2000 (2)

V. Vinciguerra, G. Franzò, F. Priolo, F. Iacona, and C. Spinella, “Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices,” J. Appl. Phys. 87(11), 8165–8173 (2000).
[CrossRef]

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, “Size-dependent electron-hole exchange interaction in Si nanocrystals,” Appl. Phys. Lett. 76(3), 351–353 (2000).
[CrossRef]

1993 (1)

P. D. J. Calcott, K. J. Nash, L. T. Canham, M. J. Kane, and D. Brumhead, “Identification of radiative transitions in highly porous silicon,” J. Phys. Condens. Matter 5(7), L91–L98 (1993).
[CrossRef]

1992 (1)

M. S. Brandt, H. D. Fuchs, M. Stutzmann, J. Weber, and M. Cardona, “The origin of visible luminescence from ‘porous silicon’: a new interpretation,” Solid State Commun. 81(4), 307–312 (1992).
[CrossRef]

1990 (1)

A. C. Dillon, P. Gupta, M. B. Robinson, A. S. Bracker, and S. M. George, “FTIR studies of water and ammonia decomposition on silicon surfaces,” J. Electron Spectrosc. Relat. Phenom. 54-55, 1085–1095 (1990).
[CrossRef]

1964 (1)

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[CrossRef]

Artoni, P.

A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, and O. M. Maragò, “Size-scaling in optical trapping of silicon nanowires,” Nano Lett. 11(11), 4879–4884 (2011).
[CrossRef] [PubMed]

Atwater, H. A.

S. S. Walavalkar, C. E. Hofmann, A. P. Homyk, M. D. Henry, H. A. Atwater, and A. Scherer, “Tunable visible and near-IR emission from sub-10 nm etched single-crystal Si nanopillars,” Nano Lett. 10(11), 4423–4428 (2010).
[CrossRef] [PubMed]

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, “Size-dependent electron-hole exchange interaction in Si nanocrystals,” Appl. Phys. Lett. 76(3), 351–353 (2000).
[CrossRef]

Barsic, D. N.

A. R. Guichard, D. N. Barsic, S. Sharma, T. I. Kamins, and M. L. Brongersma, “Tunable light emission from quantum-confined excitons in TiSi2-catalyzed silicon nanowires,” Nano Lett. 6(9), 2140–2144 (2006).
[CrossRef] [PubMed]

Bauer, G.

V. A. Sivakov, F. Voigt, A. Berger, G. Bauer, and S. H. Christiansen, “Roughness of silicon nanowire sidewalls and room temperature photoluminescence,” Phys. Rev. B 82(12), 125446 (2010).
[CrossRef]

Berger, A.

V. A. Sivakov, F. Voigt, A. Berger, G. Bauer, and S. H. Christiansen, “Roughness of silicon nanowire sidewalls and room temperature photoluminescence,” Phys. Rev. B 82(12), 125446 (2010).
[CrossRef]

Besson, A.

O. Demichel, V. Calvo, N. Pauc, A. Besson, P. Noé, F. Oehler, P. Gentile, and N. Magnea, “Recombination dynamics of spatially confined electron-hole system in luminescent gold catalyzed silicon nanowires,” Nano Lett. 9(7), 2575–2578 (2009).
[CrossRef] [PubMed]

Borghese, F.

A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, and O. M. Maragò, “Size-scaling in optical trapping of silicon nanowires,” Nano Lett. 11(11), 4879–4884 (2011).
[CrossRef] [PubMed]

Bracker, A. S.

A. C. Dillon, P. Gupta, M. B. Robinson, A. S. Bracker, and S. M. George, “FTIR studies of water and ammonia decomposition on silicon surfaces,” J. Electron Spectrosc. Relat. Phenom. 54-55, 1085–1095 (1990).
[CrossRef]

Brandt, M. S.

M. S. Brandt, H. D. Fuchs, M. Stutzmann, J. Weber, and M. Cardona, “The origin of visible luminescence from ‘porous silicon’: a new interpretation,” Solid State Commun. 81(4), 307–312 (1992).
[CrossRef]

Brongersma, M. L.

A. R. Guichard, D. N. Barsic, S. Sharma, T. I. Kamins, and M. L. Brongersma, “Tunable light emission from quantum-confined excitons in TiSi2-catalyzed silicon nanowires,” Nano Lett. 6(9), 2140–2144 (2006).
[CrossRef] [PubMed]

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, “Size-dependent electron-hole exchange interaction in Si nanocrystals,” Appl. Phys. Lett. 76(3), 351–353 (2000).
[CrossRef]

Bruhn, B.

J. Valenta, B. Bruhn, and J. Linnros, “Coexistence of 1D and quasi-0D photoluminescence from single silicon nanowires,” Nano Lett. 11(7), 3003–3009 (2011).
[CrossRef] [PubMed]

Brumhead, D.

P. D. J. Calcott, K. J. Nash, L. T. Canham, M. J. Kane, and D. Brumhead, “Identification of radiative transitions in highly porous silicon,” J. Phys. Condens. Matter 5(7), L91–L98 (1993).
[CrossRef]

Calcott, P. D. J.

P. D. J. Calcott, K. J. Nash, L. T. Canham, M. J. Kane, and D. Brumhead, “Identification of radiative transitions in highly porous silicon,” J. Phys. Condens. Matter 5(7), L91–L98 (1993).
[CrossRef]

Calvo, V.

O. Demichel, V. Calvo, N. Pauc, A. Besson, P. Noé, F. Oehler, P. Gentile, and N. Magnea, “Recombination dynamics of spatially confined electron-hole system in luminescent gold catalyzed silicon nanowires,” Nano Lett. 9(7), 2575–2578 (2009).
[CrossRef] [PubMed]

Canham, L. T.

P. D. J. Calcott, K. J. Nash, L. T. Canham, M. J. Kane, and D. Brumhead, “Identification of radiative transitions in highly porous silicon,” J. Phys. Condens. Matter 5(7), L91–L98 (1993).
[CrossRef]

Cardona, M.

M. S. Brandt, H. D. Fuchs, M. Stutzmann, J. Weber, and M. Cardona, “The origin of visible luminescence from ‘porous silicon’: a new interpretation,” Solid State Commun. 81(4), 307–312 (1992).
[CrossRef]

Chang, Y. H.

S. L. Cheng, C. H. Chung, and Y. H. Chang, “Formation kinetics and structures of high-density vertical Si nanowires on (111)Si substrates,” J. Ceram. Process. Res. 10(3), 243–247 (2009).

Cheng, L.

M. Shao, L. Cheng, M. Zhang, D. D. D. Ma, J. A. Zapien, S.-T. Lee, and X. Zhang, “Nitrogen-doped silicon nanowires: synthesis and their blue cathodoluminescence and photoluminescence,” Appl. Phys. Lett. 95(14), 143110 (2009).
[CrossRef]

Cheng, S. L.

S. L. Cheng, C. H. Chung, and Y. H. Chang, “Formation kinetics and structures of high-density vertical Si nanowires on (111)Si substrates,” J. Ceram. Process. Res. 10(3), 243–247 (2009).

Christiansen, S. H.

V. A. Sivakov, F. Voigt, A. Berger, G. Bauer, and S. H. Christiansen, “Roughness of silicon nanowire sidewalls and room temperature photoluminescence,” Phys. Rev. B 82(12), 125446 (2010).
[CrossRef]

Chung, C. H.

S. L. Cheng, C. H. Chung, and Y. H. Chang, “Formation kinetics and structures of high-density vertical Si nanowires on (111)Si substrates,” J. Ceram. Process. Res. 10(3), 243–247 (2009).

Del Sole, R.

M. Palummo, F. Iori, R. Del Sole, and S. Ossicini, “Giant excitonic exchange splitting in Si nanowires: First-principles calculations,” Phys. Rev. B 81(12), 121303 (2010).
[CrossRef]

Demichel, O.

O. Demichel, V. Calvo, N. Pauc, A. Besson, P. Noé, F. Oehler, P. Gentile, and N. Magnea, “Recombination dynamics of spatially confined electron-hole system in luminescent gold catalyzed silicon nanowires,” Nano Lett. 9(7), 2575–2578 (2009).
[CrossRef] [PubMed]

Denti, P.

A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, and O. M. Maragò, “Size-scaling in optical trapping of silicon nanowires,” Nano Lett. 11(11), 4879–4884 (2011).
[CrossRef] [PubMed]

Di Stefano, G.

G. Franzò, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, “Electroluminescence of silicon nanocrystals in MOS structures,” Appl. Phys., A Mater. Sci. Process. 74(1), 1–5 (2002).
[CrossRef]

Dillon, A. C.

A. C. Dillon, P. Gupta, M. B. Robinson, A. S. Bracker, and S. M. George, “FTIR studies of water and ammonia decomposition on silicon surfaces,” J. Electron Spectrosc. Relat. Phenom. 54-55, 1085–1095 (1990).
[CrossRef]

Ellis, W. C.

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[CrossRef]

Fallica, P. G.

G. Franzò, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, “Electroluminescence of silicon nanocrystals in MOS structures,” Appl. Phys., A Mater. Sci. Process. 74(1), 1–5 (2002).
[CrossRef]

Fang, H.

H. Fang, Y. Wu, J. Zhao, and J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays,” Nanotechnology 17(15), 3768–3774 (2006).
[CrossRef]

K. Q. Peng, Y. Wu, H. Fang, X. Y. Zhong, Y. Xu, and J. Zhu, “Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays,” Angew. Chem. Int. Ed. Engl. 44(18), 2737–2742 (2005).
[CrossRef] [PubMed]

Fang, Y.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Franzò, G.

G. Franzò, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, “Electroluminescence of silicon nanocrystals in MOS structures,” Appl. Phys., A Mater. Sci. Process. 74(1), 1–5 (2002).
[CrossRef]

V. Vinciguerra, G. Franzò, F. Priolo, F. Iacona, and C. Spinella, “Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices,” J. Appl. Phys. 87(11), 8165–8173 (2000).
[CrossRef]

Fuchs, H. D.

M. S. Brandt, H. D. Fuchs, M. Stutzmann, J. Weber, and M. Cardona, “The origin of visible luminescence from ‘porous silicon’: a new interpretation,” Solid State Commun. 81(4), 307–312 (1992).
[CrossRef]

Gentile, P.

O. Demichel, V. Calvo, N. Pauc, A. Besson, P. Noé, F. Oehler, P. Gentile, and N. Magnea, “Recombination dynamics of spatially confined electron-hole system in luminescent gold catalyzed silicon nanowires,” Nano Lett. 9(7), 2575–2578 (2009).
[CrossRef] [PubMed]

George, S. M.

A. C. Dillon, P. Gupta, M. B. Robinson, A. S. Bracker, and S. M. George, “FTIR studies of water and ammonia decomposition on silicon surfaces,” J. Electron Spectrosc. Relat. Phenom. 54-55, 1085–1095 (1990).
[CrossRef]

Geyer, N.

Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer, and U. Gösele, “Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon,” J. Phys. Chem. C 114(24), 10683–10690 (2010).
[CrossRef]

Z. Huang, T. Shimizu, S. Senz, Z. Zhang, X. Zhang, W. Lee, N. Geyer, and U. Gösele, “Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions,” Nano Lett. 9(7), 2519–2525 (2009).
[CrossRef] [PubMed]

Gösele, U.

Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer, and U. Gösele, “Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon,” J. Phys. Chem. C 114(24), 10683–10690 (2010).
[CrossRef]

Z. Huang, T. Shimizu, S. Senz, Z. Zhang, X. Zhang, W. Lee, N. Geyer, and U. Gösele, “Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions,” Nano Lett. 9(7), 2519–2525 (2009).
[CrossRef] [PubMed]

U. Gösele, “How clean is too clean?” Nature 440(7080), 34–35 (2006).
[CrossRef] [PubMed]

V. Schmidt, S. Senz, and U. Gösele, “Diameter-dependent growth direction of epitaxial silicon nanowires,” Nano Lett. 5(5), 931–935 (2005).
[CrossRef] [PubMed]

Gucciardi, P. G.

A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, and O. M. Maragò, “Size-scaling in optical trapping of silicon nanowires,” Nano Lett. 11(11), 4879–4884 (2011).
[CrossRef] [PubMed]

Guichard, A. R.

A. R. Guichard, D. N. Barsic, S. Sharma, T. I. Kamins, and M. L. Brongersma, “Tunable light emission from quantum-confined excitons in TiSi2-catalyzed silicon nanowires,” Nano Lett. 6(9), 2140–2144 (2006).
[CrossRef] [PubMed]

Gupta, P.

A. C. Dillon, P. Gupta, M. B. Robinson, A. S. Bracker, and S. M. George, “FTIR studies of water and ammonia decomposition on silicon surfaces,” J. Electron Spectrosc. Relat. Phenom. 54-55, 1085–1095 (1990).
[CrossRef]

Henry, M. D.

S. S. Walavalkar, C. E. Hofmann, A. P. Homyk, M. D. Henry, H. A. Atwater, and A. Scherer, “Tunable visible and near-IR emission from sub-10 nm etched single-crystal Si nanopillars,” Nano Lett. 10(11), 4423–4428 (2010).
[CrossRef] [PubMed]

Hofmann, C. E.

S. S. Walavalkar, C. E. Hofmann, A. P. Homyk, M. D. Henry, H. A. Atwater, and A. Scherer, “Tunable visible and near-IR emission from sub-10 nm etched single-crystal Si nanopillars,” Nano Lett. 10(11), 4423–4428 (2010).
[CrossRef] [PubMed]

Homyk, A. P.

S. S. Walavalkar, C. E. Hofmann, A. P. Homyk, M. D. Henry, H. A. Atwater, and A. Scherer, “Tunable visible and near-IR emission from sub-10 nm etched single-crystal Si nanopillars,” Nano Lett. 10(11), 4423–4428 (2010).
[CrossRef] [PubMed]

Hu, J. Q.

X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee, and S. T. Lee, “Silicon nanowires as chemical sensors,” Chem. Phys. Lett. 369(1–2), 220–224 (2003).
[CrossRef]

Huang, J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Huang, Z.

Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer, and U. Gösele, “Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon,” J. Phys. Chem. C 114(24), 10683–10690 (2010).
[CrossRef]

Z. Huang, T. Shimizu, S. Senz, Z. Zhang, X. Zhang, W. Lee, N. Geyer, and U. Gösele, “Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions,” Nano Lett. 9(7), 2519–2525 (2009).
[CrossRef] [PubMed]

Iacona, F.

A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, and O. M. Maragò, “Size-scaling in optical trapping of silicon nanowires,” Nano Lett. 11(11), 4879–4884 (2011).
[CrossRef] [PubMed]

G. Franzò, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, “Electroluminescence of silicon nanocrystals in MOS structures,” Appl. Phys., A Mater. Sci. Process. 74(1), 1–5 (2002).
[CrossRef]

V. Vinciguerra, G. Franzò, F. Priolo, F. Iacona, and C. Spinella, “Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices,” J. Appl. Phys. 87(11), 8165–8173 (2000).
[CrossRef]

Iatì, M. A.

A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, and O. M. Maragò, “Size-scaling in optical trapping of silicon nanowires,” Nano Lett. 11(11), 4879–4884 (2011).
[CrossRef] [PubMed]

Iori, F.

M. Palummo, F. Iori, R. Del Sole, and S. Ossicini, “Giant excitonic exchange splitting in Si nanowires: First-principles calculations,” Phys. Rev. B 81(12), 121303 (2010).
[CrossRef]

Irrera, A.

A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, and O. M. Maragò, “Size-scaling in optical trapping of silicon nanowires,” Nano Lett. 11(11), 4879–4884 (2011).
[CrossRef] [PubMed]

G. Franzò, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, “Electroluminescence of silicon nanocrystals in MOS structures,” Appl. Phys., A Mater. Sci. Process. 74(1), 1–5 (2002).
[CrossRef]

Kamins, T. I.

A. R. Guichard, D. N. Barsic, S. Sharma, T. I. Kamins, and M. L. Brongersma, “Tunable light emission from quantum-confined excitons in TiSi2-catalyzed silicon nanowires,” Nano Lett. 6(9), 2140–2144 (2006).
[CrossRef] [PubMed]

Kane, M. J.

P. D. J. Calcott, K. J. Nash, L. T. Canham, M. J. Kane, and D. Brumhead, “Identification of radiative transitions in highly porous silicon,” J. Phys. Condens. Matter 5(7), L91–L98 (1993).
[CrossRef]

Kempa, T. J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Kik, P. G.

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, “Size-dependent electron-hole exchange interaction in Si nanocrystals,” Appl. Phys. Lett. 76(3), 351–353 (2000).
[CrossRef]

Kim, B. J.

B. J. Kim, J. Tersoff, S. Kodambaka, M. C. Reuter, E. A. Stach, and F. M. Ross, “Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth,” Science 322(5904), 1070–1073 (2008).
[CrossRef] [PubMed]

Kodambaka, S.

B. J. Kim, J. Tersoff, S. Kodambaka, M. C. Reuter, E. A. Stach, and F. M. Ross, “Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth,” Science 322(5904), 1070–1073 (2008).
[CrossRef] [PubMed]

Lee, C. S.

X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee, and S. T. Lee, “Silicon nanowires as chemical sensors,” Chem. Phys. Lett. 369(1–2), 220–224 (2003).
[CrossRef]

Lee, S. T.

K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee, and S. T. Lee, “Silicon nanowires as chemical sensors,” Chem. Phys. Lett. 369(1–2), 220–224 (2003).
[CrossRef]

Lee, S.-T.

M. Shao, L. Cheng, M. Zhang, D. D. D. Ma, J. A. Zapien, S.-T. Lee, and X. Zhang, “Nitrogen-doped silicon nanowires: synthesis and their blue cathodoluminescence and photoluminescence,” Appl. Phys. Lett. 95(14), 143110 (2009).
[CrossRef]

Lee, W.

Z. Huang, T. Shimizu, S. Senz, Z. Zhang, X. Zhang, W. Lee, N. Geyer, and U. Gösele, “Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions,” Nano Lett. 9(7), 2519–2525 (2009).
[CrossRef] [PubMed]

Li, C. P.

X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee, and S. T. Lee, “Silicon nanowires as chemical sensors,” Chem. Phys. Lett. 369(1–2), 220–224 (2003).
[CrossRef]

Lieber, C. M.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Linnros, J.

J. Valenta, B. Bruhn, and J. Linnros, “Coexistence of 1D and quasi-0D photoluminescence from single silicon nanowires,” Nano Lett. 11(7), 3003–3009 (2011).
[CrossRef] [PubMed]

Ma, D. D. D.

M. Shao, L. Cheng, M. Zhang, D. D. D. Ma, J. A. Zapien, S.-T. Lee, and X. Zhang, “Nitrogen-doped silicon nanowires: synthesis and their blue cathodoluminescence and photoluminescence,” Appl. Phys. Lett. 95(14), 143110 (2009).
[CrossRef]

X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee, and S. T. Lee, “Silicon nanowires as chemical sensors,” Chem. Phys. Lett. 369(1–2), 220–224 (2003).
[CrossRef]

Magnea, N.

O. Demichel, V. Calvo, N. Pauc, A. Besson, P. Noé, F. Oehler, P. Gentile, and N. Magnea, “Recombination dynamics of spatially confined electron-hole system in luminescent gold catalyzed silicon nanowires,” Nano Lett. 9(7), 2575–2578 (2009).
[CrossRef] [PubMed]

Maragò, O. M.

A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, and O. M. Maragò, “Size-scaling in optical trapping of silicon nanowires,” Nano Lett. 11(11), 4879–4884 (2011).
[CrossRef] [PubMed]

Min, K. S.

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, “Size-dependent electron-hole exchange interaction in Si nanocrystals,” Appl. Phys. Lett. 76(3), 351–353 (2000).
[CrossRef]

Miritello, M.

G. Franzò, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, “Electroluminescence of silicon nanocrystals in MOS structures,” Appl. Phys., A Mater. Sci. Process. 74(1), 1–5 (2002).
[CrossRef]

Moreira, E. C.

G. Franzò, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, “Electroluminescence of silicon nanocrystals in MOS structures,” Appl. Phys., A Mater. Sci. Process. 74(1), 1–5 (2002).
[CrossRef]

Nash, K. J.

P. D. J. Calcott, K. J. Nash, L. T. Canham, M. J. Kane, and D. Brumhead, “Identification of radiative transitions in highly porous silicon,” J. Phys. Condens. Matter 5(7), L91–L98 (1993).
[CrossRef]

Noé, P.

O. Demichel, V. Calvo, N. Pauc, A. Besson, P. Noé, F. Oehler, P. Gentile, and N. Magnea, “Recombination dynamics of spatially confined electron-hole system in luminescent gold catalyzed silicon nanowires,” Nano Lett. 9(7), 2575–2578 (2009).
[CrossRef] [PubMed]

Oehler, F.

O. Demichel, V. Calvo, N. Pauc, A. Besson, P. Noé, F. Oehler, P. Gentile, and N. Magnea, “Recombination dynamics of spatially confined electron-hole system in luminescent gold catalyzed silicon nanowires,” Nano Lett. 9(7), 2575–2578 (2009).
[CrossRef] [PubMed]

Ossicini, S.

M. Palummo, F. Iori, R. Del Sole, and S. Ossicini, “Giant excitonic exchange splitting in Si nanowires: First-principles calculations,” Phys. Rev. B 81(12), 121303 (2010).
[CrossRef]

Palummo, M.

M. Palummo, F. Iori, R. Del Sole, and S. Ossicini, “Giant excitonic exchange splitting in Si nanowires: First-principles calculations,” Phys. Rev. B 81(12), 121303 (2010).
[CrossRef]

Pauc, N.

O. Demichel, V. Calvo, N. Pauc, A. Besson, P. Noé, F. Oehler, P. Gentile, and N. Magnea, “Recombination dynamics of spatially confined electron-hole system in luminescent gold catalyzed silicon nanowires,” Nano Lett. 9(7), 2575–2578 (2009).
[CrossRef] [PubMed]

Peng, K. Q.

K. Q. Peng, Y. Wu, H. Fang, X. Y. Zhong, Y. Xu, and J. Zhu, “Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays,” Angew. Chem. Int. Ed. Engl. 44(18), 2737–2742 (2005).
[CrossRef] [PubMed]

K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Polman, A.

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, “Size-dependent electron-hole exchange interaction in Si nanocrystals,” Appl. Phys. Lett. 76(3), 351–353 (2000).
[CrossRef]

Priolo, F.

A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, and O. M. Maragò, “Size-scaling in optical trapping of silicon nanowires,” Nano Lett. 11(11), 4879–4884 (2011).
[CrossRef] [PubMed]

G. Franzò, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, “Electroluminescence of silicon nanocrystals in MOS structures,” Appl. Phys., A Mater. Sci. Process. 74(1), 1–5 (2002).
[CrossRef]

V. Vinciguerra, G. Franzò, F. Priolo, F. Iacona, and C. Spinella, “Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices,” J. Appl. Phys. 87(11), 8165–8173 (2000).
[CrossRef]

Reuter, M. C.

B. J. Kim, J. Tersoff, S. Kodambaka, M. C. Reuter, E. A. Stach, and F. M. Ross, “Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth,” Science 322(5904), 1070–1073 (2008).
[CrossRef] [PubMed]

Robinson, M. B.

A. C. Dillon, P. Gupta, M. B. Robinson, A. S. Bracker, and S. M. George, “FTIR studies of water and ammonia decomposition on silicon surfaces,” J. Electron Spectrosc. Relat. Phenom. 54-55, 1085–1095 (1990).
[CrossRef]

Ross, F. M.

B. J. Kim, J. Tersoff, S. Kodambaka, M. C. Reuter, E. A. Stach, and F. M. Ross, “Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth,” Science 322(5904), 1070–1073 (2008).
[CrossRef] [PubMed]

Saija, R.

A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, and O. M. Maragò, “Size-scaling in optical trapping of silicon nanowires,” Nano Lett. 11(11), 4879–4884 (2011).
[CrossRef] [PubMed]

Sanfilippo, D.

G. Franzò, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, “Electroluminescence of silicon nanocrystals in MOS structures,” Appl. Phys., A Mater. Sci. Process. 74(1), 1–5 (2002).
[CrossRef]

Scherer, A.

S. S. Walavalkar, C. E. Hofmann, A. P. Homyk, M. D. Henry, H. A. Atwater, and A. Scherer, “Tunable visible and near-IR emission from sub-10 nm etched single-crystal Si nanopillars,” Nano Lett. 10(11), 4423–4428 (2010).
[CrossRef] [PubMed]

Schmidt, V.

V. Schmidt, S. Senz, and U. Gösele, “Diameter-dependent growth direction of epitaxial silicon nanowires,” Nano Lett. 5(5), 931–935 (2005).
[CrossRef] [PubMed]

Senz, S.

Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer, and U. Gösele, “Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon,” J. Phys. Chem. C 114(24), 10683–10690 (2010).
[CrossRef]

Z. Huang, T. Shimizu, S. Senz, Z. Zhang, X. Zhang, W. Lee, N. Geyer, and U. Gösele, “Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions,” Nano Lett. 9(7), 2519–2525 (2009).
[CrossRef] [PubMed]

V. Schmidt, S. Senz, and U. Gösele, “Diameter-dependent growth direction of epitaxial silicon nanowires,” Nano Lett. 5(5), 931–935 (2005).
[CrossRef] [PubMed]

Shao, M.

M. Shao, L. Cheng, M. Zhang, D. D. D. Ma, J. A. Zapien, S.-T. Lee, and X. Zhang, “Nitrogen-doped silicon nanowires: synthesis and their blue cathodoluminescence and photoluminescence,” Appl. Phys. Lett. 95(14), 143110 (2009).
[CrossRef]

Sharma, S.

A. R. Guichard, D. N. Barsic, S. Sharma, T. I. Kamins, and M. L. Brongersma, “Tunable light emission from quantum-confined excitons in TiSi2-catalyzed silicon nanowires,” Nano Lett. 6(9), 2140–2144 (2006).
[CrossRef] [PubMed]

Shimizu, T.

Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer, and U. Gösele, “Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon,” J. Phys. Chem. C 114(24), 10683–10690 (2010).
[CrossRef]

Z. Huang, T. Shimizu, S. Senz, Z. Zhang, X. Zhang, W. Lee, N. Geyer, and U. Gösele, “Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions,” Nano Lett. 9(7), 2519–2525 (2009).
[CrossRef] [PubMed]

Sivakov, V. A.

V. A. Sivakov, F. Voigt, A. Berger, G. Bauer, and S. H. Christiansen, “Roughness of silicon nanowire sidewalls and room temperature photoluminescence,” Phys. Rev. B 82(12), 125446 (2010).
[CrossRef]

Spinella, C.

V. Vinciguerra, G. Franzò, F. Priolo, F. Iacona, and C. Spinella, “Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices,” J. Appl. Phys. 87(11), 8165–8173 (2000).
[CrossRef]

Stach, E. A.

B. J. Kim, J. Tersoff, S. Kodambaka, M. C. Reuter, E. A. Stach, and F. M. Ross, “Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth,” Science 322(5904), 1070–1073 (2008).
[CrossRef] [PubMed]

Stutzmann, M.

M. S. Brandt, H. D. Fuchs, M. Stutzmann, J. Weber, and M. Cardona, “The origin of visible luminescence from ‘porous silicon’: a new interpretation,” Solid State Commun. 81(4), 307–312 (1992).
[CrossRef]

Tersoff, J.

B. J. Kim, J. Tersoff, S. Kodambaka, M. C. Reuter, E. A. Stach, and F. M. Ross, “Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth,” Science 322(5904), 1070–1073 (2008).
[CrossRef] [PubMed]

Tian, B.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Valenta, J.

J. Valenta, B. Bruhn, and J. Linnros, “Coexistence of 1D and quasi-0D photoluminescence from single silicon nanowires,” Nano Lett. 11(7), 3003–3009 (2011).
[CrossRef] [PubMed]

Vinciguerra, V.

V. Vinciguerra, G. Franzò, F. Priolo, F. Iacona, and C. Spinella, “Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices,” J. Appl. Phys. 87(11), 8165–8173 (2000).
[CrossRef]

Voigt, F.

V. A. Sivakov, F. Voigt, A. Berger, G. Bauer, and S. H. Christiansen, “Roughness of silicon nanowire sidewalls and room temperature photoluminescence,” Phys. Rev. B 82(12), 125446 (2010).
[CrossRef]

Wagner, R. S.

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[CrossRef]

Walavalkar, S. S.

S. S. Walavalkar, C. E. Hofmann, A. P. Homyk, M. D. Henry, H. A. Atwater, and A. Scherer, “Tunable visible and near-IR emission from sub-10 nm etched single-crystal Si nanopillars,” Nano Lett. 10(11), 4423–4428 (2010).
[CrossRef] [PubMed]

Weber, J.

M. S. Brandt, H. D. Fuchs, M. Stutzmann, J. Weber, and M. Cardona, “The origin of visible luminescence from ‘porous silicon’: a new interpretation,” Solid State Commun. 81(4), 307–312 (1992).
[CrossRef]

Wu, Y.

H. Fang, Y. Wu, J. Zhao, and J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays,” Nanotechnology 17(15), 3768–3774 (2006).
[CrossRef]

K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

K. Q. Peng, Y. Wu, H. Fang, X. Y. Zhong, Y. Xu, and J. Zhu, “Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays,” Angew. Chem. Int. Ed. Engl. 44(18), 2737–2742 (2005).
[CrossRef] [PubMed]

Xu, Y.

K. Q. Peng, Y. Wu, H. Fang, X. Y. Zhong, Y. Xu, and J. Zhu, “Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays,” Angew. Chem. Int. Ed. Engl. 44(18), 2737–2742 (2005).
[CrossRef] [PubMed]

K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Yan, Y. J.

K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Yu, G.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Yu, N.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Zapien, J. A.

M. Shao, L. Cheng, M. Zhang, D. D. D. Ma, J. A. Zapien, S.-T. Lee, and X. Zhang, “Nitrogen-doped silicon nanowires: synthesis and their blue cathodoluminescence and photoluminescence,” Appl. Phys. Lett. 95(14), 143110 (2009).
[CrossRef]

Zhang, M.

M. Shao, L. Cheng, M. Zhang, D. D. D. Ma, J. A. Zapien, S.-T. Lee, and X. Zhang, “Nitrogen-doped silicon nanowires: synthesis and their blue cathodoluminescence and photoluminescence,” Appl. Phys. Lett. 95(14), 143110 (2009).
[CrossRef]

Zhang, X.

M. Shao, L. Cheng, M. Zhang, D. D. D. Ma, J. A. Zapien, S.-T. Lee, and X. Zhang, “Nitrogen-doped silicon nanowires: synthesis and their blue cathodoluminescence and photoluminescence,” Appl. Phys. Lett. 95(14), 143110 (2009).
[CrossRef]

Z. Huang, T. Shimizu, S. Senz, Z. Zhang, X. Zhang, W. Lee, N. Geyer, and U. Gösele, “Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions,” Nano Lett. 9(7), 2519–2525 (2009).
[CrossRef] [PubMed]

Zhang, Z.

Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer, and U. Gösele, “Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon,” J. Phys. Chem. C 114(24), 10683–10690 (2010).
[CrossRef]

Z. Huang, T. Shimizu, S. Senz, Z. Zhang, X. Zhang, W. Lee, N. Geyer, and U. Gösele, “Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions,” Nano Lett. 9(7), 2519–2525 (2009).
[CrossRef] [PubMed]

Zhao, J.

H. Fang, Y. Wu, J. Zhao, and J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays,” Nanotechnology 17(15), 3768–3774 (2006).
[CrossRef]

Zheng, X.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Zhong, X. Y.

K. Q. Peng, Y. Wu, H. Fang, X. Y. Zhong, Y. Xu, and J. Zhu, “Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays,” Angew. Chem. Int. Ed. Engl. 44(18), 2737–2742 (2005).
[CrossRef] [PubMed]

Zhou, X. T.

X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee, and S. T. Lee, “Silicon nanowires as chemical sensors,” Chem. Phys. Lett. 369(1–2), 220–224 (2003).
[CrossRef]

Zhu, J.

H. Fang, Y. Wu, J. Zhao, and J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays,” Nanotechnology 17(15), 3768–3774 (2006).
[CrossRef]

K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

K. Q. Peng, Y. Wu, H. Fang, X. Y. Zhong, Y. Xu, and J. Zhu, “Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays,” Angew. Chem. Int. Ed. Engl. 44(18), 2737–2742 (2005).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

K. Q. Peng, Y. Wu, H. Fang, X. Y. Zhong, Y. Xu, and J. Zhu, “Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays,” Angew. Chem. Int. Ed. Engl. 44(18), 2737–2742 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[CrossRef]

M. Shao, L. Cheng, M. Zhang, D. D. D. Ma, J. A. Zapien, S.-T. Lee, and X. Zhang, “Nitrogen-doped silicon nanowires: synthesis and their blue cathodoluminescence and photoluminescence,” Appl. Phys. Lett. 95(14), 143110 (2009).
[CrossRef]

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, “Size-dependent electron-hole exchange interaction in Si nanocrystals,” Appl. Phys. Lett. 76(3), 351–353 (2000).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

G. Franzò, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, “Electroluminescence of silicon nanocrystals in MOS structures,” Appl. Phys., A Mater. Sci. Process. 74(1), 1–5 (2002).
[CrossRef]

Chem. Phys. Lett. (1)

X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee, and S. T. Lee, “Silicon nanowires as chemical sensors,” Chem. Phys. Lett. 369(1–2), 220–224 (2003).
[CrossRef]

J. Appl. Phys. (1)

V. Vinciguerra, G. Franzò, F. Priolo, F. Iacona, and C. Spinella, “Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices,” J. Appl. Phys. 87(11), 8165–8173 (2000).
[CrossRef]

J. Ceram. Process. Res. (1)

S. L. Cheng, C. H. Chung, and Y. H. Chang, “Formation kinetics and structures of high-density vertical Si nanowires on (111)Si substrates,” J. Ceram. Process. Res. 10(3), 243–247 (2009).

J. Electron Spectrosc. Relat. Phenom. (1)

A. C. Dillon, P. Gupta, M. B. Robinson, A. S. Bracker, and S. M. George, “FTIR studies of water and ammonia decomposition on silicon surfaces,” J. Electron Spectrosc. Relat. Phenom. 54-55, 1085–1095 (1990).
[CrossRef]

J. Phys. Chem. C (1)

Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer, and U. Gösele, “Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon,” J. Phys. Chem. C 114(24), 10683–10690 (2010).
[CrossRef]

J. Phys. Condens. Matter (1)

P. D. J. Calcott, K. J. Nash, L. T. Canham, M. J. Kane, and D. Brumhead, “Identification of radiative transitions in highly porous silicon,” J. Phys. Condens. Matter 5(7), L91–L98 (1993).
[CrossRef]

Nano Lett. (7)

A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, and O. M. Maragò, “Size-scaling in optical trapping of silicon nanowires,” Nano Lett. 11(11), 4879–4884 (2011).
[CrossRef] [PubMed]

Z. Huang, T. Shimizu, S. Senz, Z. Zhang, X. Zhang, W. Lee, N. Geyer, and U. Gösele, “Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions,” Nano Lett. 9(7), 2519–2525 (2009).
[CrossRef] [PubMed]

V. Schmidt, S. Senz, and U. Gösele, “Diameter-dependent growth direction of epitaxial silicon nanowires,” Nano Lett. 5(5), 931–935 (2005).
[CrossRef] [PubMed]

O. Demichel, V. Calvo, N. Pauc, A. Besson, P. Noé, F. Oehler, P. Gentile, and N. Magnea, “Recombination dynamics of spatially confined electron-hole system in luminescent gold catalyzed silicon nanowires,” Nano Lett. 9(7), 2575–2578 (2009).
[CrossRef] [PubMed]

S. S. Walavalkar, C. E. Hofmann, A. P. Homyk, M. D. Henry, H. A. Atwater, and A. Scherer, “Tunable visible and near-IR emission from sub-10 nm etched single-crystal Si nanopillars,” Nano Lett. 10(11), 4423–4428 (2010).
[CrossRef] [PubMed]

J. Valenta, B. Bruhn, and J. Linnros, “Coexistence of 1D and quasi-0D photoluminescence from single silicon nanowires,” Nano Lett. 11(7), 3003–3009 (2011).
[CrossRef] [PubMed]

A. R. Guichard, D. N. Barsic, S. Sharma, T. I. Kamins, and M. L. Brongersma, “Tunable light emission from quantum-confined excitons in TiSi2-catalyzed silicon nanowires,” Nano Lett. 6(9), 2140–2144 (2006).
[CrossRef] [PubMed]

Nanotechnology (1)

H. Fang, Y. Wu, J. Zhao, and J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays,” Nanotechnology 17(15), 3768–3774 (2006).
[CrossRef]

Nature (2)

U. Gösele, “How clean is too clean?” Nature 440(7080), 34–35 (2006).
[CrossRef] [PubMed]

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Phys. Rev. B (2)

V. A. Sivakov, F. Voigt, A. Berger, G. Bauer, and S. H. Christiansen, “Roughness of silicon nanowire sidewalls and room temperature photoluminescence,” Phys. Rev. B 82(12), 125446 (2010).
[CrossRef]

M. Palummo, F. Iori, R. Del Sole, and S. Ossicini, “Giant excitonic exchange splitting in Si nanowires: First-principles calculations,” Phys. Rev. B 81(12), 121303 (2010).
[CrossRef]

Science (1)

B. J. Kim, J. Tersoff, S. Kodambaka, M. C. Reuter, E. A. Stach, and F. M. Ross, “Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth,” Science 322(5904), 1070–1073 (2008).
[CrossRef] [PubMed]

Small (1)

K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Solid State Commun. (1)

M. S. Brandt, H. D. Fuchs, M. Stutzmann, J. Weber, and M. Cardona, “The origin of visible luminescence from ‘porous silicon’: a new interpretation,” Solid State Commun. 81(4), 307–312 (1992).
[CrossRef]

Other (1)

L. Pavesi and R. Turan, Silicon Nanocrystals. Fundamentals, Synthesis and Applications (Wiley-VCH, Weinheim, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Cross section SEM image of Si NWs obtained by metal-assisted wet etching of a Si substrate.

Fig. 2
Fig. 2

Normalized intensity of the PL signal at 690 nm of freshly prepared Si NWs as a function of the air exposure time at room temperature (black squares). The line is a linear fit to the data. The lifetime of the PL signal, obtained by following the decrease of the PL signal at 690 nm after the laser switch-off, as a function of the aging is also presented (red circles, right-hand scale). During the experiment the sample is exposed to the laser beam only for the brief time needed for PL data acquisition. The inset reports a typical PL spectrum obtained from a 150-days-aged sample. The PL data are obtained by exciting the sample with the 488 nm line of an Ar+ laser at a pump power of 10 mW.

Fig. 3
Fig. 3

Normalized intensity of the PL signal at 690 nm of 150 days-aged Si NWs as a function of the exposure time to an Ar+ laser beam (488 nm, 10 mW). Data refer to laser irradiation with the sample kept in air (red points) or in vacuum (blue points). The dashed line represents the starting PL intensity. In the inset, the comparison between the PL decay curves of 150-days-aged NWs, at the beginning of the irradiation experiment (indicated with A) and after irradiation in vacuum for 6000 s (indicated with B), is reported.

Fig. 4
Fig. 4

PL properties of 150 days-aged Si NWs as a function of the flux of 488 nm photons. (a) Normalized integrated PL intensity. The line is a guide to the eyes. (b) Time decay curves of the PL signal measured at 690 nm.

Fig. 5
Fig. 5

PL properties of 150 days-aged Si NWs as a function of the temperature in the range 11-300 K. (a) Normalized intensity of the PL signal at 690 nm. (b) Lifetime of the PL signal, measured at a fixed wavelength of 690 nm. The blue line is a guide to the eyes. (c) Radiative rate (RR = 1/τrad), extracted by the ratio between the PL intensity and the decay time at a fixed photon flux. The red line is a fit to the data, according to the model proposed in Refs. 23-25, with Δ = 26.9±4.3 meV. In the inset the singlet and triplet energy levels split by the electron-hole exchange energy Δ are schematically shown.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I PL σφ τ τ rad N
R R = 3 R T + R S exp( Δ kT ) 3+exp( Δ kT )

Metrics