Abstract

We propose a novel design of photonic crystal fiber (PCF) using an elliptical air hole in the core as a defected core in order to enhance the performance of modal birefringence and to control the properties of chromatic dispersion at the same time. From the simulation results, it is shown that the proposed fiber has high birefringence up to the order of 10−2, negative flattened chromatic dispersion in a broad range of wavelengths, and low confinement loss less than that of the single mode fiber. The outstanding advantage of the proposed PCF is that high birefringence, negative flattened dispersion, and low confinement loss can be achieved just by adding a small sized elliptical air hole in the core to the elliptical air hole PCF, especially at the same time.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
    [CrossRef] [PubMed]
  2. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
    [CrossRef] [PubMed]
  3. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air silica microstructure optical fibers,” Opt. Lett. 25(11), 796–798 (2000).
    [CrossRef] [PubMed]
  4. J. C. Knight and P. S. J. Russell, “Applied optics: New way to guide light,” Science 296, 276–277 (2002).
    [CrossRef] [PubMed]
  5. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25(18), 1325–1327 (2000).
    [CrossRef] [PubMed]
  6. J. Ju, W. Jin, and M. S. Demokan, “Properties of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 15(10), 1375–1377 (2003).
    [CrossRef]
  7. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklew, J. R. Jensen, and H. Simonsen, “Highly brefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
    [CrossRef]
  8. M. J. Steel and R. M. Osgood, “Elliptical-hole photonic crystal fibers,” Opt. Lett. 26(4), 229–231 (2001).
    [CrossRef] [PubMed]
  9. M. J. Steel and P. M. Osgood Jr, “Polarization and dispersive properties of elliptical hole photonic crystal fibers,” J. Lightwave Technol. 19(4), 495–503 (2001).
    [CrossRef]
  10. L. Wang and D. Yang, “Highly birefringent elliptical-hole rectangular-lattice photonic crystal fibers with modified air holes near the core,” Opt. Express 15(14), 8892–8897 (2007).
    [CrossRef] [PubMed]
  11. Y. C. Liu and Y. Lai, “Optical birefringence and polarization dependent loss of square- and rectangular-lattice holey fibers with elliptical air holes: numerical analysis,” Opt. Express 13(1), 225–235 (2005).
    [CrossRef] [PubMed]
  12. P. Falkenstein, C. D. Merritt, and B. L. Justus, “Fused preforms for the fabrication of photonic crystal fibers,” Opt. Lett. 29(16), 1858–1860 (2004).
    [CrossRef] [PubMed]
  13. N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29(12), 1336–1338 (2004).
    [CrossRef] [PubMed]
  14. D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19(4), 185–187 (2007).
    [CrossRef]
  15. L. An, Z Zheng, Z. Li, T. Zhou, and J. Chen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss using four air holes in the core,” J. Lightwave Technol. 27(15), 3175–3180 (2009).
    [CrossRef]
  16. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andrés, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett. 25(11), 790–792 (2000).
    [CrossRef] [PubMed]
  17. W. H. Reeves, J. C. Knight, P. St. J. Russell, and P. J. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10(14), 609–613 (2002).
    [PubMed]
  18. T. L. Wu and C. H. Chao, “Novel ultraflattened dispersion photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(1), 67–69 (2005).
    [CrossRef]
  19. K. Saitoh, N. Florous, and M. Koshiba, “Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses,” Opt. Express 13(21), 8365–8371 (2005).
    [CrossRef] [PubMed]
  20. S. Guenneau, A. Nicolet, F. Zolla, and S. Lasquellec, “Numerical and theoretical study of photonic crystal fibers,” Prog. Electromagn. Res. 41, 271–305 (2003).
  21. P. Domachuk, A. Chapman, E. Mägi, M. J. Steel, H. C. Nguyen, and B. J. Eggleton, “Transverse characterization of high air-fill fraction tapered photonic crystal fiber,” Appl. Opt. 44(19), 3885–3892 (2005).
    [CrossRef] [PubMed]

2009

2007

D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19(4), 185–187 (2007).
[CrossRef]

L. Wang and D. Yang, “Highly birefringent elliptical-hole rectangular-lattice photonic crystal fibers with modified air holes near the core,” Opt. Express 15(14), 8892–8897 (2007).
[CrossRef] [PubMed]

2005

2004

2003

S. Guenneau, A. Nicolet, F. Zolla, and S. Lasquellec, “Numerical and theoretical study of photonic crystal fibers,” Prog. Electromagn. Res. 41, 271–305 (2003).

J. Ju, W. Jin, and M. S. Demokan, “Properties of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 15(10), 1375–1377 (2003).
[CrossRef]

2002

2001

M. J. Steel and R. M. Osgood, “Elliptical-hole photonic crystal fibers,” Opt. Lett. 26(4), 229–231 (2001).
[CrossRef] [PubMed]

M. J. Steel and P. M. Osgood Jr, “Polarization and dispersive properties of elliptical hole photonic crystal fibers,” J. Lightwave Technol. 19(4), 495–503 (2001).
[CrossRef]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklew, J. R. Jensen, and H. Simonsen, “Highly brefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[CrossRef]

2000

1997

1996

An, L.

Andrés, P.

Arriaga, J.

Atkin, D. M.

Birks, T. A.

Bjarklew, A.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklew, J. R. Jensen, and H. Simonsen, “Highly brefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[CrossRef]

Broeng, J.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklew, J. R. Jensen, and H. Simonsen, “Highly brefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[CrossRef]

Chao, C. H.

T. L. Wu and C. H. Chao, “Novel ultraflattened dispersion photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(1), 67–69 (2005).
[CrossRef]

Chapman, A.

Chen, D.

D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19(4), 185–187 (2007).
[CrossRef]

Chen, J.

Cox, F.

Demokan, M. S.

J. Ju, W. Jin, and M. S. Demokan, “Properties of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 15(10), 1375–1377 (2003).
[CrossRef]

Domachuk, P.

Eggleton, B. J.

Falkenstein, P.

Fellew, M.

Ferrando, A.

Florous, N.

Guenneau, S.

S. Guenneau, A. Nicolet, F. Zolla, and S. Lasquellec, “Numerical and theoretical study of photonic crystal fibers,” Prog. Electromagn. Res. 41, 271–305 (2003).

Hansen, T. P.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklew, J. R. Jensen, and H. Simonsen, “Highly brefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[CrossRef]

Henry, G.

Issa, N. A.

Jensen, J. R.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklew, J. R. Jensen, and H. Simonsen, “Highly brefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[CrossRef]

Jin, W.

J. Ju, W. Jin, and M. S. Demokan, “Properties of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 15(10), 1375–1377 (2003).
[CrossRef]

Ju, J.

J. Ju, W. Jin, and M. S. Demokan, “Properties of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 15(10), 1375–1377 (2003).
[CrossRef]

Justus, B. L.

Knight, J. C.

Knudsen, E.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklew, J. R. Jensen, and H. Simonsen, “Highly brefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[CrossRef]

Koshiba, M.

Lai, Y.

Large, M. C.

Lasquellec, S.

S. Guenneau, A. Nicolet, F. Zolla, and S. Lasquellec, “Numerical and theoretical study of photonic crystal fibers,” Prog. Electromagn. Res. 41, 271–305 (2003).

Li, Z.

Libori, S. E. B.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklew, J. R. Jensen, and H. Simonsen, “Highly brefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[CrossRef]

Liu, Y. C.

Mägi, E.

Mangan, B. J.

Merritt, C. D.

Miret, J. J.

Nguyen, H. C.

Nicolet, A.

S. Guenneau, A. Nicolet, F. Zolla, and S. Lasquellec, “Numerical and theoretical study of photonic crystal fibers,” Prog. Electromagn. Res. 41, 271–305 (2003).

Ortigosa-Blanch, A.

Osgood, R. M.

Osgood Jr, P. M.

Ranka, J. K.

Reeves, W. H.

Roberts, P. J.

Russell, P. S. J.

J. C. Knight and P. S. J. Russell, “Applied optics: New way to guide light,” Science 296, 276–277 (2002).
[CrossRef] [PubMed]

Russell, P. St. J.

Saitoh, K.

Shen, L.

D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19(4), 185–187 (2007).
[CrossRef]

Silvestre, E.

Simonsen, H.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklew, J. R. Jensen, and H. Simonsen, “Highly brefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[CrossRef]

Steel, M. J.

Stentz, A. J.

van Eijkelenborg, M. A.

Wadsworth, W. J.

Wang, L.

Windeler, R. S.

Wu, T. L.

T. L. Wu and C. H. Chao, “Novel ultraflattened dispersion photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(1), 67–69 (2005).
[CrossRef]

Yang, D.

Zheng, Z

Zhou, T.

Zolla, F.

S. Guenneau, A. Nicolet, F. Zolla, and S. Lasquellec, “Numerical and theoretical study of photonic crystal fibers,” Prog. Electromagn. Res. 41, 271–305 (2003).

Appl. Opt.

IEEE Photon. Technol. Lett.

J. Ju, W. Jin, and M. S. Demokan, “Properties of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 15(10), 1375–1377 (2003).
[CrossRef]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklew, J. R. Jensen, and H. Simonsen, “Highly brefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[CrossRef]

D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19(4), 185–187 (2007).
[CrossRef]

T. L. Wu and C. H. Chao, “Novel ultraflattened dispersion photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(1), 67–69 (2005).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Prog. Electromagn. Res.

S. Guenneau, A. Nicolet, F. Zolla, and S. Lasquellec, “Numerical and theoretical study of photonic crystal fibers,” Prog. Electromagn. Res. 41, 271–305 (2003).

Science

J. C. Knight and P. S. J. Russell, “Applied optics: New way to guide light,” Science 296, 276–277 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Cross-section of the proposed EPCF with an elliptical air hole in the core with N = 6, and (b) Illustration of the structure parameters.

Fig. 2
Fig. 2

Electric field distribution of (a), (c) y- and (b),(d) x-polarized mode for the conventional and proposed EPCF, respectively.

Fig. 3
Fig. 3

Modal birefringence of the fundamental modes for the conventional and proposed EPCF with Λ = 1.6μm, D / Λ = 0.6, dc = D / 2, and η = 2.

Fig. 4
Fig. 4

Chromatic dispersion of the fundamental modes for the conventional and proposed EPCF with Λ = 1.6μm, D / Λ = 0.6, dc = D / 2, and η = 2.The inset picture shows that the waveguide dispersion for the conventional and proposed EPCF and the dashed line (red) shows the negative material dispersion for the proposed EPCF.

Fig. 5
Fig. 5

Influences of structure parameters for the proposed EPCF, (a) Λ (b) D and (c) dc on the birefringence.

Fig. 6
Fig. 6

Influences of structure parameters for the proposed EPCF, (a) Λ (b) D and (c) dc on the chromatic dispersion

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

B= λ 2π [ β y (λ) β x (λ)]=| n eff y n eff x |,
D= λ c 2 Re( n eff ) λ 2 ,

Metrics