Abstract

We study the transmission and the reflection of light beams carrying orbital angular momentum through a dielectric multilayer structure containing phase-conjugating interfaces. We show analytically and demonstrate numerically that the phase conjugation at the interfaces results in a characteristic angular and radial pattern of the reflected beam, a fact that can be exploited for the detection and the characterization of phase conjugation in composite optical materials.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Institute of Physics Publishing, Bristol, 2003).
    [CrossRef]
  2. G. F. Quinteiro and J. Berakdar, “Electric currents induced by twisted light in Quantum Rings,” Opt. Express 17, 20465–20475 (2009).
    [CrossRef] [PubMed]
  3. G. F. Quinteiro and P. I. Tamborenea, “Twisted-light-induced optical transitions in semiconductors: Free-carrier quantum kinetics,” Phys. Rev. B 82, 125207 (2010).
    [CrossRef]
  4. G. F. Quinteiro, P. I. Tamborenea, and J. Berakdar, “Orbital and spin dynamics of intraband electrons in quantum rings driven by twisted light,” Opt. Express 19, 26733–26741 (2011).
    [CrossRef]
  5. A. Thakur and J. Berakdar, “Self-focusing and defocusing of twisted light in non-linear media,” Opt. Express 18, 27691–27696 (2010).
    [CrossRef]
  6. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [CrossRef] [PubMed]
  7. M. W. Beijersbergen, L. Allen, H.E.L.O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
    [CrossRef]
  8. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nature Phys. 3, 305–310 (2007).
    [CrossRef]
  9. M. Padgett, J. Courtial, and L. Allen, “Lights orbital angular momentum,” Phys. Today 57, 35–40 (2004).
    [CrossRef]
  10. L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” Prog. Opt. 39, 291–372 (1999).
    [CrossRef]
  11. W. Nasalki, Optical Beams at Dielectric Interfaces-Fundamentals (Institute of Fundamental Technological Research Polish Academy of Sciences, Warszawa, 2007).
  12. W. Szabelak and W. Nasalski, “Transmission of Elegant Laguerre-Gaussian beams at a dielectric interface numerical simulations,” Bulletin of the Polish Academy of Sciences: Technical Sciences,  57, 181–188 (2009).
    [CrossRef]
  13. W. Nasalski, “Polarization versus spatial characteristics of optical beams at a planar isotropic interface,” Phys. Rev.E 74, 056613 (2006).
    [CrossRef]
  14. R. A. Fischered., Optical Phase Conjugation (Academic Press, Inc.,1983).
  15. B. Y. Zeldovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer, Berlin, 1985).
  16. A. Y. Okulov, “Angular momentum of photons and phase conjugation,” J. Phys. B: At. Mol. Opt. Phys. 41, 101001 (2008).
    [CrossRef]
  17. M. Woerdman, C. Alpmann, and C. Denz, “Self-pumped phase conjugation of light beams carrying orbital angular momentum,” Opt. Express 17, 22791–22799 (2009).
    [CrossRef]
  18. R. K. Jain and R. C. Lind, “Degenerate four-wave mixing in semiconductor-doped glasses,” J. Opt. Soc. Am. 73(5), 647–653 (1983).
    [CrossRef]
  19. T. Geethakrishnan and P. K. Palanisamy, “Optical phase-conjugation in erioglaucine dye-doped thin films,” Pranama-J. Phys. 66, 473–478 (2008).
    [CrossRef]
  20. T. Bach, K. Nawata, M. Jazbinšek, T. Omatsu, and P. Günter, “Optical phase conjugation of picosecondpulses at 1.06 mm in Sn2P2S6: Te for wavefront correction in high-power Nd-doped amplifier systems,” Opt. Express 18, 87–95 (2010).
    [CrossRef] [PubMed]
  21. N. G. Basov, I. G. Zubarev, A. B. Mironov, S. I. Mikhailov, and A.Y. Okulov, “Laser interferometer with wavefront-reversing mirrors,” Sov. Phys. JETP 52, 847–851 (1980).
  22. F. A. Starikov, Yu. V. Dolgopolov, A. V. Kopalkin, G. G. Kochemasov, S. M. Kulikov, and S. A. Sukharev, “About the correction of laser beams with phase front vortex,” J. Phys. IV France 133, 683–685 (2006).
    [CrossRef]
  23. G. S. He, “Optical phase conjugation: principles, techniques, and applications,” Prog. Quantum Electron. 26, 131–191 (2002).
    [CrossRef]
  24. P. V. Polyanskiǐ and K. V. Fel’de, “Static holographic phase conjugation of vortex beams,” Opt. Spectrosc. 98(6), 913–918 (2005).
    [CrossRef]
  25. I. G. Marienko, M. S. Soskin, and M. V. Vasnetsov, “Phase conjugation of wavefronts containing phase singularities,” in International Conference on Singular Optics, M. S. Soskin, ed., 3487, 39–41 (Proceedings of SPIE, 1998).
  26. L. C. Dávila Romero, D. L. Andrews, and M. Babikar, “A Quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B: Quantum Semiclass. Opt. 4, S66–S72 (2002).
    [CrossRef]
  27. A. E. Siegman, Lasers (University Science Books, 1986).
  28. J.D. Jackson, Classical Electrodynamics, 2nd ed. (New York: Wiley, 1962).
  29. E. M. Liftshitz, L. P. Pitaevskii, and V. B. Berestetskii, Quantum Electrodynamics, Landau and Liftshitz Course of Theoretical Physics 4 (Oxford: Butterworth-Heineman) Ch.I section 6,8.
  30. V. G. Fedoseyev, “Transformation of the orbital angular momentum at the reflection and transmission of a light beam on a plane interface,” J. Phys A: Math. Theor. 41, 505202 (2008).
    [CrossRef]
  31. V. G. Fedoseyev, “Reflection of the light beam carrying orbital angular momentum from a lossy medium,” Phys. Lett. A 372, 2527–2533 (2008).
    [CrossRef]

2011

2010

2009

2008

A. Y. Okulov, “Angular momentum of photons and phase conjugation,” J. Phys. B: At. Mol. Opt. Phys. 41, 101001 (2008).
[CrossRef]

V. G. Fedoseyev, “Transformation of the orbital angular momentum at the reflection and transmission of a light beam on a plane interface,” J. Phys A: Math. Theor. 41, 505202 (2008).
[CrossRef]

V. G. Fedoseyev, “Reflection of the light beam carrying orbital angular momentum from a lossy medium,” Phys. Lett. A 372, 2527–2533 (2008).
[CrossRef]

T. Geethakrishnan and P. K. Palanisamy, “Optical phase-conjugation in erioglaucine dye-doped thin films,” Pranama-J. Phys. 66, 473–478 (2008).
[CrossRef]

2007

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nature Phys. 3, 305–310 (2007).
[CrossRef]

2006

W. Nasalski, “Polarization versus spatial characteristics of optical beams at a planar isotropic interface,” Phys. Rev.E 74, 056613 (2006).
[CrossRef]

F. A. Starikov, Yu. V. Dolgopolov, A. V. Kopalkin, G. G. Kochemasov, S. M. Kulikov, and S. A. Sukharev, “About the correction of laser beams with phase front vortex,” J. Phys. IV France 133, 683–685 (2006).
[CrossRef]

2005

P. V. Polyanskiǐ and K. V. Fel’de, “Static holographic phase conjugation of vortex beams,” Opt. Spectrosc. 98(6), 913–918 (2005).
[CrossRef]

2004

M. Padgett, J. Courtial, and L. Allen, “Lights orbital angular momentum,” Phys. Today 57, 35–40 (2004).
[CrossRef]

2002

L. C. Dávila Romero, D. L. Andrews, and M. Babikar, “A Quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B: Quantum Semiclass. Opt. 4, S66–S72 (2002).
[CrossRef]

G. S. He, “Optical phase conjugation: principles, techniques, and applications,” Prog. Quantum Electron. 26, 131–191 (2002).
[CrossRef]

1999

L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” Prog. Opt. 39, 291–372 (1999).
[CrossRef]

1993

M. W. Beijersbergen, L. Allen, H.E.L.O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

1992

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

1983

1980

N. G. Basov, I. G. Zubarev, A. B. Mironov, S. I. Mikhailov, and A.Y. Okulov, “Laser interferometer with wavefront-reversing mirrors,” Sov. Phys. JETP 52, 847–851 (1980).

Allen, L.

M. Padgett, J. Courtial, and L. Allen, “Lights orbital angular momentum,” Phys. Today 57, 35–40 (2004).
[CrossRef]

L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” Prog. Opt. 39, 291–372 (1999).
[CrossRef]

M. W. Beijersbergen, L. Allen, H.E.L.O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Institute of Physics Publishing, Bristol, 2003).
[CrossRef]

Alpmann, C.

Andrews, D. L.

L. C. Dávila Romero, D. L. Andrews, and M. Babikar, “A Quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B: Quantum Semiclass. Opt. 4, S66–S72 (2002).
[CrossRef]

Babikar, M.

L. C. Dávila Romero, D. L. Andrews, and M. Babikar, “A Quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B: Quantum Semiclass. Opt. 4, S66–S72 (2002).
[CrossRef]

Babiker, M.

L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” Prog. Opt. 39, 291–372 (1999).
[CrossRef]

Bach, T.

Barnett, S. M.

L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Institute of Physics Publishing, Bristol, 2003).
[CrossRef]

Basov, N. G.

N. G. Basov, I. G. Zubarev, A. B. Mironov, S. I. Mikhailov, and A.Y. Okulov, “Laser interferometer with wavefront-reversing mirrors,” Sov. Phys. JETP 52, 847–851 (1980).

Beijersbergen, M. W.

M. W. Beijersbergen, L. Allen, H.E.L.O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Berakdar, J.

Berestetskii, V. B.

E. M. Liftshitz, L. P. Pitaevskii, and V. B. Berestetskii, Quantum Electrodynamics, Landau and Liftshitz Course of Theoretical Physics 4 (Oxford: Butterworth-Heineman) Ch.I section 6,8.

Courtial, J.

M. Padgett, J. Courtial, and L. Allen, “Lights orbital angular momentum,” Phys. Today 57, 35–40 (2004).
[CrossRef]

Dávila Romero, L. C.

L. C. Dávila Romero, D. L. Andrews, and M. Babikar, “A Quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B: Quantum Semiclass. Opt. 4, S66–S72 (2002).
[CrossRef]

Denz, C.

Dolgopolov, Yu. V.

F. A. Starikov, Yu. V. Dolgopolov, A. V. Kopalkin, G. G. Kochemasov, S. M. Kulikov, and S. A. Sukharev, “About the correction of laser beams with phase front vortex,” J. Phys. IV France 133, 683–685 (2006).
[CrossRef]

Fedoseyev, V. G.

V. G. Fedoseyev, “Transformation of the orbital angular momentum at the reflection and transmission of a light beam on a plane interface,” J. Phys A: Math. Theor. 41, 505202 (2008).
[CrossRef]

V. G. Fedoseyev, “Reflection of the light beam carrying orbital angular momentum from a lossy medium,” Phys. Lett. A 372, 2527–2533 (2008).
[CrossRef]

Fel’de, K. V.

P. V. Polyanskiǐ and K. V. Fel’de, “Static holographic phase conjugation of vortex beams,” Opt. Spectrosc. 98(6), 913–918 (2005).
[CrossRef]

Geethakrishnan, T.

T. Geethakrishnan and P. K. Palanisamy, “Optical phase-conjugation in erioglaucine dye-doped thin films,” Pranama-J. Phys. 66, 473–478 (2008).
[CrossRef]

Günter, P.

He, G. S.

G. S. He, “Optical phase conjugation: principles, techniques, and applications,” Prog. Quantum Electron. 26, 131–191 (2002).
[CrossRef]

Jackson, J.D.

J.D. Jackson, Classical Electrodynamics, 2nd ed. (New York: Wiley, 1962).

Jain, R. K.

Jazbinšek, M.

Kochemasov, G. G.

F. A. Starikov, Yu. V. Dolgopolov, A. V. Kopalkin, G. G. Kochemasov, S. M. Kulikov, and S. A. Sukharev, “About the correction of laser beams with phase front vortex,” J. Phys. IV France 133, 683–685 (2006).
[CrossRef]

Kopalkin, A. V.

F. A. Starikov, Yu. V. Dolgopolov, A. V. Kopalkin, G. G. Kochemasov, S. M. Kulikov, and S. A. Sukharev, “About the correction of laser beams with phase front vortex,” J. Phys. IV France 133, 683–685 (2006).
[CrossRef]

Kulikov, S. M.

F. A. Starikov, Yu. V. Dolgopolov, A. V. Kopalkin, G. G. Kochemasov, S. M. Kulikov, and S. A. Sukharev, “About the correction of laser beams with phase front vortex,” J. Phys. IV France 133, 683–685 (2006).
[CrossRef]

Liftshitz, E. M.

E. M. Liftshitz, L. P. Pitaevskii, and V. B. Berestetskii, Quantum Electrodynamics, Landau and Liftshitz Course of Theoretical Physics 4 (Oxford: Butterworth-Heineman) Ch.I section 6,8.

Lind, R. C.

Marienko, I. G.

I. G. Marienko, M. S. Soskin, and M. V. Vasnetsov, “Phase conjugation of wavefronts containing phase singularities,” in International Conference on Singular Optics, M. S. Soskin, ed., 3487, 39–41 (Proceedings of SPIE, 1998).

Mikhailov, S. I.

N. G. Basov, I. G. Zubarev, A. B. Mironov, S. I. Mikhailov, and A.Y. Okulov, “Laser interferometer with wavefront-reversing mirrors,” Sov. Phys. JETP 52, 847–851 (1980).

Mironov, A. B.

N. G. Basov, I. G. Zubarev, A. B. Mironov, S. I. Mikhailov, and A.Y. Okulov, “Laser interferometer with wavefront-reversing mirrors,” Sov. Phys. JETP 52, 847–851 (1980).

Molina-Terriza, G.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nature Phys. 3, 305–310 (2007).
[CrossRef]

Nasalki, W.

W. Nasalki, Optical Beams at Dielectric Interfaces-Fundamentals (Institute of Fundamental Technological Research Polish Academy of Sciences, Warszawa, 2007).

Nasalski, W.

W. Szabelak and W. Nasalski, “Transmission of Elegant Laguerre-Gaussian beams at a dielectric interface numerical simulations,” Bulletin of the Polish Academy of Sciences: Technical Sciences,  57, 181–188 (2009).
[CrossRef]

W. Nasalski, “Polarization versus spatial characteristics of optical beams at a planar isotropic interface,” Phys. Rev.E 74, 056613 (2006).
[CrossRef]

Nawata, K.

Okulov, A. Y.

A. Y. Okulov, “Angular momentum of photons and phase conjugation,” J. Phys. B: At. Mol. Opt. Phys. 41, 101001 (2008).
[CrossRef]

Okulov, A.Y.

N. G. Basov, I. G. Zubarev, A. B. Mironov, S. I. Mikhailov, and A.Y. Okulov, “Laser interferometer with wavefront-reversing mirrors,” Sov. Phys. JETP 52, 847–851 (1980).

Omatsu, T.

Padgett, M.

M. Padgett, J. Courtial, and L. Allen, “Lights orbital angular momentum,” Phys. Today 57, 35–40 (2004).
[CrossRef]

Padgett, M. J.

L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” Prog. Opt. 39, 291–372 (1999).
[CrossRef]

L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Institute of Physics Publishing, Bristol, 2003).
[CrossRef]

Palanisamy, P. K.

T. Geethakrishnan and P. K. Palanisamy, “Optical phase-conjugation in erioglaucine dye-doped thin films,” Pranama-J. Phys. 66, 473–478 (2008).
[CrossRef]

Pilipetsky, N. F.

B. Y. Zeldovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer, Berlin, 1985).

Pitaevskii, L. P.

E. M. Liftshitz, L. P. Pitaevskii, and V. B. Berestetskii, Quantum Electrodynamics, Landau and Liftshitz Course of Theoretical Physics 4 (Oxford: Butterworth-Heineman) Ch.I section 6,8.

Polyanskii, P. V.

P. V. Polyanskiǐ and K. V. Fel’de, “Static holographic phase conjugation of vortex beams,” Opt. Spectrosc. 98(6), 913–918 (2005).
[CrossRef]

Quinteiro, G. F.

Shkunov, V. V.

B. Y. Zeldovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer, Berlin, 1985).

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Soskin, M. S.

I. G. Marienko, M. S. Soskin, and M. V. Vasnetsov, “Phase conjugation of wavefronts containing phase singularities,” in International Conference on Singular Optics, M. S. Soskin, ed., 3487, 39–41 (Proceedings of SPIE, 1998).

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Starikov, F. A.

F. A. Starikov, Yu. V. Dolgopolov, A. V. Kopalkin, G. G. Kochemasov, S. M. Kulikov, and S. A. Sukharev, “About the correction of laser beams with phase front vortex,” J. Phys. IV France 133, 683–685 (2006).
[CrossRef]

Sukharev, S. A.

F. A. Starikov, Yu. V. Dolgopolov, A. V. Kopalkin, G. G. Kochemasov, S. M. Kulikov, and S. A. Sukharev, “About the correction of laser beams with phase front vortex,” J. Phys. IV France 133, 683–685 (2006).
[CrossRef]

Szabelak, W.

W. Szabelak and W. Nasalski, “Transmission of Elegant Laguerre-Gaussian beams at a dielectric interface numerical simulations,” Bulletin of the Polish Academy of Sciences: Technical Sciences,  57, 181–188 (2009).
[CrossRef]

Tamborenea, P. I.

G. F. Quinteiro, P. I. Tamborenea, and J. Berakdar, “Orbital and spin dynamics of intraband electrons in quantum rings driven by twisted light,” Opt. Express 19, 26733–26741 (2011).
[CrossRef]

G. F. Quinteiro and P. I. Tamborenea, “Twisted-light-induced optical transitions in semiconductors: Free-carrier quantum kinetics,” Phys. Rev. B 82, 125207 (2010).
[CrossRef]

Thakur, A.

Torner, L.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nature Phys. 3, 305–310 (2007).
[CrossRef]

Torres, J. P.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nature Phys. 3, 305–310 (2007).
[CrossRef]

van der Veen, H.E.L.O.

M. W. Beijersbergen, L. Allen, H.E.L.O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

Vasnetsov, M. V.

I. G. Marienko, M. S. Soskin, and M. V. Vasnetsov, “Phase conjugation of wavefronts containing phase singularities,” in International Conference on Singular Optics, M. S. Soskin, ed., 3487, 39–41 (Proceedings of SPIE, 1998).

Woerdman, J. P.

M. W. Beijersbergen, L. Allen, H.E.L.O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Woerdman, M.

Zeldovich, B. Y.

B. Y. Zeldovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer, Berlin, 1985).

Zubarev, I. G.

N. G. Basov, I. G. Zubarev, A. B. Mironov, S. I. Mikhailov, and A.Y. Okulov, “Laser interferometer with wavefront-reversing mirrors,” Sov. Phys. JETP 52, 847–851 (1980).

Bulletin of the Polish Academy of Sciences: Technical Sciences

W. Szabelak and W. Nasalski, “Transmission of Elegant Laguerre-Gaussian beams at a dielectric interface numerical simulations,” Bulletin of the Polish Academy of Sciences: Technical Sciences,  57, 181–188 (2009).
[CrossRef]

J. Opt. B: Quantum Semiclass. Opt.

L. C. Dávila Romero, D. L. Andrews, and M. Babikar, “A Quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B: Quantum Semiclass. Opt. 4, S66–S72 (2002).
[CrossRef]

J. Opt. Soc. Am.

J. Phys A: Math. Theor.

V. G. Fedoseyev, “Transformation of the orbital angular momentum at the reflection and transmission of a light beam on a plane interface,” J. Phys A: Math. Theor. 41, 505202 (2008).
[CrossRef]

J. Phys. B: At. Mol. Opt. Phys.

A. Y. Okulov, “Angular momentum of photons and phase conjugation,” J. Phys. B: At. Mol. Opt. Phys. 41, 101001 (2008).
[CrossRef]

J. Phys. IV France

F. A. Starikov, Yu. V. Dolgopolov, A. V. Kopalkin, G. G. Kochemasov, S. M. Kulikov, and S. A. Sukharev, “About the correction of laser beams with phase front vortex,” J. Phys. IV France 133, 683–685 (2006).
[CrossRef]

Nature Phys.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nature Phys. 3, 305–310 (2007).
[CrossRef]

Opt. Commun.

M. W. Beijersbergen, L. Allen, H.E.L.O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

Opt. Express

Opt. Spectrosc.

P. V. Polyanskiǐ and K. V. Fel’de, “Static holographic phase conjugation of vortex beams,” Opt. Spectrosc. 98(6), 913–918 (2005).
[CrossRef]

Phys. Lett. A

V. G. Fedoseyev, “Reflection of the light beam carrying orbital angular momentum from a lossy medium,” Phys. Lett. A 372, 2527–2533 (2008).
[CrossRef]

Phys. Rev. A

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Phys. Rev. B

G. F. Quinteiro and P. I. Tamborenea, “Twisted-light-induced optical transitions in semiconductors: Free-carrier quantum kinetics,” Phys. Rev. B 82, 125207 (2010).
[CrossRef]

Phys. Rev.E

W. Nasalski, “Polarization versus spatial characteristics of optical beams at a planar isotropic interface,” Phys. Rev.E 74, 056613 (2006).
[CrossRef]

Phys. Today

M. Padgett, J. Courtial, and L. Allen, “Lights orbital angular momentum,” Phys. Today 57, 35–40 (2004).
[CrossRef]

Pranama-J. Phys.

T. Geethakrishnan and P. K. Palanisamy, “Optical phase-conjugation in erioglaucine dye-doped thin films,” Pranama-J. Phys. 66, 473–478 (2008).
[CrossRef]

Prog. Opt.

L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” Prog. Opt. 39, 291–372 (1999).
[CrossRef]

Prog. Quantum Electron.

G. S. He, “Optical phase conjugation: principles, techniques, and applications,” Prog. Quantum Electron. 26, 131–191 (2002).
[CrossRef]

Sov. Phys. JETP

N. G. Basov, I. G. Zubarev, A. B. Mironov, S. I. Mikhailov, and A.Y. Okulov, “Laser interferometer with wavefront-reversing mirrors,” Sov. Phys. JETP 52, 847–851 (1980).

Other

L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Institute of Physics Publishing, Bristol, 2003).
[CrossRef]

W. Nasalki, Optical Beams at Dielectric Interfaces-Fundamentals (Institute of Fundamental Technological Research Polish Academy of Sciences, Warszawa, 2007).

R. A. Fischered., Optical Phase Conjugation (Academic Press, Inc.,1983).

B. Y. Zeldovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer, Berlin, 1985).

I. G. Marienko, M. S. Soskin, and M. V. Vasnetsov, “Phase conjugation of wavefronts containing phase singularities,” in International Conference on Singular Optics, M. S. Soskin, ed., 3487, 39–41 (Proceedings of SPIE, 1998).

A. E. Siegman, Lasers (University Science Books, 1986).

J.D. Jackson, Classical Electrodynamics, 2nd ed. (New York: Wiley, 1962).

E. M. Liftshitz, L. P. Pitaevskii, and V. B. Berestetskii, Quantum Electrodynamics, Landau and Liftshitz Course of Theoretical Physics 4 (Oxford: Butterworth-Heineman) Ch.I section 6,8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic representation of the propagation of LG beam in a multi layer dielectric structure. The interfaces with phase conjugation (pcm) are indicated.

Fig. 2
Fig. 2

For the structure depicted in Fig. 1 we show the calculated total radial (r) intensity (in CGS system) of the LG laser beam in the medium 0 for = 1, p = 0 (a), and for = 10, p = 2 (b). The material parameters and laser properties are chosen as: ϕ = 30°, n0 = 1(air), n1 = 1.77 (Al2O3), n2 = 1.457 (SiO2), d1 = 20 μm, w0=1 μm, λ = 632.9 nm.

Fig. 3
Fig. 3

The same as in Fig. 2 for = 1, p = 0 but here we show the angular (ϕ) distribution of the LG beam intensity (in CGS system) for a different thickness d1 of the medium 1. The blue solid curve is for d1 = 11πλ/2 and the dashed curve is for d1 = 4πλ. The radial distance r is fixed to be w0/2.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

E = C p l w 0 ( 2 r w 0 ) exp ( r 2 w 0 2 ) L p ( 2 r 2 w 0 2 ) exp i ( k 0 n z ω t ) exp ( i ϕ ) ,
E 0 i = E ¯ 0 i e i ϕ = C p l w 0 ( 2 r w 0 ) exp ( r 2 w 0 2 ) L p ( 2 r 2 w 0 2 ) e i ( k 0 n 0 z + ϕ ) , ( z 0 )
E 0 r = E ¯ 0 r e i ϕ = r 0 C p w 0 ( 2 r w 0 ) exp ( r 2 w 0 2 ) L p ( 2 r 2 w 0 2 ) e i ( k 0 n 0 z + ϕ ) , ( z 0 )
E 1 t = E ¯ 1 t e i ϕ = t 1 C p l w 0 ( 2 r w 0 ) exp ( r 2 w 0 2 ) L p ( 2 r 2 w 0 2 ) e i ( k 0 n 1 z + ϕ ) , ( 0 z d 1 )
E 1 r = E ¯ 1 r e i ϕ = r 1 C p l w 0 ( 2 r w 0 ) exp ( r 2 w 0 2 ) L p ( 2 r 2 w 0 2 ) e i ( k 0 n 1 z + ϕ ) , ( 0 z d 1 )
E 2 t = E ¯ 2 t e i ϕ = t 2 C p l w 0 ( 2 r w 0 ) exp ( r 2 w 0 2 ) L p ( 2 r 2 w 0 2 ) e i [ k 0 n 2 ( z d 1 ) + ϕ ] , ( z d 1 ) .
[ E ¯ 0 i + E ¯ 0 r ] z = 0 = [ E ¯ 1 t + E ¯ 1 r ] z = 0 ,
[ E ¯ 1 t + E ¯ 1 r ] z = d 1 = [ E ¯ 2 t ] z = d 1 .
[ E ¯ 0 i z + E ¯ 0 r z ] z = 0 = [ E ¯ 1 t z + E ¯ 1 r z ] z = 0 ,
[ E ¯ 1 t z + E ¯ 1 r z ] z = d 1 = [ E ¯ 2 t z ] z = d 1 .
1 + r 0 = t 1 + r 1 ,
t 1 e i α 1 + r 1 e i α 1 = t 2 .
n 0 [ 1 r 0 ] = n 1 [ t 1 r 1 ] ,
n 1 [ t 1 e i α 1 r 1 e i α 1 ] = n 2 t 2 .
α 1 = k 0 n 1 d 1 .
r 0 = ( n 0 A + n 1 A + n 0 A n 1 A + ) ,
r 1 = 1 + r 0 1 e 2 i α 1 N ,
t 1 = r 1 e 2 i α 1 N ,
t 2 = n 1 n 2 [ t 1 e i α 1 r 1 e i α 1 ] .
A + = 1 + e 2 i α 1 N , A = 1 e 2 i α 1 N , N = ( n 2 + n 1 n 2 n 1 ) .

Metrics