Abstract

We present a novel broadband laser source based on a dual cavity in which a subnanosecond passively Q-switched microchip laser is coupled with a long cavity including an acousto-optic modulator (AOM) and a microstructured optical fiber working as a non linear medium. This active-passive Q-switched laser source emits pulses as short as those emitted by the free running microchip laser (~600 ps). The time pulse emission is governed by the AOM allowing tunable repetition rate from 0 to more than 4 kHz with a temporal jitter reduced to less than 50 ns, i.e. a 600-fold reduction compared to that of the free running microchip. Furthermore, thanks to spectral broadening in the microstructured fiber, this source emits a supercontinuum from 700 nm to 1700 nm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Thony, P. Labeye, V. Marty, R. Templier, P. Bésesty, and E. Molva, “1 µm single-frequency tunable microchip lasers for range finding,” Conference Paper on Advanced Solid State Lasers (ASSL), Poster Session II, Boston, Massachusetts, USA, (1999).
  2. M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. O. Hamaguchi, “Ultrabroadband multiplex CARS microspectroscopy and imaging using a subnanosecond supercontinuum light source in the deep near infrared,” Opt. Lett. 33(9), 923–925 (2008).
    [CrossRef] [PubMed]
  3. M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H.- Hamaguchi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Angew. Chem. Int. Ed. 49(38), 6773–6777 (2010).
    [CrossRef]
  4. H. W. Wang, N. Bao, T. L. Le, C. Lu, and J. X. Cheng, “Microfluidic CARS cytometry,” Opt. Express 16(8), 5782–5789 (2008).
    [CrossRef] [PubMed]
  5. J. J. Zayhowski and A. Mooradian, “Single-frequency microchip Nd lasers,” Opt. Lett. 14(1), 24–26 (1989).
    [CrossRef] [PubMed]
  6. D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, and A. Tünnermann, “High pulse energy passively quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime,” Opt. Lett. 32(15), 2115–2117 (2007).
    [CrossRef] [PubMed]
  7. A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, “Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser,” Opt. Lett. 28(19), 1820–1822 (2003).
    [CrossRef] [PubMed]
  8. C. Lesvigne, V. Couderc, A. Tonello, P. Leproux, A. Barthélémy, S. Lacroix, F. Druon, P. Blandin, M. Hanna, and P. Georges, “Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber,” Opt. Lett. 32(15), 2173–2175 (2007).
    [CrossRef] [PubMed]
  9. N. D. Lai, M. Brunel, F. Bretenaker, and A. Le Floch, “Stabilization of the repetition rate of passively Q-switched diode pumped solid state lasers,” Appl. Phys. (Berl.) 79(8), 1073–1075 (2001).
  10. J. B. Khurgin, F. Jin, G. Solyar, C. C. Wang, and S. Trivedi, “Cost-effective low timing jitter passively Q-switched diode-pumped solid-state laser with composite pumping pulses,” Appl. Opt. 41(6), 1095–1097 (2002).
    [CrossRef] [PubMed]
  11. A. F. Shatalov, “Reduction of the pulse repetition period jitter of a diode pumped passively Q-switched solid state laser,” Radiophys Quantum Electron. 52(4), 305–310 (2009).
  12. B. Cole, L. Goldberg, C. W. Trussell, A. Hays, B. W. Schilling, and C. McIntosh, “Reduction of timing jitter in a Q-Switched Nd:YAG laser by direct bleaching of a Cr4+:YAG saturable absorber,” Opt. Express 17(3), 1766–1771 (2009).
    [CrossRef] [PubMed]
  13. A. Steinmetz, D. Nodop, A. Martin, J. Limpert, and A. Tünnermann, “Reduction of timing jitter in passively Q-switched microchip lasers using self-injection seeding,” Opt. Lett. 35(17), 2885–2887 (2010).
    [CrossRef] [PubMed]
  14. B. Hansson and M. Arvidsson, “Q-switched microchip laser with 65 ps timing jitter,” Electron. Lett. 36(13), 1123–1124 (2000).
    [CrossRef]
  15. X. J. Wang and Z. Y. Xu, “Timing jitter and pulse width reduction in a Hybrid Q-switched Cr,Nd:YAG laser,” Chin. Phys. Lett. 23(7), 1800–1802 (2006).
    [CrossRef]
  16. J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
    [CrossRef]
  17. J. J. Zayhowski, “Passively Q-switched microchip lasers,” in Solid-state lasers and applications, ed. A. Sennaroglu, (CRC/Taylor&Francis Ed. 2007).
  18. C. C. Harb, T. C. Ralph, E. H. Huntington, D. E. McClelland, H.-A. Bachor, and I. Freitag, “Intensity noise dependence of Nd-YAG lasers on their diode-laser pump source,” J. Opt. Soc. Am. B 14(11), 2936–2945 (1997).
    [CrossRef]
  19. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11(7), 464–466 (1986).
    [CrossRef] [PubMed]
  20. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
    [CrossRef] [PubMed]
  21. F. Poletti, P. Horak, and D. J. Richardson, “Soliton spectral tunneling in dispersion controlled holey fibers,” Photon. Technol. Lett. 20(16), 1414–1416 (2008).
    [CrossRef]

2010

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H.- Hamaguchi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Angew. Chem. Int. Ed. 49(38), 6773–6777 (2010).
[CrossRef]

A. Steinmetz, D. Nodop, A. Martin, J. Limpert, and A. Tünnermann, “Reduction of timing jitter in passively Q-switched microchip lasers using self-injection seeding,” Opt. Lett. 35(17), 2885–2887 (2010).
[CrossRef] [PubMed]

2009

B. Cole, L. Goldberg, C. W. Trussell, A. Hays, B. W. Schilling, and C. McIntosh, “Reduction of timing jitter in a Q-Switched Nd:YAG laser by direct bleaching of a Cr4+:YAG saturable absorber,” Opt. Express 17(3), 1766–1771 (2009).
[CrossRef] [PubMed]

A. F. Shatalov, “Reduction of the pulse repetition period jitter of a diode pumped passively Q-switched solid state laser,” Radiophys Quantum Electron. 52(4), 305–310 (2009).

2008

2007

2006

X. J. Wang and Z. Y. Xu, “Timing jitter and pulse width reduction in a Hybrid Q-switched Cr,Nd:YAG laser,” Chin. Phys. Lett. 23(7), 1800–1802 (2006).
[CrossRef]

2003

2002

2001

N. D. Lai, M. Brunel, F. Bretenaker, and A. Le Floch, “Stabilization of the repetition rate of passively Q-switched diode pumped solid state lasers,” Appl. Phys. (Berl.) 79(8), 1073–1075 (2001).

2000

B. Hansson and M. Arvidsson, “Q-switched microchip laser with 65 ps timing jitter,” Electron. Lett. 36(13), 1123–1124 (2000).
[CrossRef]

1997

1995

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
[CrossRef]

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[CrossRef] [PubMed]

1989

1986

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[CrossRef] [PubMed]

Arvidsson, M.

B. Hansson and M. Arvidsson, “Q-switched microchip laser with 65 ps timing jitter,” Electron. Lett. 36(13), 1123–1124 (2000).
[CrossRef]

Bachor, H.-A.

Bao, N.

Barthélémy, A.

Blandin, P.

Bonn, M.

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H.- Hamaguchi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Angew. Chem. Int. Ed. 49(38), 6773–6777 (2010).
[CrossRef]

Bretenaker, F.

N. D. Lai, M. Brunel, F. Bretenaker, and A. Le Floch, “Stabilization of the repetition rate of passively Q-switched diode pumped solid state lasers,” Appl. Phys. (Berl.) 79(8), 1073–1075 (2001).

Brunel, M.

N. D. Lai, M. Brunel, F. Bretenaker, and A. Le Floch, “Stabilization of the repetition rate of passively Q-switched diode pumped solid state lasers,” Appl. Phys. (Berl.) 79(8), 1073–1075 (2001).

Chen, H. H.

Cheng, J. X.

Cole, B.

Couderc, V.

Day, J. P. R.

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H.- Hamaguchi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Angew. Chem. Int. Ed. 49(38), 6773–6777 (2010).
[CrossRef]

Degnan, J. J.

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
[CrossRef]

Druon, F.

Freitag, I.

Georges, P.

Goldberg, L.

Guina, M.

Hamaguchi, H.-

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H.- Hamaguchi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Angew. Chem. Int. Ed. 49(38), 6773–6777 (2010).
[CrossRef]

Hamaguchi, H. O.

Hanna, M.

Hansson, B.

B. Hansson and M. Arvidsson, “Q-switched microchip laser with 65 ps timing jitter,” Electron. Lett. 36(13), 1123–1124 (2000).
[CrossRef]

Harb, C. C.

Hays, A.

Hohmuth, R.

Horak, P.

F. Poletti, P. Horak, and D. J. Richardson, “Soliton spectral tunneling in dispersion controlled holey fibers,” Photon. Technol. Lett. 20(16), 1414–1416 (2008).
[CrossRef]

Huntington, E. H.

Jin, F.

Kano, H.

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H.- Hamaguchi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Angew. Chem. Int. Ed. 49(38), 6773–6777 (2010).
[CrossRef]

M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. O. Hamaguchi, “Ultrabroadband multiplex CARS microspectroscopy and imaging using a subnanosecond supercontinuum light source in the deep near infrared,” Opt. Lett. 33(9), 923–925 (2008).
[CrossRef] [PubMed]

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[CrossRef] [PubMed]

Khurgin, J. B.

Lacroix, S.

Lai, N. D.

N. D. Lai, M. Brunel, F. Bretenaker, and A. Le Floch, “Stabilization of the repetition rate of passively Q-switched diode pumped solid state lasers,” Appl. Phys. (Berl.) 79(8), 1073–1075 (2001).

Le, T. L.

Le Floch, A.

N. D. Lai, M. Brunel, F. Bretenaker, and A. Le Floch, “Stabilization of the repetition rate of passively Q-switched diode pumped solid state lasers,” Appl. Phys. (Berl.) 79(8), 1073–1075 (2001).

Lee, Y. C.

Leproux, P.

Lesvigne, C.

Limpert, J.

Lu, C.

Maillotte, H.

Martin, A.

McClelland, D. E.

McIntosh, C.

Menyuk, C. R.

Mooradian, A.

Mussot, A.

Nodop, D.

Okuno, M.

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H.- Hamaguchi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Angew. Chem. Int. Ed. 49(38), 6773–6777 (2010).
[CrossRef]

M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. O. Hamaguchi, “Ultrabroadband multiplex CARS microspectroscopy and imaging using a subnanosecond supercontinuum light source in the deep near infrared,” Opt. Lett. 33(9), 923–925 (2008).
[CrossRef] [PubMed]

Poletti, F.

F. Poletti, P. Horak, and D. J. Richardson, “Soliton spectral tunneling in dispersion controlled holey fibers,” Photon. Technol. Lett. 20(16), 1414–1416 (2008).
[CrossRef]

Provino, L.

Ralph, T. C.

Richardson, D. J.

F. Poletti, P. Horak, and D. J. Richardson, “Soliton spectral tunneling in dispersion controlled holey fibers,” Photon. Technol. Lett. 20(16), 1414–1416 (2008).
[CrossRef]

Richter, W.

Schilling, B. W.

Shatalov, A. F.

A. F. Shatalov, “Reduction of the pulse repetition period jitter of a diode pumped passively Q-switched solid state laser,” Radiophys Quantum Electron. 52(4), 305–310 (2009).

Solyar, G.

Steinmetz, A.

Sylvestre, T.

Tonello, A.

Trivedi, S.

Trussell, C. W.

Tünnermann, A.

Wai, P. K. A.

Wang, C. C.

Wang, H. W.

Wang, X. J.

X. J. Wang and Z. Y. Xu, “Timing jitter and pulse width reduction in a Hybrid Q-switched Cr,Nd:YAG laser,” Chin. Phys. Lett. 23(7), 1800–1802 (2006).
[CrossRef]

Xu, Z. Y.

X. J. Wang and Z. Y. Xu, “Timing jitter and pulse width reduction in a Hybrid Q-switched Cr,Nd:YAG laser,” Chin. Phys. Lett. 23(7), 1800–1802 (2006).
[CrossRef]

Zayhowski, J. J.

Angew. Chem. Int. Ed.

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H.- Hamaguchi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Angew. Chem. Int. Ed. 49(38), 6773–6777 (2010).
[CrossRef]

Appl. Opt.

Appl. Phys. (Berl.)

N. D. Lai, M. Brunel, F. Bretenaker, and A. Le Floch, “Stabilization of the repetition rate of passively Q-switched diode pumped solid state lasers,” Appl. Phys. (Berl.) 79(8), 1073–1075 (2001).

Chin. Phys. Lett.

X. J. Wang and Z. Y. Xu, “Timing jitter and pulse width reduction in a Hybrid Q-switched Cr,Nd:YAG laser,” Chin. Phys. Lett. 23(7), 1800–1802 (2006).
[CrossRef]

Electron. Lett.

B. Hansson and M. Arvidsson, “Q-switched microchip laser with 65 ps timing jitter,” Electron. Lett. 36(13), 1123–1124 (2000).
[CrossRef]

IEEE J. Quantum Electron.

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. O. Hamaguchi, “Ultrabroadband multiplex CARS microspectroscopy and imaging using a subnanosecond supercontinuum light source in the deep near infrared,” Opt. Lett. 33(9), 923–925 (2008).
[CrossRef] [PubMed]

P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11(7), 464–466 (1986).
[CrossRef] [PubMed]

J. J. Zayhowski and A. Mooradian, “Single-frequency microchip Nd lasers,” Opt. Lett. 14(1), 24–26 (1989).
[CrossRef] [PubMed]

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, “Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser,” Opt. Lett. 28(19), 1820–1822 (2003).
[CrossRef] [PubMed]

D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, and A. Tünnermann, “High pulse energy passively quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime,” Opt. Lett. 32(15), 2115–2117 (2007).
[CrossRef] [PubMed]

C. Lesvigne, V. Couderc, A. Tonello, P. Leproux, A. Barthélémy, S. Lacroix, F. Druon, P. Blandin, M. Hanna, and P. Georges, “Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber,” Opt. Lett. 32(15), 2173–2175 (2007).
[CrossRef] [PubMed]

A. Steinmetz, D. Nodop, A. Martin, J. Limpert, and A. Tünnermann, “Reduction of timing jitter in passively Q-switched microchip lasers using self-injection seeding,” Opt. Lett. 35(17), 2885–2887 (2010).
[CrossRef] [PubMed]

Photon. Technol. Lett.

F. Poletti, P. Horak, and D. J. Richardson, “Soliton spectral tunneling in dispersion controlled holey fibers,” Photon. Technol. Lett. 20(16), 1414–1416 (2008).
[CrossRef]

Phys. Rev. A

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[CrossRef] [PubMed]

Radiophys Quantum Electron.

A. F. Shatalov, “Reduction of the pulse repetition period jitter of a diode pumped passively Q-switched solid state laser,” Radiophys Quantum Electron. 52(4), 305–310 (2009).

Other

P. Thony, P. Labeye, V. Marty, R. Templier, P. Bésesty, and E. Molva, “1 µm single-frequency tunable microchip lasers for range finding,” Conference Paper on Advanced Solid State Lasers (ASSL), Poster Session II, Boston, Massachusetts, USA, (1999).

J. J. Zayhowski, “Passively Q-switched microchip lasers,” in Solid-state lasers and applications, ed. A. Sennaroglu, (CRC/Taylor&Francis Ed. 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Hybrid active/passive Q-switched laser source.

Fig. 2
Fig. 2

Schematic representation of the inversion density in the PQSM laser when pumped at a level lower than cavity 1 laser threshold; (a) high loss in the cavity 2 (no pulse emission), (b) switch to low loss in the cavity 2 at time t1 resulting in an abrupt drop of the cavity 1 laser threshold (pulse emission at t1). Hatched regions are the inversion density uncertainty domains where pulse emission starts.

Fig. 3
Fig. 3

Experimental (solid line) and numerical (dashed line) jitter of the PQSM laser, versus repetition rate.

Fig. 4
Fig. 4

Experimental (solid line) and computed (dashed line) timing jitter and pulse creation delay (dotted line) in the hybrid source depicted in Fig. 1, versus repetition rate.

Fig. 5
Fig. 5

Example of jitter measurements at repetition rate = 3kHz: (a) superimposed pulses recorded over ~5 s for determining the maximum jitter considered in Fig. 4; (b) histogram of the jitter for 15 103 successive pulses showing that the FWHM jitter (~18ns) is significantly lower than the considered maximum value (~50 ns).

Fig. 6
Fig. 6

Temporal profile of the pulses at the output of the source depicted in Fig. 1.

Fig. 7
Fig. 7

Cross section of the dual concentric core microstructured fiber displayed by means of a scanning electronic microscope.

Fig. 8
Fig. 8

Effective index of the two supermodes of the dual concentric core microstructured fiber (DCC MOF) vs wavelength. Insets: supermodes field distributions at λ = 700 nm and λ = 1600 nm.

Fig. 9
Fig. 9

(a) Dispersion curve of the fundamental supermode in the DCC MOF; (b) pulsed supercontinuum measured at the output of the source.

Tables (1)

Tables Icon

Table 1 Parameters of the Nd:YAG/Cr4+:YAG passively Q-switched microchip laser

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

dφ dt = φ t r ( 2σNl2 σ f N f l sa 2 σ e . N e . l sa ln( 1 R )L )+ φ sp
dN dt = W p 2cσNφ N τ
d N f dt = N e τ sa 2c σ f . N f .φ

Metrics