Abstract

Satellite platform vibration causes the misalignment between incident direction of the beacon and optical axis of the satellite optical communication system, which also leads to the instability of the laser link and reduces the precision of the system. So how to simulate the satellite platform vibration is a very important work in the ground test of satellite optical communication systems. In general, a vibration device is used for simulating the satellite platform vibration, but the simulation effect is not ideal because of the limited randomness. An approach is reasonable, which uses a natural random process for simulating the satellite platform vibration. In this paper, we discuss feasibility of the concept that the effect of angle of arrival fluctuation is taken as an effective simulation of satellite platform vibration in the ground test of the satellite optical communication system. Spectrum characteristic of satellite platform vibration is introduced, referring to the model used by the European Space Agency (ESA) in the SILEX program and that given by National Aeronautics and Space Development Agency (NASDA) of Japan. Spectrum characteristic of angle of arrival fluctuation is analyzed based on the measured data from an 11.16km bi-directional free space laser transmission experiment. Spectrum characteristic of these two effects is compared. The results show that spectra of these two effects have similar variation trend with the variation of frequency and feasibility of the concept is proved by the comparison results. At last the procedure of this method is proposed, which uses the power spectra of angle of arrival fluctuation to simulate that of the satellite platform vibration. The new approach is good for the ground test of satellite optical communication systems.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Toyoshima, W. R. Leeb, and H. Kunimori, “Comparison of microwave and light wave communication systems in space application,” Proc. SPIE 5296, 1–12 (2005).
  2. R. G. Marshalek, G. S. Mecherle, and P. R. Jordan, “System-level comparison of optical and RF technologies for space-to-Space and space-to-ground communication links,” Proc. SPIE 2699, 134–145 (1996).
    [CrossRef]
  3. K. Araki, Y. Arimoto, and M. Shikatani, “Performance evaluation of laser communication equipment onboard the ETS-VI satellite,” Proc. SPIE 2699, 52–59 (1996).
    [CrossRef]
  4. I. I. Kim, B. Riey, and N. M. Wong, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
    [CrossRef]
  5. T. Tolker-Nielsen and G. Oppenhaeuser, “In orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX,” Proc. SPIE 4635, 1–15 (2002).
    [CrossRef]
  6. R. Lange, B. Smutny, and B. Wandernoth, “142km, 5.625 Gbps free-space optical link based on homodyne BPSK modulation,” Proc. SPIE 6105, 61050A, 61050A–9 (2006).
    [CrossRef]
  7. V. A. Skormin and M. A. Tascillo, “Jitter rejection technique in a satellite-based laser communication system,” Opt. Eng. 32(11), 2764–2769 (1993).
    [CrossRef]
  8. M. Toyoshima and K. Araki, “In-orbit measurements of short term attitude and vibrational environment on the engineering test satellite VI using laser communication equipment,” Opt. Eng. 40(5), 827–832 (2001).
    [CrossRef]
  9. T. Chiba, “Spot dancing of the laser beam propagated through the turbulent atmosphere,” Appl. Opt. 10(11), 2456–2461 (1971).
    [CrossRef] [PubMed]
  10. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Optical Engineering Press, Bellingham, 1998).
  11. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Optical Engineering Press, Bellingham, 2001).
  12. M. J. Curley, B. H. Peterson, J. C. Wang, S. S. Sarkisov, S. S. Sarkisov, G. R. Edlin, R. A. Snow, and J. F. Rushing, “Statistical analysis of cloud-cover mitigation of optical turbulence in the boundary layer,” Opt. Express 14(20), 8929–8946 (2006).
    [CrossRef] [PubMed]
  13. A. Tunick, “Statistical analysis of optical turbulence intensity over a 2.33 km propagation path,” Opt. Express 15(7), 3619–3628 (2007).
    [CrossRef] [PubMed]
  14. M. E. Wittig, L. van Holtz, and D. E. L. Tunbridge, “In-orbit measurements of microaccelerations of ESA’s communication satellite OLYMPUS,” Proc. SPIE 1218, 205–214 (1990).
    [CrossRef]
  15. E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. S. B. Mitchell, “An efficiently computable metric for comparing polygonal shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 209–216 (1991).
    [CrossRef]
  16. W. Du, L. Tan, J. Ma, and Y. Jiang, “Temporal-frequency spectra for optical wave propagating through non-Kolmogorov turbulence,” Opt. Express 18(6), 5763–5775 (2010).
    [CrossRef] [PubMed]
  17. D. M. Winker, “Effect of a finite outer scale on the Zernike decomposition of atmospheric optical turbulence,” J. Opt. Soc. Am. A 8(10), 1568–1574 (1991).
    [CrossRef]
  18. G. Chong, M. Jing, and T. Liying, “Angle-of-arrival fluctuation of light beam propagation in strong turbulence regime,” High Power Laser Particle Beams 18, 891–894 (2006).
  19. R. Wang, Random Process (Xi’an Jiaotong University Press, Xi’an, 2006).

2010

2007

2006

M. J. Curley, B. H. Peterson, J. C. Wang, S. S. Sarkisov, S. S. Sarkisov, G. R. Edlin, R. A. Snow, and J. F. Rushing, “Statistical analysis of cloud-cover mitigation of optical turbulence in the boundary layer,” Opt. Express 14(20), 8929–8946 (2006).
[CrossRef] [PubMed]

G. Chong, M. Jing, and T. Liying, “Angle-of-arrival fluctuation of light beam propagation in strong turbulence regime,” High Power Laser Particle Beams 18, 891–894 (2006).

R. Lange, B. Smutny, and B. Wandernoth, “142km, 5.625 Gbps free-space optical link based on homodyne BPSK modulation,” Proc. SPIE 6105, 61050A, 61050A–9 (2006).
[CrossRef]

2005

M. Toyoshima, W. R. Leeb, and H. Kunimori, “Comparison of microwave and light wave communication systems in space application,” Proc. SPIE 5296, 1–12 (2005).

2002

T. Tolker-Nielsen and G. Oppenhaeuser, “In orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX,” Proc. SPIE 4635, 1–15 (2002).
[CrossRef]

2001

I. I. Kim, B. Riey, and N. M. Wong, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
[CrossRef]

M. Toyoshima and K. Araki, “In-orbit measurements of short term attitude and vibrational environment on the engineering test satellite VI using laser communication equipment,” Opt. Eng. 40(5), 827–832 (2001).
[CrossRef]

1996

R. G. Marshalek, G. S. Mecherle, and P. R. Jordan, “System-level comparison of optical and RF technologies for space-to-Space and space-to-ground communication links,” Proc. SPIE 2699, 134–145 (1996).
[CrossRef]

K. Araki, Y. Arimoto, and M. Shikatani, “Performance evaluation of laser communication equipment onboard the ETS-VI satellite,” Proc. SPIE 2699, 52–59 (1996).
[CrossRef]

1993

V. A. Skormin and M. A. Tascillo, “Jitter rejection technique in a satellite-based laser communication system,” Opt. Eng. 32(11), 2764–2769 (1993).
[CrossRef]

1991

D. M. Winker, “Effect of a finite outer scale on the Zernike decomposition of atmospheric optical turbulence,” J. Opt. Soc. Am. A 8(10), 1568–1574 (1991).
[CrossRef]

E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. S. B. Mitchell, “An efficiently computable metric for comparing polygonal shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 209–216 (1991).
[CrossRef]

1990

M. E. Wittig, L. van Holtz, and D. E. L. Tunbridge, “In-orbit measurements of microaccelerations of ESA’s communication satellite OLYMPUS,” Proc. SPIE 1218, 205–214 (1990).
[CrossRef]

1971

Araki, K.

M. Toyoshima and K. Araki, “In-orbit measurements of short term attitude and vibrational environment on the engineering test satellite VI using laser communication equipment,” Opt. Eng. 40(5), 827–832 (2001).
[CrossRef]

K. Araki, Y. Arimoto, and M. Shikatani, “Performance evaluation of laser communication equipment onboard the ETS-VI satellite,” Proc. SPIE 2699, 52–59 (1996).
[CrossRef]

Arimoto, Y.

K. Araki, Y. Arimoto, and M. Shikatani, “Performance evaluation of laser communication equipment onboard the ETS-VI satellite,” Proc. SPIE 2699, 52–59 (1996).
[CrossRef]

Arkin, E. M.

E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. S. B. Mitchell, “An efficiently computable metric for comparing polygonal shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 209–216 (1991).
[CrossRef]

Chew, L. P.

E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. S. B. Mitchell, “An efficiently computable metric for comparing polygonal shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 209–216 (1991).
[CrossRef]

Chiba, T.

Chong, G.

G. Chong, M. Jing, and T. Liying, “Angle-of-arrival fluctuation of light beam propagation in strong turbulence regime,” High Power Laser Particle Beams 18, 891–894 (2006).

Curley, M. J.

Du, W.

Edlin, G. R.

Huttenlocher, D. P.

E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. S. B. Mitchell, “An efficiently computable metric for comparing polygonal shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 209–216 (1991).
[CrossRef]

Jiang, Y.

Jing, M.

G. Chong, M. Jing, and T. Liying, “Angle-of-arrival fluctuation of light beam propagation in strong turbulence regime,” High Power Laser Particle Beams 18, 891–894 (2006).

Jordan, P. R.

R. G. Marshalek, G. S. Mecherle, and P. R. Jordan, “System-level comparison of optical and RF technologies for space-to-Space and space-to-ground communication links,” Proc. SPIE 2699, 134–145 (1996).
[CrossRef]

Kedem, K.

E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. S. B. Mitchell, “An efficiently computable metric for comparing polygonal shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 209–216 (1991).
[CrossRef]

Kim, I. I.

I. I. Kim, B. Riey, and N. M. Wong, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
[CrossRef]

Kunimori, H.

M. Toyoshima, W. R. Leeb, and H. Kunimori, “Comparison of microwave and light wave communication systems in space application,” Proc. SPIE 5296, 1–12 (2005).

Lange, R.

R. Lange, B. Smutny, and B. Wandernoth, “142km, 5.625 Gbps free-space optical link based on homodyne BPSK modulation,” Proc. SPIE 6105, 61050A, 61050A–9 (2006).
[CrossRef]

Leeb, W. R.

M. Toyoshima, W. R. Leeb, and H. Kunimori, “Comparison of microwave and light wave communication systems in space application,” Proc. SPIE 5296, 1–12 (2005).

Liying, T.

G. Chong, M. Jing, and T. Liying, “Angle-of-arrival fluctuation of light beam propagation in strong turbulence regime,” High Power Laser Particle Beams 18, 891–894 (2006).

Ma, J.

Marshalek, R. G.

R. G. Marshalek, G. S. Mecherle, and P. R. Jordan, “System-level comparison of optical and RF technologies for space-to-Space and space-to-ground communication links,” Proc. SPIE 2699, 134–145 (1996).
[CrossRef]

Mecherle, G. S.

R. G. Marshalek, G. S. Mecherle, and P. R. Jordan, “System-level comparison of optical and RF technologies for space-to-Space and space-to-ground communication links,” Proc. SPIE 2699, 134–145 (1996).
[CrossRef]

Mitchell, J. S. B.

E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. S. B. Mitchell, “An efficiently computable metric for comparing polygonal shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 209–216 (1991).
[CrossRef]

Oppenhaeuser, G.

T. Tolker-Nielsen and G. Oppenhaeuser, “In orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX,” Proc. SPIE 4635, 1–15 (2002).
[CrossRef]

Peterson, B. H.

Riey, B.

I. I. Kim, B. Riey, and N. M. Wong, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
[CrossRef]

Rushing, J. F.

Sarkisov, S. S.

Shikatani, M.

K. Araki, Y. Arimoto, and M. Shikatani, “Performance evaluation of laser communication equipment onboard the ETS-VI satellite,” Proc. SPIE 2699, 52–59 (1996).
[CrossRef]

Skormin, V. A.

V. A. Skormin and M. A. Tascillo, “Jitter rejection technique in a satellite-based laser communication system,” Opt. Eng. 32(11), 2764–2769 (1993).
[CrossRef]

Smutny, B.

R. Lange, B. Smutny, and B. Wandernoth, “142km, 5.625 Gbps free-space optical link based on homodyne BPSK modulation,” Proc. SPIE 6105, 61050A, 61050A–9 (2006).
[CrossRef]

Snow, R. A.

Tan, L.

Tascillo, M. A.

V. A. Skormin and M. A. Tascillo, “Jitter rejection technique in a satellite-based laser communication system,” Opt. Eng. 32(11), 2764–2769 (1993).
[CrossRef]

Tolker-Nielsen, T.

T. Tolker-Nielsen and G. Oppenhaeuser, “In orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX,” Proc. SPIE 4635, 1–15 (2002).
[CrossRef]

Toyoshima, M.

M. Toyoshima, W. R. Leeb, and H. Kunimori, “Comparison of microwave and light wave communication systems in space application,” Proc. SPIE 5296, 1–12 (2005).

M. Toyoshima and K. Araki, “In-orbit measurements of short term attitude and vibrational environment on the engineering test satellite VI using laser communication equipment,” Opt. Eng. 40(5), 827–832 (2001).
[CrossRef]

Tunbridge, D. E. L.

M. E. Wittig, L. van Holtz, and D. E. L. Tunbridge, “In-orbit measurements of microaccelerations of ESA’s communication satellite OLYMPUS,” Proc. SPIE 1218, 205–214 (1990).
[CrossRef]

Tunick, A.

van Holtz, L.

M. E. Wittig, L. van Holtz, and D. E. L. Tunbridge, “In-orbit measurements of microaccelerations of ESA’s communication satellite OLYMPUS,” Proc. SPIE 1218, 205–214 (1990).
[CrossRef]

Wandernoth, B.

R. Lange, B. Smutny, and B. Wandernoth, “142km, 5.625 Gbps free-space optical link based on homodyne BPSK modulation,” Proc. SPIE 6105, 61050A, 61050A–9 (2006).
[CrossRef]

Wang, J. C.

Winker, D. M.

Wittig, M. E.

M. E. Wittig, L. van Holtz, and D. E. L. Tunbridge, “In-orbit measurements of microaccelerations of ESA’s communication satellite OLYMPUS,” Proc. SPIE 1218, 205–214 (1990).
[CrossRef]

Wong, N. M.

I. I. Kim, B. Riey, and N. M. Wong, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
[CrossRef]

Appl. Opt.

High Power Laser Particle Beams

G. Chong, M. Jing, and T. Liying, “Angle-of-arrival fluctuation of light beam propagation in strong turbulence regime,” High Power Laser Particle Beams 18, 891–894 (2006).

IEEE Trans. Pattern Anal. Mach. Intell.

E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. S. B. Mitchell, “An efficiently computable metric for comparing polygonal shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 209–216 (1991).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Eng.

V. A. Skormin and M. A. Tascillo, “Jitter rejection technique in a satellite-based laser communication system,” Opt. Eng. 32(11), 2764–2769 (1993).
[CrossRef]

M. Toyoshima and K. Araki, “In-orbit measurements of short term attitude and vibrational environment on the engineering test satellite VI using laser communication equipment,” Opt. Eng. 40(5), 827–832 (2001).
[CrossRef]

Opt. Express

Proc. SPIE

M. E. Wittig, L. van Holtz, and D. E. L. Tunbridge, “In-orbit measurements of microaccelerations of ESA’s communication satellite OLYMPUS,” Proc. SPIE 1218, 205–214 (1990).
[CrossRef]

M. Toyoshima, W. R. Leeb, and H. Kunimori, “Comparison of microwave and light wave communication systems in space application,” Proc. SPIE 5296, 1–12 (2005).

R. G. Marshalek, G. S. Mecherle, and P. R. Jordan, “System-level comparison of optical and RF technologies for space-to-Space and space-to-ground communication links,” Proc. SPIE 2699, 134–145 (1996).
[CrossRef]

K. Araki, Y. Arimoto, and M. Shikatani, “Performance evaluation of laser communication equipment onboard the ETS-VI satellite,” Proc. SPIE 2699, 52–59 (1996).
[CrossRef]

I. I. Kim, B. Riey, and N. M. Wong, “Lessons learned from the STRV-2 satellite-to-ground lasercom experiment,” Proc. SPIE 4272, 1–15 (2001).
[CrossRef]

T. Tolker-Nielsen and G. Oppenhaeuser, “In orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX,” Proc. SPIE 4635, 1–15 (2002).
[CrossRef]

R. Lange, B. Smutny, and B. Wandernoth, “142km, 5.625 Gbps free-space optical link based on homodyne BPSK modulation,” Proc. SPIE 6105, 61050A, 61050A–9 (2006).
[CrossRef]

Other

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Optical Engineering Press, Bellingham, 1998).

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Optical Engineering Press, Bellingham, 2001).

R. Wang, Random Process (Xi’an Jiaotong University Press, Xi’an, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

An aerial photo of the optical path (from maps.google.com, http://g.co/maps/59tyj).

Fig. 2
Fig. 2

Configuration of the experimental setup.

Fig. 3
Fig. 3

Power spectra of angle of arrival fluctuation for trials T1(a), T2(b), T3(c), T4(d), T5(e) and T6(f).

Fig. 4
Fig. 4

The Relationship between the power law exponents of high-frequency spectra and variance of AOA (the data are collected by OS1).

Fig. 5
Fig. 5

The Relationship between the power law exponents of high-frequency spectra and variance of AOA (the data are collected by OS2).

Fig. 6
Fig. 6

Power spectrum models of the satellite platform vibration.

Fig. 7
Fig. 7

Power spectra of angle of arrival fluctuation for trials T1(a), T4(b), and T5(c), in which the black is Power spectra of angle of arrival fluctuation for trials T1,T4,T5, the blue line represents the power spectrum of the satellite platform vibration of ESA and the green line represents the power spectrum of the satellite platform vibration of NASDA.

Fig. 8
Fig. 8

Comparison between the theoretical values of the temporal power spectra of AOA fluctuation and the power spectra of the satellite platform vibration. The green line represents the power spectrum of the satellite platform vibration of NASDA, the blue line represents the power spectrum of the satellite platform vibration of ESA, the red line is the temporal power spectrum of AOA fluctuation scaled by the corresponding variance for a plane wave ( W 1 (α,ω,β) / σ 1 2 , D = 150mm) and the black line represents the temporal power spectrum of AOA fluctuation scaled by the corresponding variance for a plane wave ( W 1 (α,ω,β) / σ 1 2 , D = 250mm).

Fig. 9
Fig. 9

Comparison between the theoretical values of the temporal power spectra of AOA fluctuation and the power spectra of the satellite platform vibration. The green line represents the power spectrum of the satellite platform vibration of NASDA, the blue line is the power spectrum of the satellite platform vibration of ESA, the sky blue line represents the temporal power spectrum of AOA fluctuation scaled by the corresponding variance for a spherical wave ( W 2 (α,ω,β) / σ 2 2 , D = 150mm) and the violet line represents the temporal power spectrum of AOA fluctuation scaled by the corresponding variance for a spherical wave ( W 2 (α,ω,β) / σ 2 2 , D = 250mm).

Fig. 10
Fig. 10

Comparison between the simulation spectral line and the power spectrum of the satellite (NASDA) vibration, in which the black line represents the simulation spectral line and the green line represents the power spectrum of the satellite platform vibration of NASDA.

Fig. 11
Fig. 11

Smooth time sequence.

Tables (2)

Tables Icon

Table 1 Parameters of the experimental systems

Tables Icon

Table 2 Experimental data set

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

X i = Σ x, y x g xy Σ x, y g xy Y i = Σ x, y y g xy Σ x, y g xy
A i = d ( X i <X>) 2 + ( Y i <Y>) 2 M× f L
d= { i=1 n [ f 1 ( X i ) f 2 ( X i ) ] 2 } 1/2
W 1 (α,ω,β)= 7.09Γ(α1)cos( απ 2 ) C ˜ n 2 L 1+α 4 k 3α 4 4 ω 0 ( ω ω 0 ) 1α 2 ( b 2 D 2 4 ) α5 4 × exp[ k b 2 D 2 8L ( ω ω 0 ) 2 ]{ [ 1cos(2β) ] W 3α 4 , 3α 4 [ k b 2 D 2 4L ( ω ω 0 ) 2 ] + 2cos(2β) ω ω 0 ( k b 2 D 2 4L ) 1/2 W 1α 4 , 1α 4 [ k b 2 D 2 4L ( ω ω 0 ) 2 ] }
σ 1 2 =2.91L C n 2 D 1/3
W 2 (α,ω,β)= 2.36Γ(α1)cos( απ 2 ) C ˜ n 2 L 1+α 4 k 3α 4 4 ω 0 ( ω ω 0 ) 1α 2 ( b 2 D 2 4 ) α5 4 × exp[ k b 2 D 2 8L ( ω ω 0 ) 2 ]{ [ 1cos(2β) ] W 3α 4 , 3α 4 [ k b 2 D 2 4L ( ω ω 0 ) 2 ] + 2cos(2β) ω ω 0 ( k b 2 D 2 4L ) 1/2 W 1α 4 , 1α 4 [ k b 2 D 2 4L ( ω ω 0 ) 2 ] }
σ 2 2 =0.97L C n 2 D 1/3
P(ω)= σ a 2 | A( e iω ) B( e iω ) | 2
A(z)=1 θ 1 z θ 2 z 2 ... θ q z q
B(z)=1 ϕ 1 z ϕ 2 z 2 ... ϕ q z P
S t ϕ 1 S t1 ϕ 2 S t2 ... ϕ p S tp = a t θ 1 a t1 θ 2 a t2 ... θ q a tq

Metrics