Abstract

We analyzed the output power characteristics of a cryogenically cooled Yb:YAG total-reflection active-mirror (TRAM) laser oscillator including the temperature dependence of the emission cross section and the reabsorption loss of the Yb:YAG TRAM. A CW multi-transverse mode oscillation of a 9.8 at.% doped 0.6 mm thick Yb:YAG ceramic TRAM was investigated for various pump spot sizes and compared with theoretical results. The Yb:YAG temperatures were inferred from the ratio between fluorescence intensities at 1022 nm and 1027 nm which varied significantly with temperature below 200 K. Output power calculations using evaluated temperatures were in good agreement with the experimental data measured between 77 and 200 K, and the output power suppression due to the temperature rise observed above ~140 K. To the best of our knowledge, this is the first evaluation of output power for a cryogenically cooled Yb:YAG TRAM laser.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Harvilla and R. Brockmann, “Latest advances in high power disk lasers,” Proc. SPIE7578, 75780c (2010).
  2. J. Kawanaka, S. Tokita, H. Nishioka, K. Ueda, M. Fujita, T. Kawashima, H. Yagi, and T. Yanagitani, “Efficient active-mirror laser oscillator with a cooled Yb:YAG ceramics,” in Conference on Advanced Solid-State Photonics (ASSP), Technical Digest (Optical Society of America, 2006), paper WB8.
  3. G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ ions,” Sov. Phys. JETP42(3), 440–446 (1976).
  4. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
    [CrossRef]
  5. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 587–599 (2005).
    [CrossRef]
  6. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B20(9), 1975–1979 (2003).
    [CrossRef]
  7. T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, and Y. Izawa, “Quantum-defect-limited operation of diode-pumped Yb:YAG laser at low temperature,” Jpn. J. Appl. Phys.43(No. 4A), L496–L498 (2004).
    [CrossRef]
  8. D. C. Brown, T. M. Bruno, and J. M. Singley, “Heat-fraction-limited CW Yb:YAG cryogenic solid-state laser with 100% photon slope efficiency,” Opt. Express18(16), 16573–16579 (2010).
    [CrossRef] [PubMed]
  9. S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B80(6), 635–638 (2005).
    [CrossRef]
  10. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett.29(18), 2154–2156 (2004).
    [CrossRef] [PubMed]
  11. D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, and L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE6552, 65520D, 65520D-9 (2007).
    [CrossRef]
  12. D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE6952, 69520K, 69520K-9 (2008).
    [CrossRef]
  13. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007).
    [CrossRef]
  14. H. Furuse, J. Kawanaka, K. Takeshita, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, and S. Ishii, “Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics,” Opt. Lett.34(21), 3439–3441 (2009).
    [CrossRef] [PubMed]
  15. H. Furuse, J. Kawanaka, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, K. Takeshita, S. Ishii, and Y. Izawa, “Zig-zag active-mirror laser with cryogenic Yb3+:YAG/YAG composite ceramics,” Opt. Express19(3), 2448–2455 (2011).
    [CrossRef] [PubMed]
  16. P. V. Avizonis, D. J. Bossert, and M. S. Curtin, “Physics of high performance Yb:YAG thin disk lasers,” in Conference on Lasers and Electro-Optics (CLEO), Technical Digest (Optical Society of America, 2009), paper CThA2.
  17. R. M. Yamamoto, B. S. Bhachu, K. P. Cutter, S. N. Fochs, S. A. Lets, C. W. Parks, M. D. Rotter, and T. F. Soules, “The use of large transparent ceramics in a high powered, diode pumped solid-state laser,” in Conference on Advanced Solid-State Photonics (ASSP), Technical Digest (Optical Society of America, 2008), paper WC5.
  18. T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers,” Appl. Opt.36(9), 1867–1874 (1997).
    [CrossRef] [PubMed]
  19. K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modeling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron.29(8), 697–703 (1999).
    [CrossRef]
  20. D. Findlay and R. A. Cay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20(3), 277–278 (1966).
    [CrossRef]
  21. A. Yoshida, S. Tokita, J. Kawanaka, T. Yanagitani, H. Yagi, F. Yamamura, and T. Kawashima, “Numerical laser gain estimation of cryogenic Yb:YAG ceramics for IFE reactor driver,” J. Phys.: Conf. Series112(3), 032062 (2008).
    [CrossRef]
  22. W. Koechner, Solid State Laser Engineering (Springer, 2006).

2011

2010

2009

2008

A. Yoshida, S. Tokita, J. Kawanaka, T. Yanagitani, H. Yagi, F. Yamamura, and T. Kawashima, “Numerical laser gain estimation of cryogenic Yb:YAG ceramics for IFE reactor driver,” J. Phys.: Conf. Series112(3), 032062 (2008).
[CrossRef]

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE6952, 69520K, 69520K-9 (2008).
[CrossRef]

2007

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007).
[CrossRef]

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, and L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE6552, 65520D, 65520D-9 (2007).
[CrossRef]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

2005

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 587–599 (2005).
[CrossRef]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B80(6), 635–638 (2005).
[CrossRef]

2004

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett.29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, and Y. Izawa, “Quantum-defect-limited operation of diode-pumped Yb:YAG laser at low temperature,” Jpn. J. Appl. Phys.43(No. 4A), L496–L498 (2004).
[CrossRef]

2003

1999

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modeling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron.29(8), 697–703 (1999).
[CrossRef]

1997

1976

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ ions,” Sov. Phys. JETP42(3), 440–446 (1976).

1966

D. Findlay and R. A. Cay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20(3), 277–278 (1966).
[CrossRef]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett.29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

Bass, M.

Bennett, L. L.

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, and L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE6552, 65520D, 65520D-9 (2007).
[CrossRef]

Bogomolova, G. A.

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ ions,” Sov. Phys. JETP42(3), 440–446 (1976).

Brockmann, R.

D. Harvilla and R. Brockmann, “Latest advances in high power disk lasers,” Proc. SPIE7578, 75780c (2010).

Brown, D. C.

D. C. Brown, T. M. Bruno, and J. M. Singley, “Heat-fraction-limited CW Yb:YAG cryogenic solid-state laser with 100% photon slope efficiency,” Opt. Express18(16), 16573–16579 (2010).
[CrossRef] [PubMed]

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE6952, 69520K, 69520K-9 (2008).
[CrossRef]

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, and L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE6552, 65520D, 65520D-9 (2007).
[CrossRef]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 587–599 (2005).
[CrossRef]

Bruno, T. M.

Byer, R. L.

Cay, R. A.

D. Findlay and R. A. Cay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20(3), 277–278 (1966).
[CrossRef]

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Contag, K.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modeling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron.29(8), 697–703 (1999).
[CrossRef]

Deng, P.

Dong, J.

Fan, T. Y.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett.29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

Findlay, D.

D. Findlay and R. A. Cay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20(3), 277–278 (1966).
[CrossRef]

Fujita, M.

H. Furuse, J. Kawanaka, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, K. Takeshita, S. Ishii, and Y. Izawa, “Zig-zag active-mirror laser with cryogenic Yb3+:YAG/YAG composite ceramics,” Opt. Express19(3), 2448–2455 (2011).
[CrossRef] [PubMed]

H. Furuse, J. Kawanaka, K. Takeshita, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, and S. Ishii, “Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics,” Opt. Lett.34(21), 3439–3441 (2009).
[CrossRef] [PubMed]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B80(6), 635–638 (2005).
[CrossRef]

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, and Y. Izawa, “Quantum-defect-limited operation of diode-pumped Yb:YAG laser at low temperature,” Jpn. J. Appl. Phys.43(No. 4A), L496–L498 (2004).
[CrossRef]

Furuse, H.

Gan, F.

Giesen, A.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007).
[CrossRef]

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modeling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron.29(8), 697–703 (1999).
[CrossRef]

Guelzow, J.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE6952, 69520K, 69520K-9 (2008).
[CrossRef]

Harvilla, D.

D. Harvilla and R. Brockmann, “Latest advances in high power disk lasers,” Proc. SPIE7578, 75780c (2010).

Hugel, H.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modeling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron.29(8), 697–703 (1999).
[CrossRef]

Imasaki, K.

Ishii, S.

Izawa, Y.

H. Furuse, J. Kawanaka, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, K. Takeshita, S. Ishii, and Y. Izawa, “Zig-zag active-mirror laser with cryogenic Yb3+:YAG/YAG composite ceramics,” Opt. Express19(3), 2448–2455 (2011).
[CrossRef] [PubMed]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B80(6), 635–638 (2005).
[CrossRef]

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, and Y. Izawa, “Quantum-defect-limited operation of diode-pumped Yb:YAG laser at low temperature,” Jpn. J. Appl. Phys.43(No. 4A), L496–L498 (2004).
[CrossRef]

Kaminskii, A. A.

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ ions,” Sov. Phys. JETP42(3), 440–446 (1976).

Karszewski, M.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modeling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron.29(8), 697–703 (1999).
[CrossRef]

Kawanaka, J.

H. Furuse, J. Kawanaka, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, K. Takeshita, S. Ishii, and Y. Izawa, “Zig-zag active-mirror laser with cryogenic Yb3+:YAG/YAG composite ceramics,” Opt. Express19(3), 2448–2455 (2011).
[CrossRef] [PubMed]

H. Furuse, J. Kawanaka, K. Takeshita, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, and S. Ishii, “Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics,” Opt. Lett.34(21), 3439–3441 (2009).
[CrossRef] [PubMed]

A. Yoshida, S. Tokita, J. Kawanaka, T. Yanagitani, H. Yagi, F. Yamamura, and T. Kawashima, “Numerical laser gain estimation of cryogenic Yb:YAG ceramics for IFE reactor driver,” J. Phys.: Conf. Series112(3), 032062 (2008).
[CrossRef]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B80(6), 635–638 (2005).
[CrossRef]

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, and Y. Izawa, “Quantum-defect-limited operation of diode-pumped Yb:YAG laser at low temperature,” Jpn. J. Appl. Phys.43(No. 4A), L496–L498 (2004).
[CrossRef]

Kawashima, T.

A. Yoshida, S. Tokita, J. Kawanaka, T. Yanagitani, H. Yagi, F. Yamamura, and T. Kawashima, “Numerical laser gain estimation of cryogenic Yb:YAG ceramics for IFE reactor driver,” J. Phys.: Conf. Series112(3), 032062 (2008).
[CrossRef]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B80(6), 635–638 (2005).
[CrossRef]

Kowalewski, K.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE6952, 69520K, 69520K-9 (2008).
[CrossRef]

Kuper, J. W.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE6952, 69520K, 69520K-9 (2008).
[CrossRef]

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, and L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE6552, 65520D, 65520D-9 (2007).
[CrossRef]

Lotito, B. J.

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, and L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE6552, 65520D, 65520D-9 (2007).
[CrossRef]

Mao, Y.

Miyanaga, N.

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett.29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

Ripin, D. J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett.29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

Saiki, T.

Shoji, T.

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, and Y. Izawa, “Quantum-defect-limited operation of diode-pumped Yb:YAG laser at low temperature,” Jpn. J. Appl. Phys.43(No. 4A), L496–L498 (2004).
[CrossRef]

Singley, J. M.

D. C. Brown, T. M. Bruno, and J. M. Singley, “Heat-fraction-limited CW Yb:YAG cryogenic solid-state laser with 100% photon slope efficiency,” Opt. Express18(16), 16573–16579 (2010).
[CrossRef] [PubMed]

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE6952, 69520K, 69520K-9 (2008).
[CrossRef]

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, and L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE6552, 65520D, 65520D-9 (2007).
[CrossRef]

Speiser, J.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007).
[CrossRef]

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Stewen, C.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modeling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron.29(8), 697–703 (1999).
[CrossRef]

Taira, T.

Takeshita, K.

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Tokita, S.

A. Yoshida, S. Tokita, J. Kawanaka, T. Yanagitani, H. Yagi, F. Yamamura, and T. Kawashima, “Numerical laser gain estimation of cryogenic Yb:YAG ceramics for IFE reactor driver,” J. Phys.: Conf. Series112(3), 032062 (2008).
[CrossRef]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B80(6), 635–638 (2005).
[CrossRef]

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, and Y. Izawa, “Quantum-defect-limited operation of diode-pumped Yb:YAG laser at low temperature,” Jpn. J. Appl. Phys.43(No. 4A), L496–L498 (2004).
[CrossRef]

Tulloch, W. M.

Vylegzhanin, D. N.

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ ions,” Sov. Phys. JETP42(3), 440–446 (1976).

Yager, E.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE6952, 69520K, 69520K-9 (2008).
[CrossRef]

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, and L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE6552, 65520D, 65520D-9 (2007).
[CrossRef]

Yagi, H.

A. Yoshida, S. Tokita, J. Kawanaka, T. Yanagitani, H. Yagi, F. Yamamura, and T. Kawashima, “Numerical laser gain estimation of cryogenic Yb:YAG ceramics for IFE reactor driver,” J. Phys.: Conf. Series112(3), 032062 (2008).
[CrossRef]

Yamamura, F.

A. Yoshida, S. Tokita, J. Kawanaka, T. Yanagitani, H. Yagi, F. Yamamura, and T. Kawashima, “Numerical laser gain estimation of cryogenic Yb:YAG ceramics for IFE reactor driver,” J. Phys.: Conf. Series112(3), 032062 (2008).
[CrossRef]

Yanagitani, T.

A. Yoshida, S. Tokita, J. Kawanaka, T. Yanagitani, H. Yagi, F. Yamamura, and T. Kawashima, “Numerical laser gain estimation of cryogenic Yb:YAG ceramics for IFE reactor driver,” J. Phys.: Conf. Series112(3), 032062 (2008).
[CrossRef]

Yoshida, A.

A. Yoshida, S. Tokita, J. Kawanaka, T. Yanagitani, H. Yagi, F. Yamamura, and T. Kawashima, “Numerical laser gain estimation of cryogenic Yb:YAG ceramics for IFE reactor driver,” J. Phys.: Conf. Series112(3), 032062 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. B

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B80(6), 635–638 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 587–599 (2005).
[CrossRef]

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys.: Conf. Series

A. Yoshida, S. Tokita, J. Kawanaka, T. Yanagitani, H. Yagi, F. Yamamura, and T. Kawashima, “Numerical laser gain estimation of cryogenic Yb:YAG ceramics for IFE reactor driver,” J. Phys.: Conf. Series112(3), 032062 (2008).
[CrossRef]

Jpn. J. Appl. Phys.

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, and Y. Izawa, “Quantum-defect-limited operation of diode-pumped Yb:YAG laser at low temperature,” Jpn. J. Appl. Phys.43(No. 4A), L496–L498 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Lett.

D. Findlay and R. A. Cay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20(3), 277–278 (1966).
[CrossRef]

Proc. SPIE

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, and L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE6552, 65520D, 65520D-9 (2007).
[CrossRef]

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE6952, 69520K, 69520K-9 (2008).
[CrossRef]

D. Harvilla and R. Brockmann, “Latest advances in high power disk lasers,” Proc. SPIE7578, 75780c (2010).

Quantum Electron.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modeling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron.29(8), 697–703 (1999).
[CrossRef]

Sov. Phys. JETP

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ ions,” Sov. Phys. JETP42(3), 440–446 (1976).

Other

W. Koechner, Solid State Laser Engineering (Springer, 2006).

P. V. Avizonis, D. J. Bossert, and M. S. Curtin, “Physics of high performance Yb:YAG thin disk lasers,” in Conference on Lasers and Electro-Optics (CLEO), Technical Digest (Optical Society of America, 2009), paper CThA2.

R. M. Yamamoto, B. S. Bhachu, K. P. Cutter, S. N. Fochs, S. A. Lets, C. W. Parks, M. D. Rotter, and T. F. Soules, “The use of large transparent ceramics in a high powered, diode pumped solid-state laser,” in Conference on Advanced Solid-State Photonics (ASSP), Technical Digest (Optical Society of America, 2008), paper WC5.

J. Kawanaka, S. Tokita, H. Nishioka, K. Ueda, M. Fujita, T. Kawashima, H. Yagi, and T. Yanagitani, “Efficient active-mirror laser oscillator with a cooled Yb:YAG ceramics,” in Conference on Advanced Solid-State Photonics (ASSP), Technical Digest (Optical Society of America, 2006), paper WB8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup of the multi-transverse mode oscillator. DM, dichroic mirror, OC, output coupler, LN2, liquid nitrogen, LD, laser diode.

Fig. 2
Fig. 2

(a) Fluorescence intensity of Yb:YAG at low temperatures [21]. (b) Fluorescence intensities and their ratio at 1022 nm and 1027 nm as a function of temperature.

Fig. 3
Fig. 3

Output powers of the 0.6 mm-thick TRAM laser as a function of launched pump power for pump spot sizes of (a) 6 mm, (b) 4 mm, and (c) 2.4 mm, respectively. Solid and dashed lines show corresponding fitting curves below output saturation intensity.

Fig. 4
Fig. 4

(a) Time-resolved output intensity for a 2.4 mm pump spot diameter. The output coupler of 63% reflectivity was used. (b) Output power as a function of pump power at t = 0 sec and t = 10 sec after switch-on of the pump, respectively. The output power at t = 10 sec corresponds to the results shown in Fig. 2(c). The dashed line in (b) shows the fitting result.

Fig. 5
Fig. 5

(a) Temperature rise of 0.6 mm-thick TRAM sample as a function of pump intensity. (b) Example of fluorescence spectra for high pumping case with- and without lasing together with a low pumping reference spectrum at 150 K.

Fig. 6
Fig. 6

Schematic of the TRAM laser amplifier.

Fig. 7
Fig. 7

Experimental and numerical results of output power characteristics at thermal equilibrium with respect to pump power for pump spot diameter of (a) 6 mm, (b) 4 mm and (c) 2.4 mm, respectively.

Fig. 8
Fig. 8

Calculated results of output power as a function of temperature for the 2.4 mm pump spot diameter, pump power of 403 W and the output coupler reflectivity of 63.5%. The black circle shows the experimental data point for the same pump and output coupler conditions, whose temperature and output power can be found in Fig. 5(a) and Fig. 7(c).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P out = I s (T)S 2 ( 1R 1+R )( 2 g 0 (T)l δlnR+2 α (T)l 1 ),
I S (T)= hν ( f l + f u ) σ emi (T) τ f ,
g 0 (T)= σ emi (T) τ f η t η Q η S η a η B 1 hν P V ,
α (T)= α 0 (T) 1+ I I S (T) .
α 0 (T)= σ emi (T) f l N 0 ,
T max = I Q ( 1 h + d K(T) )+ T LN ,

Metrics