Abstract

A novel approach to give an excellent tunability and self-referencing capability was presented by applying a concept of waveguide coupled surface plasmon resonance mode to a fiber-optic sensor. The presence of dielectric waveguide sandwiched between two metal layers made it possible to precisely tune the resonance wavelength in a broad range from visible to infrared region and to generate multiple modes which may be selectively used for suitable applications. Our approach also verified the potential capability of self-referencing based on a remarkable difference in sensitivity between the plasmonic and waveguide modes excited by p- and s-polarized lights, respectively, without using an additional reference channel. Experimental measurement carried out on sucrose solutions with varying concentration demonstrated the feasibility of our approach.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem.12(3), 213–220 (1993).
    [CrossRef]
  2. A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sens. J.7(8), 1118–1129 (2007).
    [CrossRef]
  3. C. Perrotton, N. Javahiraly, M. Slaman, B. Dam, and P. Meyrueis, “Fiber optic surface plasmon resonance sensor based on wavelength modulation for hydrogen sensing,” Opt. Express19(S6Suppl 6), A1175–A1183 (2011).
    [CrossRef] [PubMed]
  4. D. Monzón-Hernández, J. Villatoro, D. Talavera, and D. Luna-Moreno, “Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks,” Appl. Opt.43(6), 1216–1220 (2004).
    [CrossRef] [PubMed]
  5. R. Kashyap and G. Nemova, “Surface plasmon resonance-based fiber and planar waveguide sensors,” J. Sens.2009, 1–9 (2009).
    [CrossRef]
  6. B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens.1–12 (2009).
    [CrossRef]
  7. S. M. Tripathi, A. Kumar, E. Marin, and J. P. Meunier, “Side-polished optical fiber grating-based refractive index sensors utilizing the pure surface plasmon polariton,” J. Lightwave Technol.26(13), 1980–1985 (2008).
    [CrossRef]
  8. Z. Y. Zhang, P. Zhao, F. G. Sun, G. Z. Xiao, and Y. M. Wu, “Self-referencing in optical-fiber surface plasmon resonance sensors,” IEEE Photon. Technol. Lett.19(24), 1958–1960 (2007).
    [CrossRef]
  9. W. Peng, S. Banerji, Y. C. Kim, and K. S. Booksh, “Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications,” Opt. Lett.30(22), 2988–2990 (2005).
    [CrossRef] [PubMed]
  10. E. K. Akowuah, T. Gorman, S. Haxha, and J. V. Oliver, “Dual channel planar waveguide surface plasmon resonance biosensor for an aqueous environment,” Opt. Express18(24), 24412–24422 (2010).
    [CrossRef] [PubMed]
  11. L. L. Obando and K. S. Booksh, “Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors,” Anal. Chem.71(22), 5116–5122 (1999).
    [CrossRef]
  12. R. Slavik, J. Homola, and J. Ctyroky, “Miniaturization of fiber optic surface plasmon resonance sensor,” Sens. Actuators B Chem.51(1-3), 311–315 (1998).
    [CrossRef]
  13. A. Lahav, A. Shalabaney, and I. Abdulhalim, “Surface plasmon sensor with enhanced sensitivity using top nano dielectric layer,” J Nanophotonics3, 031501 (2009).
  14. A. Shalabney and I. Abdulhalim, “Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation,” Opt. Lett.37(7), 1175–1177 (2012).
    [CrossRef] [PubMed]
  15. J. T. Hastings, J. Guo, P. D. Keathley, P. B. Kumaresh, Y. Wei, S. Law, and L. G. Bachas, “Optimal self-referenced sensing using long- and short- range surface plasmons,” Opt. Express15(26), 17661–17672 (2007).
    [CrossRef] [PubMed]
  16. F. C. Chien and S. J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron.20(3), 633–642 (2004).
    [CrossRef] [PubMed]
  17. K. S. Lee, J. M. Son, D. Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors (Basel)10(12), 11390–11399 (2010).
    [CrossRef] [PubMed]
  18. H. Y. Lin, Y. C. Tsao, W. H. Tsai, Y. W. Yang, T. R. Yan, and B. C. Sheu, “Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850 nm-LED,” Sens. Actuators A Phys.138(2), 299–305 (2007).
    [CrossRef]
  19. H. Y. Lin, W. H. Tsai, Y. C. Tsao, and B. C. Sheu, “Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light,” Appl. Opt.46(5), 800–806 (2007).
    [CrossRef] [PubMed]
  20. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108(2), 462–493 (2008).
    [CrossRef] [PubMed]
  21. T. Okamoto and I. Yamaguchi, “Absorption measurement using a leaky waveguide mode,” Opt. Rev.4(3), 354–357 (1997).
    [CrossRef]
  22. Film WizardTM, Optical Thin Film software, (Scientific Computing International, Carlsbad, CA, USA). http://www.sci-soft.com/Film%20Wizard.htm .
  23. Y. Xu, N. B. Jones, J. C. Fothergill, and C. D. Hanning, “Analytical estimates of the characteristics of surface plasmon resonance fibre-optic sensors,” J. Mod. Opt.47(6), 1099–1110 (2000).
    [CrossRef]
  24. Ocean Optics Product Catalog, (2012). http://www.oceanoptics.com/catalog/Ocean_Optics_Catalog_2012.pdf .
  25. I. Garcés, C. Aldea, and J. Mateo, “Four-layer chemical fibre optic plasmon-based sensor,” Sens. Actuators B Chem.7(1-3), 771–774 (1992).
    [CrossRef]
  26. C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett.99(4), 041118 (2011).
    [CrossRef]
  27. B. P. Nelson, A. G. Frutos, J. M. Brockman, and R. M. Corn, “Near-infrared surface plasmon resonance measurements of ultrathin films. 1. angle shift and SPR imaging experiments,” Anal. Chem.71(18), 3928–3934 (1999).
    [CrossRef]
  28. R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: A novel tool for real time sensing of variations in living cells,” Biophys. J.90(7), 2592–2599 (2006).
    [CrossRef] [PubMed]
  29. S. Herminjard, L. Sirigu, H. P. Herzig, E. Studemann, A. Crottini, J. P. Pellaux, T. Gresch, M. Fischer, and J. Faist, “Surface plasmon resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range,” Opt. Express17(1), 293–303 (2009).
    [CrossRef] [PubMed]

2012 (1)

2011 (2)

C. Perrotton, N. Javahiraly, M. Slaman, B. Dam, and P. Meyrueis, “Fiber optic surface plasmon resonance sensor based on wavelength modulation for hydrogen sensing,” Opt. Express19(S6Suppl 6), A1175–A1183 (2011).
[CrossRef] [PubMed]

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett.99(4), 041118 (2011).
[CrossRef]

2010 (2)

K. S. Lee, J. M. Son, D. Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors (Basel)10(12), 11390–11399 (2010).
[CrossRef] [PubMed]

E. K. Akowuah, T. Gorman, S. Haxha, and J. V. Oliver, “Dual channel planar waveguide surface plasmon resonance biosensor for an aqueous environment,” Opt. Express18(24), 24412–24422 (2010).
[CrossRef] [PubMed]

2009 (4)

S. Herminjard, L. Sirigu, H. P. Herzig, E. Studemann, A. Crottini, J. P. Pellaux, T. Gresch, M. Fischer, and J. Faist, “Surface plasmon resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range,” Opt. Express17(1), 293–303 (2009).
[CrossRef] [PubMed]

R. Kashyap and G. Nemova, “Surface plasmon resonance-based fiber and planar waveguide sensors,” J. Sens.2009, 1–9 (2009).
[CrossRef]

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens.1–12 (2009).
[CrossRef]

A. Lahav, A. Shalabaney, and I. Abdulhalim, “Surface plasmon sensor with enhanced sensitivity using top nano dielectric layer,” J Nanophotonics3, 031501 (2009).

2008 (2)

2007 (5)

H. Y. Lin, W. H. Tsai, Y. C. Tsao, and B. C. Sheu, “Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light,” Appl. Opt.46(5), 800–806 (2007).
[CrossRef] [PubMed]

J. T. Hastings, J. Guo, P. D. Keathley, P. B. Kumaresh, Y. Wei, S. Law, and L. G. Bachas, “Optimal self-referenced sensing using long- and short- range surface plasmons,” Opt. Express15(26), 17661–17672 (2007).
[CrossRef] [PubMed]

H. Y. Lin, Y. C. Tsao, W. H. Tsai, Y. W. Yang, T. R. Yan, and B. C. Sheu, “Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850 nm-LED,” Sens. Actuators A Phys.138(2), 299–305 (2007).
[CrossRef]

Z. Y. Zhang, P. Zhao, F. G. Sun, G. Z. Xiao, and Y. M. Wu, “Self-referencing in optical-fiber surface plasmon resonance sensors,” IEEE Photon. Technol. Lett.19(24), 1958–1960 (2007).
[CrossRef]

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sens. J.7(8), 1118–1129 (2007).
[CrossRef]

2006 (1)

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: A novel tool for real time sensing of variations in living cells,” Biophys. J.90(7), 2592–2599 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (2)

D. Monzón-Hernández, J. Villatoro, D. Talavera, and D. Luna-Moreno, “Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks,” Appl. Opt.43(6), 1216–1220 (2004).
[CrossRef] [PubMed]

F. C. Chien and S. J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron.20(3), 633–642 (2004).
[CrossRef] [PubMed]

2000 (1)

Y. Xu, N. B. Jones, J. C. Fothergill, and C. D. Hanning, “Analytical estimates of the characteristics of surface plasmon resonance fibre-optic sensors,” J. Mod. Opt.47(6), 1099–1110 (2000).
[CrossRef]

1999 (2)

B. P. Nelson, A. G. Frutos, J. M. Brockman, and R. M. Corn, “Near-infrared surface plasmon resonance measurements of ultrathin films. 1. angle shift and SPR imaging experiments,” Anal. Chem.71(18), 3928–3934 (1999).
[CrossRef]

L. L. Obando and K. S. Booksh, “Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors,” Anal. Chem.71(22), 5116–5122 (1999).
[CrossRef]

1998 (1)

R. Slavik, J. Homola, and J. Ctyroky, “Miniaturization of fiber optic surface plasmon resonance sensor,” Sens. Actuators B Chem.51(1-3), 311–315 (1998).
[CrossRef]

1997 (1)

T. Okamoto and I. Yamaguchi, “Absorption measurement using a leaky waveguide mode,” Opt. Rev.4(3), 354–357 (1997).
[CrossRef]

1993 (1)

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem.12(3), 213–220 (1993).
[CrossRef]

1992 (1)

I. Garcés, C. Aldea, and J. Mateo, “Four-layer chemical fibre optic plasmon-based sensor,” Sens. Actuators B Chem.7(1-3), 771–774 (1992).
[CrossRef]

Abdulhalim, I.

A. Shalabney and I. Abdulhalim, “Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation,” Opt. Lett.37(7), 1175–1177 (2012).
[CrossRef] [PubMed]

A. Lahav, A. Shalabaney, and I. Abdulhalim, “Surface plasmon sensor with enhanced sensitivity using top nano dielectric layer,” J Nanophotonics3, 031501 (2009).

Akowuah, E. K.

Albert, J.

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett.99(4), 041118 (2011).
[CrossRef]

Aldea, C.

I. Garcés, C. Aldea, and J. Mateo, “Four-layer chemical fibre optic plasmon-based sensor,” Sens. Actuators B Chem.7(1-3), 771–774 (1992).
[CrossRef]

Aroeti, B.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: A novel tool for real time sensing of variations in living cells,” Biophys. J.90(7), 2592–2599 (2006).
[CrossRef] [PubMed]

Bachas, L. G.

Banerji, S.

Berini, P.

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett.99(4), 041118 (2011).
[CrossRef]

Booksh, K. S.

W. Peng, S. Banerji, Y. C. Kim, and K. S. Booksh, “Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications,” Opt. Lett.30(22), 2988–2990 (2005).
[CrossRef] [PubMed]

L. L. Obando and K. S. Booksh, “Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors,” Anal. Chem.71(22), 5116–5122 (1999).
[CrossRef]

Brockman, J. M.

B. P. Nelson, A. G. Frutos, J. M. Brockman, and R. M. Corn, “Near-infrared surface plasmon resonance measurements of ultrathin films. 1. angle shift and SPR imaging experiments,” Anal. Chem.71(18), 3928–3934 (1999).
[CrossRef]

Caucheteur, C.

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett.99(4), 041118 (2011).
[CrossRef]

Chen, C.

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett.99(4), 041118 (2011).
[CrossRef]

Chen, S. J.

F. C. Chien and S. J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron.20(3), 633–642 (2004).
[CrossRef] [PubMed]

Chien, F. C.

F. C. Chien and S. J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron.20(3), 633–642 (2004).
[CrossRef] [PubMed]

Corn, R. M.

B. P. Nelson, A. G. Frutos, J. M. Brockman, and R. M. Corn, “Near-infrared surface plasmon resonance measurements of ultrathin films. 1. angle shift and SPR imaging experiments,” Anal. Chem.71(18), 3928–3934 (1999).
[CrossRef]

Crottini, A.

Ctyroky, J.

R. Slavik, J. Homola, and J. Ctyroky, “Miniaturization of fiber optic surface plasmon resonance sensor,” Sens. Actuators B Chem.51(1-3), 311–315 (1998).
[CrossRef]

Dam, B.

Davidov, D.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: A novel tool for real time sensing of variations in living cells,” Biophys. J.90(7), 2592–2599 (2006).
[CrossRef] [PubMed]

Faist, J.

Fischer, M.

Fothergill, J. C.

Y. Xu, N. B. Jones, J. C. Fothergill, and C. D. Hanning, “Analytical estimates of the characteristics of surface plasmon resonance fibre-optic sensors,” J. Mod. Opt.47(6), 1099–1110 (2000).
[CrossRef]

Frutos, A. G.

B. P. Nelson, A. G. Frutos, J. M. Brockman, and R. M. Corn, “Near-infrared surface plasmon resonance measurements of ultrathin films. 1. angle shift and SPR imaging experiments,” Anal. Chem.71(18), 3928–3934 (1999).
[CrossRef]

Garcés, I.

I. Garcés, C. Aldea, and J. Mateo, “Four-layer chemical fibre optic plasmon-based sensor,” Sens. Actuators B Chem.7(1-3), 771–774 (1992).
[CrossRef]

Gorman, T.

Gresch, T.

Guo, J.

Gupta, B. D.

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens.1–12 (2009).
[CrossRef]

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sens. J.7(8), 1118–1129 (2007).
[CrossRef]

Hanning, C. D.

Y. Xu, N. B. Jones, J. C. Fothergill, and C. D. Hanning, “Analytical estimates of the characteristics of surface plasmon resonance fibre-optic sensors,” J. Mod. Opt.47(6), 1099–1110 (2000).
[CrossRef]

Hastings, J. T.

Haxha, S.

Herminjard, S.

Herzig, H. P.

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108(2), 462–493 (2008).
[CrossRef] [PubMed]

R. Slavik, J. Homola, and J. Ctyroky, “Miniaturization of fiber optic surface plasmon resonance sensor,” Sens. Actuators B Chem.51(1-3), 311–315 (1998).
[CrossRef]

Javahiraly, N.

Jeong, D. Y.

K. S. Lee, J. M. Son, D. Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors (Basel)10(12), 11390–11399 (2010).
[CrossRef] [PubMed]

Jha, R.

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sens. J.7(8), 1118–1129 (2007).
[CrossRef]

Jones, N. B.

Y. Xu, N. B. Jones, J. C. Fothergill, and C. D. Hanning, “Analytical estimates of the characteristics of surface plasmon resonance fibre-optic sensors,” J. Mod. Opt.47(6), 1099–1110 (2000).
[CrossRef]

Jorgenson, R. C.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem.12(3), 213–220 (1993).
[CrossRef]

Kashyap, R.

R. Kashyap and G. Nemova, “Surface plasmon resonance-based fiber and planar waveguide sensors,” J. Sens.2009, 1–9 (2009).
[CrossRef]

Keathley, P. D.

Kim, W. M.

K. S. Lee, J. M. Son, D. Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors (Basel)10(12), 11390–11399 (2010).
[CrossRef] [PubMed]

Kim, Y. C.

Kumar, A.

Kumaresh, P. B.

Lahav, A.

A. Lahav, A. Shalabaney, and I. Abdulhalim, “Surface plasmon sensor with enhanced sensitivity using top nano dielectric layer,” J Nanophotonics3, 031501 (2009).

Law, S.

Lee, K. S.

K. S. Lee, J. M. Son, D. Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors (Basel)10(12), 11390–11399 (2010).
[CrossRef] [PubMed]

Lee, T. S.

K. S. Lee, J. M. Son, D. Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors (Basel)10(12), 11390–11399 (2010).
[CrossRef] [PubMed]

Lin, H. Y.

H. Y. Lin, W. H. Tsai, Y. C. Tsao, and B. C. Sheu, “Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light,” Appl. Opt.46(5), 800–806 (2007).
[CrossRef] [PubMed]

H. Y. Lin, Y. C. Tsao, W. H. Tsai, Y. W. Yang, T. R. Yan, and B. C. Sheu, “Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850 nm-LED,” Sens. Actuators A Phys.138(2), 299–305 (2007).
[CrossRef]

Lirtsman, V.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: A novel tool for real time sensing of variations in living cells,” Biophys. J.90(7), 2592–2599 (2006).
[CrossRef] [PubMed]

Luna-Moreno, D.

Marin, E.

Mateo, J.

I. Garcés, C. Aldea, and J. Mateo, “Four-layer chemical fibre optic plasmon-based sensor,” Sens. Actuators B Chem.7(1-3), 771–774 (1992).
[CrossRef]

Meunier, J. P.

Meyrueis, P.

Monzón-Hernández, D.

Nelson, B. P.

B. P. Nelson, A. G. Frutos, J. M. Brockman, and R. M. Corn, “Near-infrared surface plasmon resonance measurements of ultrathin films. 1. angle shift and SPR imaging experiments,” Anal. Chem.71(18), 3928–3934 (1999).
[CrossRef]

Nemova, G.

R. Kashyap and G. Nemova, “Surface plasmon resonance-based fiber and planar waveguide sensors,” J. Sens.2009, 1–9 (2009).
[CrossRef]

Obando, L. L.

L. L. Obando and K. S. Booksh, “Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors,” Anal. Chem.71(22), 5116–5122 (1999).
[CrossRef]

Okamoto, T.

T. Okamoto and I. Yamaguchi, “Absorption measurement using a leaky waveguide mode,” Opt. Rev.4(3), 354–357 (1997).
[CrossRef]

Oliver, J. V.

Pellaux, J. P.

Peng, W.

Perrotton, C.

Shalabaney, A.

A. Lahav, A. Shalabaney, and I. Abdulhalim, “Surface plasmon sensor with enhanced sensitivity using top nano dielectric layer,” J Nanophotonics3, 031501 (2009).

Shalabney, A.

Sharma, A. K.

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sens. J.7(8), 1118–1129 (2007).
[CrossRef]

Sheu, B. C.

H. Y. Lin, W. H. Tsai, Y. C. Tsao, and B. C. Sheu, “Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light,” Appl. Opt.46(5), 800–806 (2007).
[CrossRef] [PubMed]

H. Y. Lin, Y. C. Tsao, W. H. Tsai, Y. W. Yang, T. R. Yan, and B. C. Sheu, “Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850 nm-LED,” Sens. Actuators A Phys.138(2), 299–305 (2007).
[CrossRef]

Sirigu, L.

Slaman, M.

Slavik, R.

R. Slavik, J. Homola, and J. Ctyroky, “Miniaturization of fiber optic surface plasmon resonance sensor,” Sens. Actuators B Chem.51(1-3), 311–315 (1998).
[CrossRef]

Son, J. M.

K. S. Lee, J. M. Son, D. Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors (Basel)10(12), 11390–11399 (2010).
[CrossRef] [PubMed]

Studemann, E.

Sun, F. G.

Z. Y. Zhang, P. Zhao, F. G. Sun, G. Z. Xiao, and Y. M. Wu, “Self-referencing in optical-fiber surface plasmon resonance sensors,” IEEE Photon. Technol. Lett.19(24), 1958–1960 (2007).
[CrossRef]

Talavera, D.

Tripathi, S. M.

Tsai, W. H.

H. Y. Lin, Y. C. Tsao, W. H. Tsai, Y. W. Yang, T. R. Yan, and B. C. Sheu, “Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850 nm-LED,” Sens. Actuators A Phys.138(2), 299–305 (2007).
[CrossRef]

H. Y. Lin, W. H. Tsai, Y. C. Tsao, and B. C. Sheu, “Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light,” Appl. Opt.46(5), 800–806 (2007).
[CrossRef] [PubMed]

Tsao, Y. C.

H. Y. Lin, W. H. Tsai, Y. C. Tsao, and B. C. Sheu, “Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light,” Appl. Opt.46(5), 800–806 (2007).
[CrossRef] [PubMed]

H. Y. Lin, Y. C. Tsao, W. H. Tsai, Y. W. Yang, T. R. Yan, and B. C. Sheu, “Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850 nm-LED,” Sens. Actuators A Phys.138(2), 299–305 (2007).
[CrossRef]

Verma, R. K.

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens.1–12 (2009).
[CrossRef]

Villatoro, J.

Voisin, V.

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett.99(4), 041118 (2011).
[CrossRef]

Wei, Y.

Wu, Y. M.

Z. Y. Zhang, P. Zhao, F. G. Sun, G. Z. Xiao, and Y. M. Wu, “Self-referencing in optical-fiber surface plasmon resonance sensors,” IEEE Photon. Technol. Lett.19(24), 1958–1960 (2007).
[CrossRef]

Xiao, G. Z.

Z. Y. Zhang, P. Zhao, F. G. Sun, G. Z. Xiao, and Y. M. Wu, “Self-referencing in optical-fiber surface plasmon resonance sensors,” IEEE Photon. Technol. Lett.19(24), 1958–1960 (2007).
[CrossRef]

Xu, Y.

Y. Xu, N. B. Jones, J. C. Fothergill, and C. D. Hanning, “Analytical estimates of the characteristics of surface plasmon resonance fibre-optic sensors,” J. Mod. Opt.47(6), 1099–1110 (2000).
[CrossRef]

Yamaguchi, I.

T. Okamoto and I. Yamaguchi, “Absorption measurement using a leaky waveguide mode,” Opt. Rev.4(3), 354–357 (1997).
[CrossRef]

Yan, T. R.

H. Y. Lin, Y. C. Tsao, W. H. Tsai, Y. W. Yang, T. R. Yan, and B. C. Sheu, “Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850 nm-LED,” Sens. Actuators A Phys.138(2), 299–305 (2007).
[CrossRef]

Yang, Y. W.

H. Y. Lin, Y. C. Tsao, W. H. Tsai, Y. W. Yang, T. R. Yan, and B. C. Sheu, “Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850 nm-LED,” Sens. Actuators A Phys.138(2), 299–305 (2007).
[CrossRef]

Yee, S. S.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem.12(3), 213–220 (1993).
[CrossRef]

Zhang, Z. Y.

Z. Y. Zhang, P. Zhao, F. G. Sun, G. Z. Xiao, and Y. M. Wu, “Self-referencing in optical-fiber surface plasmon resonance sensors,” IEEE Photon. Technol. Lett.19(24), 1958–1960 (2007).
[CrossRef]

Zhao, P.

Z. Y. Zhang, P. Zhao, F. G. Sun, G. Z. Xiao, and Y. M. Wu, “Self-referencing in optical-fiber surface plasmon resonance sensors,” IEEE Photon. Technol. Lett.19(24), 1958–1960 (2007).
[CrossRef]

Ziblat, R.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: A novel tool for real time sensing of variations in living cells,” Biophys. J.90(7), 2592–2599 (2006).
[CrossRef] [PubMed]

Anal. Chem. (2)

L. L. Obando and K. S. Booksh, “Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors,” Anal. Chem.71(22), 5116–5122 (1999).
[CrossRef]

B. P. Nelson, A. G. Frutos, J. M. Brockman, and R. M. Corn, “Near-infrared surface plasmon resonance measurements of ultrathin films. 1. angle shift and SPR imaging experiments,” Anal. Chem.71(18), 3928–3934 (1999).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett.99(4), 041118 (2011).
[CrossRef]

Biophys. J. (1)

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: A novel tool for real time sensing of variations in living cells,” Biophys. J.90(7), 2592–2599 (2006).
[CrossRef] [PubMed]

Biosens. Bioelectron. (1)

F. C. Chien and S. J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron.20(3), 633–642 (2004).
[CrossRef] [PubMed]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108(2), 462–493 (2008).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (1)

Z. Y. Zhang, P. Zhao, F. G. Sun, G. Z. Xiao, and Y. M. Wu, “Self-referencing in optical-fiber surface plasmon resonance sensors,” IEEE Photon. Technol. Lett.19(24), 1958–1960 (2007).
[CrossRef]

IEEE Sens. J. (1)

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sens. J.7(8), 1118–1129 (2007).
[CrossRef]

J Nanophotonics (1)

A. Lahav, A. Shalabaney, and I. Abdulhalim, “Surface plasmon sensor with enhanced sensitivity using top nano dielectric layer,” J Nanophotonics3, 031501 (2009).

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

Y. Xu, N. B. Jones, J. C. Fothergill, and C. D. Hanning, “Analytical estimates of the characteristics of surface plasmon resonance fibre-optic sensors,” J. Mod. Opt.47(6), 1099–1110 (2000).
[CrossRef]

J. Sens. (2)

R. Kashyap and G. Nemova, “Surface plasmon resonance-based fiber and planar waveguide sensors,” J. Sens.2009, 1–9 (2009).
[CrossRef]

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens.1–12 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Opt. Rev. (1)

T. Okamoto and I. Yamaguchi, “Absorption measurement using a leaky waveguide mode,” Opt. Rev.4(3), 354–357 (1997).
[CrossRef]

Sens. Actuators A Phys. (1)

H. Y. Lin, Y. C. Tsao, W. H. Tsai, Y. W. Yang, T. R. Yan, and B. C. Sheu, “Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850 nm-LED,” Sens. Actuators A Phys.138(2), 299–305 (2007).
[CrossRef]

Sens. Actuators B Chem. (3)

I. Garcés, C. Aldea, and J. Mateo, “Four-layer chemical fibre optic plasmon-based sensor,” Sens. Actuators B Chem.7(1-3), 771–774 (1992).
[CrossRef]

R. Slavik, J. Homola, and J. Ctyroky, “Miniaturization of fiber optic surface plasmon resonance sensor,” Sens. Actuators B Chem.51(1-3), 311–315 (1998).
[CrossRef]

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem.12(3), 213–220 (1993).
[CrossRef]

Sensors (Basel) (1)

K. S. Lee, J. M. Son, D. Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors (Basel)10(12), 11390–11399 (2010).
[CrossRef] [PubMed]

Other (2)

Ocean Optics Product Catalog, (2012). http://www.oceanoptics.com/catalog/Ocean_Optics_Catalog_2012.pdf .

Film WizardTM, Optical Thin Film software, (Scientific Computing International, Carlsbad, CA, USA). http://www.sci-soft.com/Film%20Wizard.htm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic configuration of side-polished fiber-optic WCSPR sensor and (b) experimental setup for measuring the sensing performance.

Fig. 2
Fig. 2

Two-dimensional contour maps of internal reflectance calculated inside the silica core for both p- and s-polarization as a function of light wavelength and incident angle for the multilayer stacks of conventional Au single layer of 45 nm thickness [(a) and (c)] and waveguide coupled geometry of SiO2 core\inner-Au layer (18 nm)\ZnS-SiO2 waveguide (400 nm)\outer-Au layer (18 nm) [(b) and (d)] in a water buffer. The upper graphs (a) and (b) are for p-polarization, and the lower (c) and (d) for s-polarization.

Fig. 3
Fig. 3

Characteristic distribution of E-field amplitudes calculated along the stack thickness at the reflectance dips of 640 nm from Fig. 2(b) for p-polarization and 757 nm from Fig. 2(d) for s-polarization (waveguide mode) when the incident angle is assumed to be fixed at 81°.

Fig. 4
Fig. 4

Two-dimensional contour map of p-wave reflectance calculated as a function of thickness of the ZnS-SiO2 waveguide and wavelength of incident light for the WCSPR stack having the same thickness of 18 nm for both inner and outer Au layers in a water buffer. The incident angle was fixed at 81°.

Fig. 5
Fig. 5

Spectral reflectance line profiles taken from Fig. 4 at fixed four different thicknesses of dielectric waveguide, td = 150, 180, 200, and 250 nm.

Fig. 6
Fig. 6

Calculated response of the fiber-optic WCSPR sensor to the change in refractive index of surrounding medium when random polarized light having p- and s-wave components mixed is incident at θi of 81°. The stack used in this calculation is SiO2 core\inner-Au layer (18 nm)\ZnS-SiO2 waveguide (400 nm)\outer-Au layer (18 nm).

Fig. 7
Fig. 7

Effect of thickness variation of outer-Au layer relative to that of inner-Au on the p-wave reflectance spectra calculated for the WCSPR stack of SiO2 core\inner-Au layer (18 nm)\ZnS-SiO2 waveguide (220 nm)\outer-Au layer (touter_Au nm) in a water buffer at a fixed incident angle of 81°.

Fig. 8
Fig. 8

Transmittance spectra measured for the fiber-optic WCSPR sensor fabricated with a stack of inner-Au (18 nm)\ZnS-SiO2 (220 nm)\outer-Au (18 nm) while flowing the aqueous solutions of sucrose with varying the concentration from 0 to 25 w/w%.

Fig. 9
Fig. 9

Temporal responses of transmitted intensity measured at the highest slope position of dip curves from both the SPR and the waveguide modes for the experimental WCSPR stack with respect to the injection of dilute sucrose solutions, and the self-referenced SPR mode signal extracted after correction using the waveguide mode reflectance.

Metrics