Abstract

The brilliancy and variety of structural colors found in nature has become a major scientific topic in recent years. Rapid-prototyping processes enable the fabrication of according structures, but the technical exploitation requires a profound understanding of structural features and material properties regarding the generation of reflected color. This paper presents an extensive simulation of the reflectance spectra of a simplified 2D Morpho butterfly wing model by utilizing the finite-difference time-domain method. The structural parameters are optimized for reflection in a given spectral range. A comparison to simpler models, such as a plane dielectric layer stack, provides an understanding of the origin of the reflection behavior. We find that the wavelength of the reflection maximum is mainly set by the lateral dimensions of the structures. Furthermore small variations of the vertical dimensions leave the spectral position of the reflectance wavelength unchanged, potentially reducing grating effects.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Ingram and A. R. Parker, “A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990),” Philos. Trans. R. Soc. Lond. B Biol. Sci.363(1502), 2465–2480 (2008).
    [CrossRef] [PubMed]
  2. Y.-Y. Diao and X.-Y. Liu, “Mysterious coloring: structural origin of color mixing for two breeds of Papilio butterflies,” Opt. Express19(10), 9232–9241 (2011).
    [CrossRef] [PubMed]
  3. D. Pantelić, S. Curčić, S. Savić-Šević, A. Korać, A. Kovačević, B. Curčić, and B. Bokić, “High angular and spectral selectivity of purple emperor (Lepidoptera: Apatura iris and A. ilia) butterfly wings,” Opt. Express19(7), 5817–5826 (2011).
    [CrossRef] [PubMed]
  4. S. Yoshioka and S. Kinoshita, “Polarization-sensitive color mixing in the wing of the Madagascan sunset moth,” Opt. Express15(5), 2691–2701 (2007).
    [CrossRef] [PubMed]
  5. S. Yoshioka and S. Kinoshita, “Effect of macroscopic structure in iridescent color of the peacock feathers,” Forma17, 169–181 (2002).
  6. F. Liu, B. Q. Dong, X. H. Liu, Y. M. Zheng, and J. Zi, “Structural color change in longhorn beetles Tmesisternus isabellae,” Opt. Express17(18), 16183–16191 (2009).
    [CrossRef] [PubMed]
  7. M. Inchaussandague, D. Skigin, C. Carmaran, S. Rosenfeldt, and C. Universitaria, “Structural color in Myxomycetes,” Opt. Express18(15), 16055–16063 (2010).
    [CrossRef] [PubMed]
  8. M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol.5(7), 511–515 (2010).
    [CrossRef] [PubMed]
  9. J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. (Deerfield Beach Fla.)22(26-27), 2939–2944 (2010).
    [CrossRef] [PubMed]
  10. S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys.71(7), 076401 (2008).
    [CrossRef]
  11. A. R. Parker, “515 million years of structural colour,” J. Opt. A, Pure Appl. Opt.2(6), R15–R28 (2000).
    [CrossRef]
  12. J. Zhang, J.-Y. Ou, N. Papasimakis, Y. Chen, K. F. Macdonald, and N. I. Zheludev, “Continuous metal plasmonic frequency selective surfaces,” Opt. Express19(23), 23279–23285 (2011).
    [CrossRef] [PubMed]
  13. L. Eadie and T. K. Ghosh, “Biomimicry in textiles: past, present and potential. An overview,” J. R. Soc. Interface8(59), 761–775 (2011).
    [CrossRef] [PubMed]
  14. W. Zhang, D. Zhang, T. Fan, J. Gu, J. Ding, H. Wang, Q. Guo, and H. Ogawa, “Novel photoanode structure templated from butterfly wing scales,” Chem. Mater.21(1), 33–40 (2009).
    [CrossRef]
  15. X. Yang, Z. Peng, H. Zuo, T. Shi, and G. Liao, “Using hierarchy architecture of Morpho butterfly scales for chemical sensing: Experiment and modeling,” Sensor. Actuat. A-Phys167, 367–373 (2011).
  16. D. Zhu, S. Kinoshita, D. Cai, and J. B. Cole, “Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: Effects of alternately stacked shelves and ridge density,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.80(5), 051924 (2009).
    [CrossRef] [PubMed]
  17. R. T. Lee and G. S. Smith, “Detailed electromagnetic simulation for the structural color of butterfly wings,” Appl. Opt.48(21), 4177–4190 (2009).
    [CrossRef] [PubMed]
  18. S. Banerjee, J. B. Cole, and T. Yatagai, “Colour characterization of a Morpho butterfly wing-scale using a high accuracy nonstandard finite-difference time-domain method,” Micron38(2), 97–103 (2007).
    [CrossRef] [PubMed]
  19. Lumerical, “FDTD Solutions,” http://www.lumerical.com/ .
  20. MathWorks, “Matlab,” http://www.mathworks.de/ .
  21. E. D. Palik, Handbook of Optical Constants (Academic Press, 1985).
  22. J. B. Schneider, “Plane waves in FDTD simulations and a nearly perfect total-field/scattered-field boundary,” IEEE Trans. Antenn. Propag.52(12), 3280–3287 (2004).
    [CrossRef]
  23. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).

2011

2010

M. Inchaussandague, D. Skigin, C. Carmaran, S. Rosenfeldt, and C. Universitaria, “Structural color in Myxomycetes,” Opt. Express18(15), 16055–16063 (2010).
[CrossRef] [PubMed]

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol.5(7), 511–515 (2010).
[CrossRef] [PubMed]

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. (Deerfield Beach Fla.)22(26-27), 2939–2944 (2010).
[CrossRef] [PubMed]

2009

D. Zhu, S. Kinoshita, D. Cai, and J. B. Cole, “Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: Effects of alternately stacked shelves and ridge density,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.80(5), 051924 (2009).
[CrossRef] [PubMed]

R. T. Lee and G. S. Smith, “Detailed electromagnetic simulation for the structural color of butterfly wings,” Appl. Opt.48(21), 4177–4190 (2009).
[CrossRef] [PubMed]

W. Zhang, D. Zhang, T. Fan, J. Gu, J. Ding, H. Wang, Q. Guo, and H. Ogawa, “Novel photoanode structure templated from butterfly wing scales,” Chem. Mater.21(1), 33–40 (2009).
[CrossRef]

F. Liu, B. Q. Dong, X. H. Liu, Y. M. Zheng, and J. Zi, “Structural color change in longhorn beetles Tmesisternus isabellae,” Opt. Express17(18), 16183–16191 (2009).
[CrossRef] [PubMed]

2008

A. L. Ingram and A. R. Parker, “A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990),” Philos. Trans. R. Soc. Lond. B Biol. Sci.363(1502), 2465–2480 (2008).
[CrossRef] [PubMed]

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys.71(7), 076401 (2008).
[CrossRef]

2007

S. Yoshioka and S. Kinoshita, “Polarization-sensitive color mixing in the wing of the Madagascan sunset moth,” Opt. Express15(5), 2691–2701 (2007).
[CrossRef] [PubMed]

S. Banerjee, J. B. Cole, and T. Yatagai, “Colour characterization of a Morpho butterfly wing-scale using a high accuracy nonstandard finite-difference time-domain method,” Micron38(2), 97–103 (2007).
[CrossRef] [PubMed]

2004

J. B. Schneider, “Plane waves in FDTD simulations and a nearly perfect total-field/scattered-field boundary,” IEEE Trans. Antenn. Propag.52(12), 3280–3287 (2004).
[CrossRef]

2002

S. Yoshioka and S. Kinoshita, “Effect of macroscopic structure in iridescent color of the peacock feathers,” Forma17, 169–181 (2002).

2000

A. R. Parker, “515 million years of structural colour,” J. Opt. A, Pure Appl. Opt.2(6), R15–R28 (2000).
[CrossRef]

Banerjee, S.

S. Banerjee, J. B. Cole, and T. Yatagai, “Colour characterization of a Morpho butterfly wing-scale using a high accuracy nonstandard finite-difference time-domain method,” Micron38(2), 97–103 (2007).
[CrossRef] [PubMed]

Baumberg, J. J.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol.5(7), 511–515 (2010).
[CrossRef] [PubMed]

Bokic, B.

Cai, D.

D. Zhu, S. Kinoshita, D. Cai, and J. B. Cole, “Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: Effects of alternately stacked shelves and ridge density,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.80(5), 051924 (2009).
[CrossRef] [PubMed]

Cao, H.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. (Deerfield Beach Fla.)22(26-27), 2939–2944 (2010).
[CrossRef] [PubMed]

Carmaran, C.

Chen, Y.

Cole, J. B.

D. Zhu, S. Kinoshita, D. Cai, and J. B. Cole, “Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: Effects of alternately stacked shelves and ridge density,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.80(5), 051924 (2009).
[CrossRef] [PubMed]

S. Banerjee, J. B. Cole, and T. Yatagai, “Colour characterization of a Morpho butterfly wing-scale using a high accuracy nonstandard finite-difference time-domain method,” Micron38(2), 97–103 (2007).
[CrossRef] [PubMed]

Curcic, B.

Curcic, S.

Diao, Y.-Y.

Ding, J.

W. Zhang, D. Zhang, T. Fan, J. Gu, J. Ding, H. Wang, Q. Guo, and H. Ogawa, “Novel photoanode structure templated from butterfly wing scales,” Chem. Mater.21(1), 33–40 (2009).
[CrossRef]

Dong, B. Q.

Dufresne, E. R.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. (Deerfield Beach Fla.)22(26-27), 2939–2944 (2010).
[CrossRef] [PubMed]

Eadie, L.

L. Eadie and T. K. Ghosh, “Biomimicry in textiles: past, present and potential. An overview,” J. R. Soc. Interface8(59), 761–775 (2011).
[CrossRef] [PubMed]

Fan, T.

W. Zhang, D. Zhang, T. Fan, J. Gu, J. Ding, H. Wang, Q. Guo, and H. Ogawa, “Novel photoanode structure templated from butterfly wing scales,” Chem. Mater.21(1), 33–40 (2009).
[CrossRef]

Forster, J. D.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. (Deerfield Beach Fla.)22(26-27), 2939–2944 (2010).
[CrossRef] [PubMed]

Ghosh, T. K.

L. Eadie and T. K. Ghosh, “Biomimicry in textiles: past, present and potential. An overview,” J. R. Soc. Interface8(59), 761–775 (2011).
[CrossRef] [PubMed]

Gu, J.

W. Zhang, D. Zhang, T. Fan, J. Gu, J. Ding, H. Wang, Q. Guo, and H. Ogawa, “Novel photoanode structure templated from butterfly wing scales,” Chem. Mater.21(1), 33–40 (2009).
[CrossRef]

Guo, Q.

W. Zhang, D. Zhang, T. Fan, J. Gu, J. Ding, H. Wang, Q. Guo, and H. Ogawa, “Novel photoanode structure templated from butterfly wing scales,” Chem. Mater.21(1), 33–40 (2009).
[CrossRef]

Huang, F.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol.5(7), 511–515 (2010).
[CrossRef] [PubMed]

Inchaussandague, M.

Ingram, A. L.

A. L. Ingram and A. R. Parker, “A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990),” Philos. Trans. R. Soc. Lond. B Biol. Sci.363(1502), 2465–2480 (2008).
[CrossRef] [PubMed]

Kinoshita, S.

D. Zhu, S. Kinoshita, D. Cai, and J. B. Cole, “Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: Effects of alternately stacked shelves and ridge density,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.80(5), 051924 (2009).
[CrossRef] [PubMed]

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys.71(7), 076401 (2008).
[CrossRef]

S. Yoshioka and S. Kinoshita, “Polarization-sensitive color mixing in the wing of the Madagascan sunset moth,” Opt. Express15(5), 2691–2701 (2007).
[CrossRef] [PubMed]

S. Yoshioka and S. Kinoshita, “Effect of macroscopic structure in iridescent color of the peacock feathers,” Forma17, 169–181 (2002).

Kolle, M.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol.5(7), 511–515 (2010).
[CrossRef] [PubMed]

Korac, A.

Kovacevic, A.

Lee, R. T.

Liao, G.

X. Yang, Z. Peng, H. Zuo, T. Shi, and G. Liao, “Using hierarchy architecture of Morpho butterfly scales for chemical sensing: Experiment and modeling,” Sensor. Actuat. A-Phys167, 367–373 (2011).

Liew, S. F.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. (Deerfield Beach Fla.)22(26-27), 2939–2944 (2010).
[CrossRef] [PubMed]

Liu, F.

Liu, X. H.

Liu, X.-Y.

Macdonald, K. F.

Mahajan, S.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol.5(7), 511–515 (2010).
[CrossRef] [PubMed]

Miyazaki, J.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys.71(7), 076401 (2008).
[CrossRef]

Mochrie, S. G. J.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. (Deerfield Beach Fla.)22(26-27), 2939–2944 (2010).
[CrossRef] [PubMed]

Noh, H.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. (Deerfield Beach Fla.)22(26-27), 2939–2944 (2010).
[CrossRef] [PubMed]

O’Hern, C. S.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. (Deerfield Beach Fla.)22(26-27), 2939–2944 (2010).
[CrossRef] [PubMed]

Ogawa, H.

W. Zhang, D. Zhang, T. Fan, J. Gu, J. Ding, H. Wang, Q. Guo, and H. Ogawa, “Novel photoanode structure templated from butterfly wing scales,” Chem. Mater.21(1), 33–40 (2009).
[CrossRef]

Ou, J.-Y.

Pantelic, D.

Papasimakis, N.

Park, J.-G.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. (Deerfield Beach Fla.)22(26-27), 2939–2944 (2010).
[CrossRef] [PubMed]

Parker, A. R.

A. L. Ingram and A. R. Parker, “A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990),” Philos. Trans. R. Soc. Lond. B Biol. Sci.363(1502), 2465–2480 (2008).
[CrossRef] [PubMed]

A. R. Parker, “515 million years of structural colour,” J. Opt. A, Pure Appl. Opt.2(6), R15–R28 (2000).
[CrossRef]

Peng, Z.

X. Yang, Z. Peng, H. Zuo, T. Shi, and G. Liao, “Using hierarchy architecture of Morpho butterfly scales for chemical sensing: Experiment and modeling,” Sensor. Actuat. A-Phys167, 367–373 (2011).

Prum, R. O.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. (Deerfield Beach Fla.)22(26-27), 2939–2944 (2010).
[CrossRef] [PubMed]

Rosenfeldt, S.

Salgard-Cunha, P. M.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol.5(7), 511–515 (2010).
[CrossRef] [PubMed]

Saranathan, V.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. (Deerfield Beach Fla.)22(26-27), 2939–2944 (2010).
[CrossRef] [PubMed]

Savic-Ševic, S.

Scherer, M. R. J.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol.5(7), 511–515 (2010).
[CrossRef] [PubMed]

Schneider, J. B.

J. B. Schneider, “Plane waves in FDTD simulations and a nearly perfect total-field/scattered-field boundary,” IEEE Trans. Antenn. Propag.52(12), 3280–3287 (2004).
[CrossRef]

Schreck, C. F.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. (Deerfield Beach Fla.)22(26-27), 2939–2944 (2010).
[CrossRef] [PubMed]

Shi, T.

X. Yang, Z. Peng, H. Zuo, T. Shi, and G. Liao, “Using hierarchy architecture of Morpho butterfly scales for chemical sensing: Experiment and modeling,” Sensor. Actuat. A-Phys167, 367–373 (2011).

Skigin, D.

Smith, G. S.

Steiner, U.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol.5(7), 511–515 (2010).
[CrossRef] [PubMed]

Universitaria, C.

Vukusic, P.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol.5(7), 511–515 (2010).
[CrossRef] [PubMed]

Wang, H.

W. Zhang, D. Zhang, T. Fan, J. Gu, J. Ding, H. Wang, Q. Guo, and H. Ogawa, “Novel photoanode structure templated from butterfly wing scales,” Chem. Mater.21(1), 33–40 (2009).
[CrossRef]

Yang, L.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. (Deerfield Beach Fla.)22(26-27), 2939–2944 (2010).
[CrossRef] [PubMed]

Yang, X.

X. Yang, Z. Peng, H. Zuo, T. Shi, and G. Liao, “Using hierarchy architecture of Morpho butterfly scales for chemical sensing: Experiment and modeling,” Sensor. Actuat. A-Phys167, 367–373 (2011).

Yatagai, T.

S. Banerjee, J. B. Cole, and T. Yatagai, “Colour characterization of a Morpho butterfly wing-scale using a high accuracy nonstandard finite-difference time-domain method,” Micron38(2), 97–103 (2007).
[CrossRef] [PubMed]

Yoshioka, S.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys.71(7), 076401 (2008).
[CrossRef]

S. Yoshioka and S. Kinoshita, “Polarization-sensitive color mixing in the wing of the Madagascan sunset moth,” Opt. Express15(5), 2691–2701 (2007).
[CrossRef] [PubMed]

S. Yoshioka and S. Kinoshita, “Effect of macroscopic structure in iridescent color of the peacock feathers,” Forma17, 169–181 (2002).

Zhang, D.

W. Zhang, D. Zhang, T. Fan, J. Gu, J. Ding, H. Wang, Q. Guo, and H. Ogawa, “Novel photoanode structure templated from butterfly wing scales,” Chem. Mater.21(1), 33–40 (2009).
[CrossRef]

Zhang, J.

Zhang, W.

W. Zhang, D. Zhang, T. Fan, J. Gu, J. Ding, H. Wang, Q. Guo, and H. Ogawa, “Novel photoanode structure templated from butterfly wing scales,” Chem. Mater.21(1), 33–40 (2009).
[CrossRef]

Zheludev, N. I.

Zheng, Y. M.

Zhu, D.

D. Zhu, S. Kinoshita, D. Cai, and J. B. Cole, “Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: Effects of alternately stacked shelves and ridge density,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.80(5), 051924 (2009).
[CrossRef] [PubMed]

Zi, J.

Zuo, H.

X. Yang, Z. Peng, H. Zuo, T. Shi, and G. Liao, “Using hierarchy architecture of Morpho butterfly scales for chemical sensing: Experiment and modeling,” Sensor. Actuat. A-Phys167, 367–373 (2011).

Adv. Mater. (Deerfield Beach Fla.)

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. (Deerfield Beach Fla.)22(26-27), 2939–2944 (2010).
[CrossRef] [PubMed]

Appl. Opt.

Chem. Mater.

W. Zhang, D. Zhang, T. Fan, J. Gu, J. Ding, H. Wang, Q. Guo, and H. Ogawa, “Novel photoanode structure templated from butterfly wing scales,” Chem. Mater.21(1), 33–40 (2009).
[CrossRef]

Forma

S. Yoshioka and S. Kinoshita, “Effect of macroscopic structure in iridescent color of the peacock feathers,” Forma17, 169–181 (2002).

IEEE Trans. Antenn. Propag.

J. B. Schneider, “Plane waves in FDTD simulations and a nearly perfect total-field/scattered-field boundary,” IEEE Trans. Antenn. Propag.52(12), 3280–3287 (2004).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

A. R. Parker, “515 million years of structural colour,” J. Opt. A, Pure Appl. Opt.2(6), R15–R28 (2000).
[CrossRef]

J. R. Soc. Interface

L. Eadie and T. K. Ghosh, “Biomimicry in textiles: past, present and potential. An overview,” J. R. Soc. Interface8(59), 761–775 (2011).
[CrossRef] [PubMed]

Micron

S. Banerjee, J. B. Cole, and T. Yatagai, “Colour characterization of a Morpho butterfly wing-scale using a high accuracy nonstandard finite-difference time-domain method,” Micron38(2), 97–103 (2007).
[CrossRef] [PubMed]

Nat. Nanotechnol.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol.5(7), 511–515 (2010).
[CrossRef] [PubMed]

Opt. Express

Philos. Trans. R. Soc. Lond. B Biol. Sci.

A. L. Ingram and A. R. Parker, “A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990),” Philos. Trans. R. Soc. Lond. B Biol. Sci.363(1502), 2465–2480 (2008).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

D. Zhu, S. Kinoshita, D. Cai, and J. B. Cole, “Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: Effects of alternately stacked shelves and ridge density,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.80(5), 051924 (2009).
[CrossRef] [PubMed]

Rep. Prog. Phys.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys.71(7), 076401 (2008).
[CrossRef]

Sensor. Actuat. A-Phys

X. Yang, Z. Peng, H. Zuo, T. Shi, and G. Liao, “Using hierarchy architecture of Morpho butterfly scales for chemical sensing: Experiment and modeling,” Sensor. Actuat. A-Phys167, 367–373 (2011).

Other

Lumerical, “FDTD Solutions,” http://www.lumerical.com/ .

MathWorks, “Matlab,” http://www.mathworks.de/ .

E. D. Palik, Handbook of Optical Constants (Academic Press, 1985).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Overview of the FDTD simulation setup. The green framed part on the left side corresponds to the actual simulation area. The system is periodic in the horizontal direction, continuously repeating the structure. The boundary condition (BC) in vertical direction is absorbing (perfectly matched layer, PML). A source emitting a transverse magnetic wave illuminates the structure from above. The direction of the electric field (E) is highlighted with a green arrow, the direction of incidence with a red arrow. The reflected light is detected at each wavelength. For a detailed explanation of the geometry parameters five additional structures are displayed in the right part of the figure.

Fig. 2
Fig. 2

Transformation of a planar layer system to the final shelf-structure. The simulation region is indicated with a green rectangle. The planar layer system (a) is cut into two halves and a vertical offset “shelf offset” is introduced (b). Afterwards the distance of the structure to the simulation region (corresponding to the parameter “structure distance”) is increased (c) and the shelves are separated in horizontal direction (d). To reach the final “bookshelf structure” the height of the central pillar is increased (e). In (f) the offset of the shelves was varied once more this time for the final structure.

Fig. 3
Fig. 3

The resulting reflectance spectrum of the optimization process for the color blue (a) shows a sharp reflection peak at 445 nm at the same time suppressing the reflection in the yellow color range. In (c) the reflection spectrum at different detector angles of the Morpho rhetenor butterfly for an incidence angle of 0° is shown. The structural parameters of a Morpho rhetenor butterfly where inserted into the FDTD model (b), showing close resemblance to the experimental results (c).

Fig. 4
Fig. 4

Contour plots displaying the reflectance R of parameter variations transforming a planar layer (upper left) system into the final “bookshelf structure” (white vertical line, lower center and lower right)

Fig. 5
Fig. 5

Contour plots displaying the reflectance R for a variation of the parameters “structure distance”, “pillar width”, “shelf width” (upper row) and “shelf distance”, “shelf height” and “shelf y0” (lower row) each time starting with the optimized parameters according to Table 1.

Fig. 6
Fig. 6

Far field calculations (log |E|2 in dependence of the viewing angle θ) at 445 nm for a randomization of a) Δr = 0 nm, b) Δr = ± 10 nm, c) Δr = ± 25 nm of the parameters “shelf height”, “shelf distance” and “shelf y0”

Tables (1)

Tables Icon

Table 1 Structural Parameters for the Optimization of the Color Blue

Metrics