Abstract

We introduce photothermal optical lock-in Optical Coherence Microscopy (poli-OCM), a volumetric imaging technique, which combines the depth sectioning of OCM with the high sensitivity of photothermal microscopy while maintaining the fast acquisition speed inherent to OCM. We report on the detection of single 40 nm gold particles with a 0.5 μm lateral and 2 μm axial resolution over a 50 μm depth of field and the three-dimensional localization of gold colloids within living cells. In combination with intrinsic sample contrast measured with dark-field OCM, poli-OCM offers a versatile platform for functional cell imaging.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Weissleder, U. Mahmood, “Molecular imaging,” Radiology 219, 316–333 (2001).
    [PubMed]
  2. J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, P. Tinnefeld, “A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Angew. Chem. Int. Ed. 47, 5465–5469 (2008).
    [CrossRef]
  3. C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Accounts Chem. Res. 41, 1721–1730 (2008).
    [CrossRef]
  4. M. Celebrano, P. Kukura, A. Renn, V. Sandoghdar, “Single-molecule imaging by optical absorption,” Nat. Photonics 5, 95–98 (2011).
    [CrossRef]
  5. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
    [CrossRef] [PubMed]
  6. D. Boyer, P. Tamarat, A. Maali, B. Lounis, M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
    [CrossRef] [PubMed]
  7. S. Berciaud, L. Cognet, G. Blab, B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93, 257402 (2004).
    [CrossRef]
  8. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2012).
  9. J. Kim, J. Oh, H. W. Kang, M. D. Feldman, T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Laser Surg. Med. 40, 415–421 (2008).
    [CrossRef]
  10. D. Lasne, G. A. Blab, F. De Giorgi, F. Ichas, B. Lounis, L. Cognet, “Label-free optical imaging of mitochondria in live cells,” Opt. Express 15, 14184–14193 (2007).
    [CrossRef] [PubMed]
  11. S. Lu, W. Min, S. Chong, G. R. Holtom, X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96, 113701 (2010).
    [CrossRef]
  12. A. Gaiduk, P. V. Ruijgrok, M. Yorulmaz, M. Orrit, “Detection limits in photothermal microscopy,” Chem. Sci. 1, 343–350 (2010).
    [CrossRef]
  13. A. Fercher, W. Drexler, C. Hitzenberger, T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
    [CrossRef]
  14. J. Izatt, M. Hee, G. Owen, E. Swanson, J. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
    [CrossRef] [PubMed]
  15. A. K. Ellerbee, T. L. Creazzo, J. A. Izatt, “Investigating nanoscale cellular dynamics with cross-sectional spectral domain phase microscopy,” Opt. Express 15, 8115–8124 (2007).
    [CrossRef] [PubMed]
  16. C. Joo, C. L. Evans, T. Stepinac, T. Hasan, J. F. de Boer, “Diffusive and directional intracellular dynamics measured by field-based dynamic light scattering,” Opt. Express 18, 2858–2871 (2010).
    [CrossRef] [PubMed]
  17. M. Villiger, C. Pache, T. Lasser, “Dark-field optical coherence microscopy,” Opt. Lett. 35, 3489–3491 (2010).
    [CrossRef] [PubMed]
  18. J.-A. Conchello, J. W. Lichtman, “Optical sectioning microscopy,” Nat. Meth. 2, 920–931 (2005).
    [CrossRef]
  19. A. S. Paranjape, R. Kuranov, S. Baranov, L. L. Ma, J. W. Villard, T. Wang, K. V. Sokolov, M. D. Feldman, K. P. Johnston, T. E. Milner, “Depth resolved photothermal OCT detection of macrophages in tissue using nanorose,” Biomed. Opt. Express 1, 2–16 (2010).
    [CrossRef]
  20. M. C. Skala, M. J. Crow, A. Wax, J. A. Izatt, “Photothermal Optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8, 3461–3467 (2008).
    [CrossRef] [PubMed]
  21. C. Zhou, T.-H. Tsai, D. C. Adler, H.-C. Lee, D. W. Cohen, A. Mondelblatt, Y. Wang, J. L. Connolly, J. G. Fujimoto, “Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells,” Opt. Lett. 35, 700–702 (2010).
    [CrossRef] [PubMed]
  22. Y. Jung, R. Reif, Y. Zeng, R. K. Wang, “Three-dimensional high-resolution imaging of gold nanorods uptake in sentinel lymph nodes,” Nano Lett. 11, 2938–2943 (2011).
    [CrossRef] [PubMed]
  23. E. Absil, G. Tessier, M. Gross, M. Atlan, N. Warnasooriya, S. Suck, M. Coppey-Moisan, D. Fournier, “Photothermal heterodyne holography of gold nanoparticles,” Opt. Express 18, 780–786 (2010).
    [CrossRef] [PubMed]
  24. D. C. Adler, S.-W. Huang, R. Huber, J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16, 4376–4393 (2008).
    [CrossRef] [PubMed]
  25. J. Izatt, M. Choma, “Theory of optical coherence tomography,” in Optical coherence tomography, W. Drexler, ed. (Springer Verlag, 2008), pp. 47–72.
    [CrossRef]
  26. R. Leitgeb, C. Hitzenberger, A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
    [CrossRef] [PubMed]
  27. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31, 2450–2452 (2006).
    [CrossRef] [PubMed]
  28. M. Villiger, T. Lasser, “Image formation and tomogram reconstruction in optical coherence microscopy,” J. Opt. Soc. Am. A 27, 2216–2228 (2010).
    [CrossRef]
  29. V. Kodach, N. Bosschaart, J. Kalkman, “Concentration dependent scattering coefficients of intralipid measured with OCT,” in “Biomedical Optics,”, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BSuD11.
    [PubMed]
  30. M. Leutenegger, R. Rao, R. A. Leitgeb, T. Lasser, “Fast focus field calculations,” Opt. Express 14, 11277–11291 (2006).
    [CrossRef] [PubMed]
  31. R. Herman, T. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A 8, 932–942 (1991).
    [CrossRef]
  32. D. McGloin, K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005).
    [CrossRef]
  33. S. Boppart, A. Oldenburg, C. Xu, D. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10, 041208 (2005).
    [CrossRef]
  34. A. Oldenburg, F. Toublan, K. Suslick, A. Wei, S. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express 13, 6597–6614 (2005).
    [CrossRef] [PubMed]
  35. V. Crecea, A. L. Oldenburg, X. Liang, T. S. Ralston, S. A. Boppart, “Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials,” Opt. Express 17, 23114–23122 (2009).
    [CrossRef]
  36. M. Wagner, P. Weber, T. Bruns, W. S. L. Strauss, R. Wittig, H. Schneckenburger, “Light dose is a limiting factor to maintain cell viability in fluorescence microscopy and single molecule detection,” Int. J. Mol. Sci. 11, 956–966 (2010).
    [CrossRef] [PubMed]

2011 (2)

M. Celebrano, P. Kukura, A. Renn, V. Sandoghdar, “Single-molecule imaging by optical absorption,” Nat. Photonics 5, 95–98 (2011).
[CrossRef]

Y. Jung, R. Reif, Y. Zeng, R. K. Wang, “Three-dimensional high-resolution imaging of gold nanorods uptake in sentinel lymph nodes,” Nano Lett. 11, 2938–2943 (2011).
[CrossRef] [PubMed]

2010 (9)

M. Wagner, P. Weber, T. Bruns, W. S. L. Strauss, R. Wittig, H. Schneckenburger, “Light dose is a limiting factor to maintain cell viability in fluorescence microscopy and single molecule detection,” Int. J. Mol. Sci. 11, 956–966 (2010).
[CrossRef] [PubMed]

S. Lu, W. Min, S. Chong, G. R. Holtom, X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96, 113701 (2010).
[CrossRef]

A. Gaiduk, P. V. Ruijgrok, M. Yorulmaz, M. Orrit, “Detection limits in photothermal microscopy,” Chem. Sci. 1, 343–350 (2010).
[CrossRef]

E. Absil, G. Tessier, M. Gross, M. Atlan, N. Warnasooriya, S. Suck, M. Coppey-Moisan, D. Fournier, “Photothermal heterodyne holography of gold nanoparticles,” Opt. Express 18, 780–786 (2010).
[CrossRef] [PubMed]

C. Joo, C. L. Evans, T. Stepinac, T. Hasan, J. F. de Boer, “Diffusive and directional intracellular dynamics measured by field-based dynamic light scattering,” Opt. Express 18, 2858–2871 (2010).
[CrossRef] [PubMed]

C. Zhou, T.-H. Tsai, D. C. Adler, H.-C. Lee, D. W. Cohen, A. Mondelblatt, Y. Wang, J. L. Connolly, J. G. Fujimoto, “Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells,” Opt. Lett. 35, 700–702 (2010).
[CrossRef] [PubMed]

A. S. Paranjape, R. Kuranov, S. Baranov, L. L. Ma, J. W. Villard, T. Wang, K. V. Sokolov, M. D. Feldman, K. P. Johnston, T. E. Milner, “Depth resolved photothermal OCT detection of macrophages in tissue using nanorose,” Biomed. Opt. Express 1, 2–16 (2010).
[CrossRef]

M. Villiger, T. Lasser, “Image formation and tomogram reconstruction in optical coherence microscopy,” J. Opt. Soc. Am. A 27, 2216–2228 (2010).
[CrossRef]

M. Villiger, C. Pache, T. Lasser, “Dark-field optical coherence microscopy,” Opt. Lett. 35, 3489–3491 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (6)

D. C. Adler, S.-W. Huang, R. Huber, J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16, 4376–4393 (2008).
[CrossRef] [PubMed]

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[CrossRef] [PubMed]

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, P. Tinnefeld, “A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Angew. Chem. Int. Ed. 47, 5465–5469 (2008).
[CrossRef]

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Accounts Chem. Res. 41, 1721–1730 (2008).
[CrossRef]

M. C. Skala, M. J. Crow, A. Wax, J. A. Izatt, “Photothermal Optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8, 3461–3467 (2008).
[CrossRef] [PubMed]

J. Kim, J. Oh, H. W. Kang, M. D. Feldman, T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Laser Surg. Med. 40, 415–421 (2008).
[CrossRef]

2007 (2)

2006 (2)

2005 (4)

A. Oldenburg, F. Toublan, K. Suslick, A. Wei, S. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express 13, 6597–6614 (2005).
[CrossRef] [PubMed]

J.-A. Conchello, J. W. Lichtman, “Optical sectioning microscopy,” Nat. Meth. 2, 920–931 (2005).
[CrossRef]

D. McGloin, K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005).
[CrossRef]

S. Boppart, A. Oldenburg, C. Xu, D. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10, 041208 (2005).
[CrossRef]

2004 (1)

S. Berciaud, L. Cognet, G. Blab, B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93, 257402 (2004).
[CrossRef]

2003 (2)

A. Fercher, W. Drexler, C. Hitzenberger, T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

R. Leitgeb, C. Hitzenberger, A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef] [PubMed]

2002 (1)

D. Boyer, P. Tamarat, A. Maali, B. Lounis, M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[CrossRef] [PubMed]

2001 (1)

R. Weissleder, U. Mahmood, “Molecular imaging,” Radiology 219, 316–333 (2001).
[PubMed]

1994 (1)

1991 (1)

Absil, E.

Adler, D. C.

Alkilany, A. M.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Accounts Chem. Res. 41, 1721–1730 (2008).
[CrossRef]

Atlan, M.

Bachmann, A. H.

Baranov, S.

Baxter, S. C.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Accounts Chem. Res. 41, 1721–1730 (2008).
[CrossRef]

Berciaud, S.

S. Berciaud, L. Cognet, G. Blab, B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93, 257402 (2004).
[CrossRef]

Blab, G.

S. Berciaud, L. Cognet, G. Blab, B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93, 257402 (2004).
[CrossRef]

Blab, G. A.

Boppart, S.

A. Oldenburg, F. Toublan, K. Suslick, A. Wei, S. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express 13, 6597–6614 (2005).
[CrossRef] [PubMed]

S. Boppart, A. Oldenburg, C. Xu, D. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10, 041208 (2005).
[CrossRef]

Boppart, S. A.

Bosschaart, N.

V. Kodach, N. Bosschaart, J. Kalkman, “Concentration dependent scattering coefficients of intralipid measured with OCT,” in “Biomedical Optics,”, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BSuD11.
[PubMed]

Boyer, D.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[CrossRef] [PubMed]

Bruns, T.

M. Wagner, P. Weber, T. Bruns, W. S. L. Strauss, R. Wittig, H. Schneckenburger, “Light dose is a limiting factor to maintain cell viability in fluorescence microscopy and single molecule detection,” Int. J. Mol. Sci. 11, 956–966 (2010).
[CrossRef] [PubMed]

Cavaliere-Jaricot, S.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[CrossRef] [PubMed]

Celebrano, M.

M. Celebrano, P. Kukura, A. Renn, V. Sandoghdar, “Single-molecule imaging by optical absorption,” Nat. Photonics 5, 95–98 (2011).
[CrossRef]

Choma, M.

J. Izatt, M. Choma, “Theory of optical coherence tomography,” in Optical coherence tomography, W. Drexler, ed. (Springer Verlag, 2008), pp. 47–72.
[CrossRef]

Chong, S.

S. Lu, W. Min, S. Chong, G. R. Holtom, X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96, 113701 (2010).
[CrossRef]

Cognet, L.

D. Lasne, G. A. Blab, F. De Giorgi, F. Ichas, B. Lounis, L. Cognet, “Label-free optical imaging of mitochondria in live cells,” Opt. Express 15, 14184–14193 (2007).
[CrossRef] [PubMed]

S. Berciaud, L. Cognet, G. Blab, B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93, 257402 (2004).
[CrossRef]

Cohen, D. W.

Conchello, J.-A.

J.-A. Conchello, J. W. Lichtman, “Optical sectioning microscopy,” Nat. Meth. 2, 920–931 (2005).
[CrossRef]

Connolly, J. L.

Coppey-Moisan, M.

Creazzo, T. L.

Crecea, V.

Crow, M. J.

M. C. Skala, M. J. Crow, A. Wax, J. A. Izatt, “Photothermal Optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8, 3461–3467 (2008).
[CrossRef] [PubMed]

de Boer, J. F.

De Giorgi, F.

Dholakia, K.

D. McGloin, K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005).
[CrossRef]

Drexler, W.

A. Fercher, W. Drexler, C. Hitzenberger, T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Ellerbee, A. K.

Evans, C. L.

Feldman, M. D.

Fercher, A.

R. Leitgeb, C. Hitzenberger, A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef] [PubMed]

A. Fercher, W. Drexler, C. Hitzenberger, T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Fournier, D.

Fujimoto, J.

Fujimoto, J. G.

Gaiduk, A.

A. Gaiduk, P. V. Ruijgrok, M. Yorulmaz, M. Orrit, “Detection limits in photothermal microscopy,” Chem. Sci. 1, 343–350 (2010).
[CrossRef]

Goldsmith, E. C.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Accounts Chem. Res. 41, 1721–1730 (2008).
[CrossRef]

Gole, A. M.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Accounts Chem. Res. 41, 1721–1730 (2008).
[CrossRef]

Grabolle, M.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[CrossRef] [PubMed]

Gross, M.

Hasan, T.

Hecht, B.

L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2012).

Hee, M.

Heilemann, M.

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, P. Tinnefeld, “A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Angew. Chem. Int. Ed. 47, 5465–5469 (2008).
[CrossRef]

Herman, R.

Hitzenberger, C.

A. Fercher, W. Drexler, C. Hitzenberger, T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

R. Leitgeb, C. Hitzenberger, A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef] [PubMed]

Holtom, G. R.

S. Lu, W. Min, S. Chong, G. R. Holtom, X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96, 113701 (2010).
[CrossRef]

Huang, S.-W.

Huber, R.

Ichas, F.

Izatt, J.

J. Izatt, M. Hee, G. Owen, E. Swanson, J. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
[CrossRef] [PubMed]

J. Izatt, M. Choma, “Theory of optical coherence tomography,” in Optical coherence tomography, W. Drexler, ed. (Springer Verlag, 2008), pp. 47–72.
[CrossRef]

Izatt, J. A.

M. C. Skala, M. J. Crow, A. Wax, J. A. Izatt, “Photothermal Optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8, 3461–3467 (2008).
[CrossRef] [PubMed]

A. K. Ellerbee, T. L. Creazzo, J. A. Izatt, “Investigating nanoscale cellular dynamics with cross-sectional spectral domain phase microscopy,” Opt. Express 15, 8115–8124 (2007).
[CrossRef] [PubMed]

Johnston, K. P.

Joo, C.

Jung, Y.

Y. Jung, R. Reif, Y. Zeng, R. K. Wang, “Three-dimensional high-resolution imaging of gold nanorods uptake in sentinel lymph nodes,” Nano Lett. 11, 2938–2943 (2011).
[CrossRef] [PubMed]

Kalkman, J.

V. Kodach, N. Bosschaart, J. Kalkman, “Concentration dependent scattering coefficients of intralipid measured with OCT,” in “Biomedical Optics,”, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BSuD11.
[PubMed]

Kang, H. W.

J. Kim, J. Oh, H. W. Kang, M. D. Feldman, T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Laser Surg. Med. 40, 415–421 (2008).
[CrossRef]

Kasper, R.

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, P. Tinnefeld, “A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Angew. Chem. Int. Ed. 47, 5465–5469 (2008).
[CrossRef]

Kim, J.

J. Kim, J. Oh, H. W. Kang, M. D. Feldman, T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Laser Surg. Med. 40, 415–421 (2008).
[CrossRef]

Kodach, V.

V. Kodach, N. Bosschaart, J. Kalkman, “Concentration dependent scattering coefficients of intralipid measured with OCT,” in “Biomedical Optics,”, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BSuD11.
[PubMed]

Kukura, P.

M. Celebrano, P. Kukura, A. Renn, V. Sandoghdar, “Single-molecule imaging by optical absorption,” Nat. Photonics 5, 95–98 (2011).
[CrossRef]

Kuranov, R.

Lasne, D.

Lasser, T.

Lee, H.-C.

Leitgeb, R.

Leitgeb, R. A.

Leutenegger, M.

Liang, X.

Lichtman, J. W.

J.-A. Conchello, J. W. Lichtman, “Optical sectioning microscopy,” Nat. Meth. 2, 920–931 (2005).
[CrossRef]

Lounis, B.

D. Lasne, G. A. Blab, F. De Giorgi, F. Ichas, B. Lounis, L. Cognet, “Label-free optical imaging of mitochondria in live cells,” Opt. Express 15, 14184–14193 (2007).
[CrossRef] [PubMed]

S. Berciaud, L. Cognet, G. Blab, B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93, 257402 (2004).
[CrossRef]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[CrossRef] [PubMed]

Lu, S.

S. Lu, W. Min, S. Chong, G. R. Holtom, X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96, 113701 (2010).
[CrossRef]

Ma, L. L.

Maali, A.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[CrossRef] [PubMed]

Mahmood, U.

R. Weissleder, U. Mahmood, “Molecular imaging,” Radiology 219, 316–333 (2001).
[PubMed]

Marks, D.

S. Boppart, A. Oldenburg, C. Xu, D. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10, 041208 (2005).
[CrossRef]

McGloin, D.

D. McGloin, K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005).
[CrossRef]

Milner, T. E.

Min, W.

S. Lu, W. Min, S. Chong, G. R. Holtom, X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96, 113701 (2010).
[CrossRef]

Mondelblatt, A.

Murphy, C. J.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Accounts Chem. Res. 41, 1721–1730 (2008).
[CrossRef]

Nann, T.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[CrossRef] [PubMed]

Nitschke, R.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2012).

Oh, J.

J. Kim, J. Oh, H. W. Kang, M. D. Feldman, T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Laser Surg. Med. 40, 415–421 (2008).
[CrossRef]

Oldenburg, A.

S. Boppart, A. Oldenburg, C. Xu, D. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10, 041208 (2005).
[CrossRef]

A. Oldenburg, F. Toublan, K. Suslick, A. Wei, S. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express 13, 6597–6614 (2005).
[CrossRef] [PubMed]

Oldenburg, A. L.

Orrit, M.

A. Gaiduk, P. V. Ruijgrok, M. Yorulmaz, M. Orrit, “Detection limits in photothermal microscopy,” Chem. Sci. 1, 343–350 (2010).
[CrossRef]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[CrossRef] [PubMed]

Owen, G.

Pache, C.

Paranjape, A. S.

Person, B.

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, P. Tinnefeld, “A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Angew. Chem. Int. Ed. 47, 5465–5469 (2008).
[CrossRef]

Ralston, T. S.

Rao, R.

Reif, R.

Y. Jung, R. Reif, Y. Zeng, R. K. Wang, “Three-dimensional high-resolution imaging of gold nanorods uptake in sentinel lymph nodes,” Nano Lett. 11, 2938–2943 (2011).
[CrossRef] [PubMed]

Renn, A.

M. Celebrano, P. Kukura, A. Renn, V. Sandoghdar, “Single-molecule imaging by optical absorption,” Nat. Photonics 5, 95–98 (2011).
[CrossRef]

Resch-Genger, U.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[CrossRef] [PubMed]

Ruijgrok, P. V.

A. Gaiduk, P. V. Ruijgrok, M. Yorulmaz, M. Orrit, “Detection limits in photothermal microscopy,” Chem. Sci. 1, 343–350 (2010).
[CrossRef]

Sandoghdar, V.

M. Celebrano, P. Kukura, A. Renn, V. Sandoghdar, “Single-molecule imaging by optical absorption,” Nat. Photonics 5, 95–98 (2011).
[CrossRef]

Sauer, M.

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, P. Tinnefeld, “A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Angew. Chem. Int. Ed. 47, 5465–5469 (2008).
[CrossRef]

Schneckenburger, H.

M. Wagner, P. Weber, T. Bruns, W. S. L. Strauss, R. Wittig, H. Schneckenburger, “Light dose is a limiting factor to maintain cell viability in fluorescence microscopy and single molecule detection,” Int. J. Mol. Sci. 11, 956–966 (2010).
[CrossRef] [PubMed]

Sisco, P. N.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Accounts Chem. Res. 41, 1721–1730 (2008).
[CrossRef]

Skala, M. C.

M. C. Skala, M. J. Crow, A. Wax, J. A. Izatt, “Photothermal Optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8, 3461–3467 (2008).
[CrossRef] [PubMed]

Sokolov, K. V.

Steinhauer, C.

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, P. Tinnefeld, “A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Angew. Chem. Int. Ed. 47, 5465–5469 (2008).
[CrossRef]

Steinmann, L.

Stepinac, T.

Stone, J. W.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Accounts Chem. Res. 41, 1721–1730 (2008).
[CrossRef]

Strauss, W. S. L.

M. Wagner, P. Weber, T. Bruns, W. S. L. Strauss, R. Wittig, H. Schneckenburger, “Light dose is a limiting factor to maintain cell viability in fluorescence microscopy and single molecule detection,” Int. J. Mol. Sci. 11, 956–966 (2010).
[CrossRef] [PubMed]

Suck, S.

Suslick, K.

Swanson, E.

Tamarat, P.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[CrossRef] [PubMed]

Tessier, G.

Tinnefeld, P.

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, P. Tinnefeld, “A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Angew. Chem. Int. Ed. 47, 5465–5469 (2008).
[CrossRef]

Toublan, F.

Tsai, T.-H.

Villard, J. W.

Villiger, M.

Vogelsang, J.

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, P. Tinnefeld, “A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Angew. Chem. Int. Ed. 47, 5465–5469 (2008).
[CrossRef]

Wagner, M.

M. Wagner, P. Weber, T. Bruns, W. S. L. Strauss, R. Wittig, H. Schneckenburger, “Light dose is a limiting factor to maintain cell viability in fluorescence microscopy and single molecule detection,” Int. J. Mol. Sci. 11, 956–966 (2010).
[CrossRef] [PubMed]

Wang, R. K.

Y. Jung, R. Reif, Y. Zeng, R. K. Wang, “Three-dimensional high-resolution imaging of gold nanorods uptake in sentinel lymph nodes,” Nano Lett. 11, 2938–2943 (2011).
[CrossRef] [PubMed]

Wang, T.

Wang, Y.

Warnasooriya, N.

Wax, A.

M. C. Skala, M. J. Crow, A. Wax, J. A. Izatt, “Photothermal Optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8, 3461–3467 (2008).
[CrossRef] [PubMed]

Weber, P.

M. Wagner, P. Weber, T. Bruns, W. S. L. Strauss, R. Wittig, H. Schneckenburger, “Light dose is a limiting factor to maintain cell viability in fluorescence microscopy and single molecule detection,” Int. J. Mol. Sci. 11, 956–966 (2010).
[CrossRef] [PubMed]

Wei, A.

Weissleder, R.

R. Weissleder, U. Mahmood, “Molecular imaging,” Radiology 219, 316–333 (2001).
[PubMed]

Wiggins, T.

Wittig, R.

M. Wagner, P. Weber, T. Bruns, W. S. L. Strauss, R. Wittig, H. Schneckenburger, “Light dose is a limiting factor to maintain cell viability in fluorescence microscopy and single molecule detection,” Int. J. Mol. Sci. 11, 956–966 (2010).
[CrossRef] [PubMed]

Xie, X. S.

S. Lu, W. Min, S. Chong, G. R. Holtom, X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96, 113701 (2010).
[CrossRef]

Xu, C.

S. Boppart, A. Oldenburg, C. Xu, D. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10, 041208 (2005).
[CrossRef]

Yorulmaz, M.

A. Gaiduk, P. V. Ruijgrok, M. Yorulmaz, M. Orrit, “Detection limits in photothermal microscopy,” Chem. Sci. 1, 343–350 (2010).
[CrossRef]

Zeng, Y.

Y. Jung, R. Reif, Y. Zeng, R. K. Wang, “Three-dimensional high-resolution imaging of gold nanorods uptake in sentinel lymph nodes,” Nano Lett. 11, 2938–2943 (2011).
[CrossRef] [PubMed]

Zhou, C.

Accounts Chem. Res. (1)

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Accounts Chem. Res. 41, 1721–1730 (2008).
[CrossRef]

Angew. Chem. Int. Ed. (1)

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, P. Tinnefeld, “A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Angew. Chem. Int. Ed. 47, 5465–5469 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

S. Lu, W. Min, S. Chong, G. R. Holtom, X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96, 113701 (2010).
[CrossRef]

Biomed. Opt. Express (1)

Chem. Sci. (1)

A. Gaiduk, P. V. Ruijgrok, M. Yorulmaz, M. Orrit, “Detection limits in photothermal microscopy,” Chem. Sci. 1, 343–350 (2010).
[CrossRef]

Contemp. Phys. (1)

D. McGloin, K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005).
[CrossRef]

Int. J. Mol. Sci. (1)

M. Wagner, P. Weber, T. Bruns, W. S. L. Strauss, R. Wittig, H. Schneckenburger, “Light dose is a limiting factor to maintain cell viability in fluorescence microscopy and single molecule detection,” Int. J. Mol. Sci. 11, 956–966 (2010).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

S. Boppart, A. Oldenburg, C. Xu, D. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10, 041208 (2005).
[CrossRef]

J. Opt. Soc. Am. A (2)

Laser Surg. Med. (1)

J. Kim, J. Oh, H. W. Kang, M. D. Feldman, T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Laser Surg. Med. 40, 415–421 (2008).
[CrossRef]

Nano Lett. (2)

M. C. Skala, M. J. Crow, A. Wax, J. A. Izatt, “Photothermal Optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8, 3461–3467 (2008).
[CrossRef] [PubMed]

Y. Jung, R. Reif, Y. Zeng, R. K. Wang, “Three-dimensional high-resolution imaging of gold nanorods uptake in sentinel lymph nodes,” Nano Lett. 11, 2938–2943 (2011).
[CrossRef] [PubMed]

Nat. Meth. (1)

J.-A. Conchello, J. W. Lichtman, “Optical sectioning microscopy,” Nat. Meth. 2, 920–931 (2005).
[CrossRef]

Nat. Methods (1)

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

M. Celebrano, P. Kukura, A. Renn, V. Sandoghdar, “Single-molecule imaging by optical absorption,” Nat. Photonics 5, 95–98 (2011).
[CrossRef]

Opt. Express (9)

R. Leitgeb, C. Hitzenberger, A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef] [PubMed]

A. Oldenburg, F. Toublan, K. Suslick, A. Wei, S. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express 13, 6597–6614 (2005).
[CrossRef] [PubMed]

M. Leutenegger, R. Rao, R. A. Leitgeb, T. Lasser, “Fast focus field calculations,” Opt. Express 14, 11277–11291 (2006).
[CrossRef] [PubMed]

A. K. Ellerbee, T. L. Creazzo, J. A. Izatt, “Investigating nanoscale cellular dynamics with cross-sectional spectral domain phase microscopy,” Opt. Express 15, 8115–8124 (2007).
[CrossRef] [PubMed]

D. Lasne, G. A. Blab, F. De Giorgi, F. Ichas, B. Lounis, L. Cognet, “Label-free optical imaging of mitochondria in live cells,” Opt. Express 15, 14184–14193 (2007).
[CrossRef] [PubMed]

D. C. Adler, S.-W. Huang, R. Huber, J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16, 4376–4393 (2008).
[CrossRef] [PubMed]

V. Crecea, A. L. Oldenburg, X. Liang, T. S. Ralston, S. A. Boppart, “Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials,” Opt. Express 17, 23114–23122 (2009).
[CrossRef]

E. Absil, G. Tessier, M. Gross, M. Atlan, N. Warnasooriya, S. Suck, M. Coppey-Moisan, D. Fournier, “Photothermal heterodyne holography of gold nanoparticles,” Opt. Express 18, 780–786 (2010).
[CrossRef] [PubMed]

C. Joo, C. L. Evans, T. Stepinac, T. Hasan, J. F. de Boer, “Diffusive and directional intracellular dynamics measured by field-based dynamic light scattering,” Opt. Express 18, 2858–2871 (2010).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

S. Berciaud, L. Cognet, G. Blab, B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93, 257402 (2004).
[CrossRef]

Radiology (1)

R. Weissleder, U. Mahmood, “Molecular imaging,” Radiology 219, 316–333 (2001).
[PubMed]

Rep. Prog. Phys. (1)

A. Fercher, W. Drexler, C. Hitzenberger, T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Science (1)

D. Boyer, P. Tamarat, A. Maali, B. Lounis, M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[CrossRef] [PubMed]

Other (3)

L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2012).

V. Kodach, N. Bosschaart, J. Kalkman, “Concentration dependent scattering coefficients of intralipid measured with OCT,” in “Biomedical Optics,”, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BSuD11.
[PubMed]

J. Izatt, M. Choma, “Theory of optical coherence tomography,” in Optical coherence tomography, W. Drexler, ed. (Springer Verlag, 2008), pp. 47–72.
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (6668 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the poli-OCM setup. The intensity modulation of the heating beam and the phase modulation of the reference beam are performed by acousto-optic modulators (AOM). The interferometer is in a Bessel-Gauss configuration: the Bessel illumination is created by the use of an axicon, whereas the detection remains a Gaussian mode, producing a dark-field effect. (b) Diagram of the electronic synchronization of the reference phase and heating intensity modulations.

Fig. 2
Fig. 2

Demonstration of the contrast selective to gold nanoparticles offered by poli-OCM, as compared to dfOCM. A square lattice of isolated 40 nm gold particles on a glass surface immersed in intravenous perfusion fluid, imaged with dfOCM (a), and poli-OCM (b). (d) and (e) correspond to cross-sections along the lines indicated in (a) and (b); Graph (c) depicts the signal along the lines in (a) and (b), while (f) corresponds to the axial signal along the line highlighted in (d) and (e). Scale bars: 10 μm.

Fig. 3
Fig. 3

In-focus point spread functions of poli-OCM and dfOCM. (a) in-focus en-face view of a single 40 nm gold nanoparticle with dfOCM; (b) poli-OCM, (c, d) B-scans along the line indicated in (a) and (b) and (e) lateral profiles along the same line in comparison with theoretical predictions. Scale bars: 3 μm.

Fig. 4
Fig. 4

Depth of field characterization of poli-OCM and dfOCM, with 6 nm gold particles dispersed in a polymer matrix. (a, c) display maximum amplitude projections of the depth color-coded dfOCM tomogram volume in xy (en-face) and yz (cross-section) planes, (b, d) poli-OCM, (e) presents the maximum signal in each xy section as a function of the depth, to estimate the DOF in dfOCM and poli-OCM. Scale bars: 10 μm.

Fig. 5
Fig. 5

(a) Mean SNR of one 50 nm gold particle in PDMS in function of the integration time τ, (b) the probe power Ps and (c), the heating power Pheat. Error bars show the standard deviation over 10 measurements.

Fig. 6
Fig. 6

Living HeLa cells loaded with 6 nm gold nanoparticles, en-face maximum projections of the depth color coded dfOCM (a) and poli-OCM (b) tomograms; (c, d) insets of (a) and (b); and cross-sections (e, f) along the lines depicted in (c) and (d); (g) 3D rendered superposition of dfOCM (in blue) and poli-OCM (yellow), see Media 1. Pheat =12 mW, scale bars: 50 μm in (a, b) and 10 μm in (c, d, e, f).

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Δ n ( r , t ) = n T P abs 4 π κ r [ 1 + cos ( Ω t r r t h ) e r / r t h ]
E s ( k , t ) = E i n = 1 N r n e i 2 k z n + E i r n p e i k [ 2 z n p + α cos ( Ω t ) ] = E d f + E poli
E r ( k , t ) = E i r r e i 2 k z r e i ( Ω t + φ )
I det ( k , t ) = ( E r + E d f + E poli ) ( E r + E d f + E poli ) * .
I poli ( k , t ) = E r E poli * + E r * E poli = E i 2 r r r n p e i 2 k ( z r z n p ) e i [ Ω t + φ + α k cos ( Ω t ) ] + c . c .
I d f ( k , t ) = E r E d f * + E r * E d f = E i 2 Φ d f ( k ) e i ( Ω t + φ ) + c . c .
< I d f ( k , t ) > = e i φ E i 2 Φ d f ( k ) 0 τ e i Ω t d t + c . c . = 0 .
< I poli ( k , t ) > = e i φ E i 2 r r r n p e i 2 k ( z r z n p ) 0 τ e i [ α k cos ( Ω t ) + Ω t ] d t + c . c .
e i β cos Θ = n = i n J n ( β ) e in Θ .
0 τ e i [ α k cos ( Ω t ) + Ω t ] d t = n = i n J n ( α k ) 0 τ e i [ n Ω t Ω t ] d t
0 τ e i [ n Ω t Ω t ] d t = { τ , n = 1 0 , n 1 .
< I poli ( k , t ) > = i e i φ E i 2 r r r n p τ e i 2 k ( z r z n p ) J 1 ( α k ) + c . c .
= E i 2 r r r n p τ 2 J 1 ( α k ) sin [ 2 k ( z r z n p ) φ ]
E i 2 r r r n p τ α k sin [ 2 k ( z r z n p ) φ ] , if α k < < 1 .
| S ( z n p ) | α τ r n p r r P s P r
σ N 2 τ ( r n p 2 P s + r r 2 P r ) τ r r 2 P r , as r n p 2 P s < < r r 2 P r .
S N R = | S ( z n p ) | 2 σ N 2 ( P heat τ r n p r r P s P r ) 2 τ r r 2 P r = τ r n p 2 P s P heat 2 .
P S F d f O C M = E ill ( r , z ) E det ( r , z )
P S F poli O C M = E ill ( r , z ) E det ( r , z ) I heat ( r , z ) .

Metrics