Abstract

We use theoretical models to compare the receiver signal to noise ratio (SNR) vs. average rate of detected signal photons for an integrated path differential absorption (IPDA) lidar using coherent detection with continuous wave (CW) lasers and direct detection with sine-wave and pulse modulations. The results show the coherent IPDA lidar has high receiver gain and narrow bandwidth to overcome the effects of detector circuit noise and background light, but the actual receiver performance can be limited by the coherent mixing efficiency, speckle and other factors. For direct detection, using sine-wave modulation allows the use of a low peak power laser transmitter and synchronous detection. The pulse modulation technique requires higher laser peak powers but is more efficient than sine-wave modulation in terms of average detected signal photon rate required to achieve a given receiver SNR. We also conducted experiments for the direct detection cases and the results agreed well with theory.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Measures, Laser Remote Sensing, Fundamentals and Applications (Krieger, 1992).
  2. M. S. Shumate, R. T. Menzies, W. B. Grant, and D. S. McDougal, “Laser absorption spectrometer: remote measurement of tropospheric ozone,” Appl. Opt. 20(4), 545–553 (1981).
    [CrossRef] [PubMed]
  3. G. N. Pearson and C. G. Collier, “A pulsed coherent CO2 lidar for boundary-layer meteorology,” Q. J. Roy Meteor Soc. A 125, 2703–2721 (1999).
  4. G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2.,” Appl. Opt. 43(26), 5092–5099 (2004).
    [CrossRef] [PubMed]
  5. F. Gibert, P. H. Flamant, D. Bruneau, and C. Loth, “Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer,” Appl. Opt. 45(18), 4448–4458 (2006).
    [CrossRef] [PubMed]
  6. F. Gibert, P. H. Flamant, J. Cuesta, and D. Bruneau, “Vertical 2-um heterodyne differential absorption Lidar measurements of mean CO2 mixing ratio in the troposphere,” J. Atmos. Ocean. Technol. 25(9), 1477–1497 (2008).
    [CrossRef]
  7. G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection,” Appl. Opt. 50(14), 2098–2111 (2011).
    [CrossRef] [PubMed]
  8. J. Pruitt, M. E. Dobbs, M. Gypson, B. R. Neff, and W. E. Sharp, “High-speed CW lidar retrieval using spectral lock-in algorithm,” Proc. SPIE 5154, 138–145 (2003).
    [CrossRef]
  9. M. Dobbs, J. Pruitt, N. Blume, D. Gregory, and W. Sharp, “Matched filter enhanced fiber-based lidar for earth, weather and exploration,” 6th Annual NASA Earth Science Technology Conference (ESTF), 27–29 June, College Park, MD, Paper B4P3 (2006).
  10. S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Development of 1.6 microm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing,” Opt. Lett. 34(10), 1513–1515 (2009).
    [CrossRef] [PubMed]
  11. J. Caron, Y. Durand, J. Bezy, and R. Meynart, “Performance modeling for A-SCOPE: a space borne lidar measuring atmospheric CO2,” Proc. SPIE 7479, 74790E (2009).
    [CrossRef]
  12. J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B Chem. Phys. Meterol. 62(5), 770–783 (2010).
    [CrossRef]
  13. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty ed. (Springer-Verlag, 1975).
  14. C. S. Gardner, “Target signatures for laser altimeters: an analysis,” Appl. Opt. 21(3), 448–453 (1982).
    [CrossRef] [PubMed]
  15. P. H. Flamant, R. T. Menzies, and M. J. Kavaya, “Evidence for speckle effects on pulsed CO2 lidar signal returns from remote targets,” Appl. Opt. 23(9), 1412–1417 (1984).
    [CrossRef] [PubMed]
  16. R. M. Gagliardi and S. Karp, Optical Communications, 2nd ed, (John Wiley and Sons, 1995).
  17. R. N. McDonough and A. D. Whalen, Detection of Signal in Noise, 2nd ed. (Academic Press, 1995)

2011 (1)

2010 (1)

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B Chem. Phys. Meterol. 62(5), 770–783 (2010).
[CrossRef]

2009 (2)

2008 (1)

F. Gibert, P. H. Flamant, J. Cuesta, and D. Bruneau, “Vertical 2-um heterodyne differential absorption Lidar measurements of mean CO2 mixing ratio in the troposphere,” J. Atmos. Ocean. Technol. 25(9), 1477–1497 (2008).
[CrossRef]

2006 (1)

2004 (1)

2003 (1)

J. Pruitt, M. E. Dobbs, M. Gypson, B. R. Neff, and W. E. Sharp, “High-speed CW lidar retrieval using spectral lock-in algorithm,” Proc. SPIE 5154, 138–145 (2003).
[CrossRef]

1999 (1)

G. N. Pearson and C. G. Collier, “A pulsed coherent CO2 lidar for boundary-layer meteorology,” Q. J. Roy Meteor Soc. A 125, 2703–2721 (1999).

1984 (1)

1982 (1)

1981 (1)

Abshire, J. B.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B Chem. Phys. Meterol. 62(5), 770–783 (2010).
[CrossRef]

Allan, G. R.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B Chem. Phys. Meterol. 62(5), 770–783 (2010).
[CrossRef]

Amzajerdian, F.

Barnes, B. W.

Beyon, J. Y.

Bezy, J.

J. Caron, Y. Durand, J. Bezy, and R. Meynart, “Performance modeling for A-SCOPE: a space borne lidar measuring atmospheric CO2,” Proc. SPIE 7479, 74790E (2009).
[CrossRef]

Biraud, S.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B Chem. Phys. Meterol. 62(5), 770–783 (2010).
[CrossRef]

Browell, E. V.

Bruneau, D.

F. Gibert, P. H. Flamant, J. Cuesta, and D. Bruneau, “Vertical 2-um heterodyne differential absorption Lidar measurements of mean CO2 mixing ratio in the troposphere,” J. Atmos. Ocean. Technol. 25(9), 1477–1497 (2008).
[CrossRef]

F. Gibert, P. H. Flamant, D. Bruneau, and C. Loth, “Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer,” Appl. Opt. 45(18), 4448–4458 (2006).
[CrossRef] [PubMed]

Caron, J.

J. Caron, Y. Durand, J. Bezy, and R. Meynart, “Performance modeling for A-SCOPE: a space borne lidar measuring atmospheric CO2,” Proc. SPIE 7479, 74790E (2009).
[CrossRef]

Choi, Y.

Christensen, L. E.

Collier, C. G.

G. N. Pearson and C. G. Collier, “A pulsed coherent CO2 lidar for boundary-layer meteorology,” Q. J. Roy Meteor Soc. A 125, 2703–2721 (1999).

Cuesta, J.

F. Gibert, P. H. Flamant, J. Cuesta, and D. Bruneau, “Vertical 2-um heterodyne differential absorption Lidar measurements of mean CO2 mixing ratio in the troposphere,” J. Atmos. Ocean. Technol. 25(9), 1477–1497 (2008).
[CrossRef]

Davis, R. E.

Dobbs, M. E.

J. Pruitt, M. E. Dobbs, M. Gypson, B. R. Neff, and W. E. Sharp, “High-speed CW lidar retrieval using spectral lock-in algorithm,” Proc. SPIE 5154, 138–145 (2003).
[CrossRef]

Durand, Y.

J. Caron, Y. Durand, J. Bezy, and R. Meynart, “Performance modeling for A-SCOPE: a space borne lidar measuring atmospheric CO2,” Proc. SPIE 7479, 74790E (2009).
[CrossRef]

Flamant, P. H.

Gardner, C. S.

Gibert, F.

F. Gibert, P. H. Flamant, J. Cuesta, and D. Bruneau, “Vertical 2-um heterodyne differential absorption Lidar measurements of mean CO2 mixing ratio in the troposphere,” J. Atmos. Ocean. Technol. 25(9), 1477–1497 (2008).
[CrossRef]

F. Gibert, P. H. Flamant, D. Bruneau, and C. Loth, “Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer,” Appl. Opt. 45(18), 4448–4458 (2006).
[CrossRef] [PubMed]

Grant, W. B.

Gypson, M.

J. Pruitt, M. E. Dobbs, M. Gypson, B. R. Neff, and W. E. Sharp, “High-speed CW lidar retrieval using spectral lock-in algorithm,” Proc. SPIE 5154, 138–145 (2003).
[CrossRef]

Hasselbrack, W. E.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B Chem. Phys. Meterol. 62(5), 770–783 (2010).
[CrossRef]

Hirano, Y.

Imaki, M.

Ismail, S.

Jacob, J.

Kameyama, S.

Kavaya, M. J.

Kawa, S. R.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B Chem. Phys. Meterol. 62(5), 770–783 (2010).
[CrossRef]

Kawakami, S.

Koch, G. J.

Loth, C.

Mao, J.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B Chem. Phys. Meterol. 62(5), 770–783 (2010).
[CrossRef]

McDougal, D. S.

Menzies, R. T.

Meynart, R.

J. Caron, Y. Durand, J. Bezy, and R. Meynart, “Performance modeling for A-SCOPE: a space borne lidar measuring atmospheric CO2,” Proc. SPIE 7479, 74790E (2009).
[CrossRef]

Nakajima, M.

Neff, B. R.

J. Pruitt, M. E. Dobbs, M. Gypson, B. R. Neff, and W. E. Sharp, “High-speed CW lidar retrieval using spectral lock-in algorithm,” Proc. SPIE 5154, 138–145 (2003).
[CrossRef]

Pearson, G. N.

G. N. Pearson and C. G. Collier, “A pulsed coherent CO2 lidar for boundary-layer meteorology,” Q. J. Roy Meteor Soc. A 125, 2703–2721 (1999).

Petros, M.

Phillips, M. W.

Pruitt, J.

J. Pruitt, M. E. Dobbs, M. Gypson, B. R. Neff, and W. E. Sharp, “High-speed CW lidar retrieval using spectral lock-in algorithm,” Proc. SPIE 5154, 138–145 (2003).
[CrossRef]

Riris, H.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B Chem. Phys. Meterol. 62(5), 770–783 (2010).
[CrossRef]

Sakaizawa, D.

Sharp, W. E.

J. Pruitt, M. E. Dobbs, M. Gypson, B. R. Neff, and W. E. Sharp, “High-speed CW lidar retrieval using spectral lock-in algorithm,” Proc. SPIE 5154, 138–145 (2003).
[CrossRef]

Shumate, M. S.

Singh, U. N.

Spiers, G. D.

Sun, X.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B Chem. Phys. Meterol. 62(5), 770–783 (2010).
[CrossRef]

Ueno, S.

Vay, S.

Weaver, C. J.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B Chem. Phys. Meterol. 62(5), 770–783 (2010).
[CrossRef]

Yu, J.

Appl. Opt. (6)

J. Atmos. Ocean. Technol. (1)

F. Gibert, P. H. Flamant, J. Cuesta, and D. Bruneau, “Vertical 2-um heterodyne differential absorption Lidar measurements of mean CO2 mixing ratio in the troposphere,” J. Atmos. Ocean. Technol. 25(9), 1477–1497 (2008).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (2)

J. Caron, Y. Durand, J. Bezy, and R. Meynart, “Performance modeling for A-SCOPE: a space borne lidar measuring atmospheric CO2,” Proc. SPIE 7479, 74790E (2009).
[CrossRef]

J. Pruitt, M. E. Dobbs, M. Gypson, B. R. Neff, and W. E. Sharp, “High-speed CW lidar retrieval using spectral lock-in algorithm,” Proc. SPIE 5154, 138–145 (2003).
[CrossRef]

Q. J. Roy Meteor Soc. A (1)

G. N. Pearson and C. G. Collier, “A pulsed coherent CO2 lidar for boundary-layer meteorology,” Q. J. Roy Meteor Soc. A 125, 2703–2721 (1999).

Tellus B Chem. Phys. Meterol. (1)

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B Chem. Phys. Meterol. 62(5), 770–783 (2010).
[CrossRef]

Other (5)

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty ed. (Springer-Verlag, 1975).

M. Dobbs, J. Pruitt, N. Blume, D. Gregory, and W. Sharp, “Matched filter enhanced fiber-based lidar for earth, weather and exploration,” 6th Annual NASA Earth Science Technology Conference (ESTF), 27–29 June, College Park, MD, Paper B4P3 (2006).

R. M. Measures, Laser Remote Sensing, Fundamentals and Applications (Krieger, 1992).

R. M. Gagliardi and S. Karp, Optical Communications, 2nd ed, (John Wiley and Sons, 1995).

R. N. McDonough and A. D. Whalen, Detection of Signal in Noise, 2nd ed. (Academic Press, 1995)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Block diagram of a IPDA lidar transmitter. For a coherent IPDA lidar, the laser can be modulated in phase, frequency, amplitude, or not modulated in the case of a CW lidar. For a direct detection lock-in type IPDA lidar, the lasers are intensity modulated with sine-waves of known frequencies. For a direction detection pulsed IPDA lidar, the lasers are intensity modulated with a pulse train.

Fig. 2
Fig. 2

Block diagram of a coherent IPDA lidar receiver. The local oscillator laser can be obtained by splitting a small portion of the transmitted laser light. The sinusoidal signal amplitude estimator shown in the dotted box is an example following the conventional RF approach. The same function may be carried out using different techniques, such as FFT followed by a peak-detection as described in [7].

Fig. 3
Fig. 3

Receiver block diagram of a direct detection sine-wave modulation IPDA lidar.

Fig. 4
Fig. 4

Laser output waveforms of sine-wave modulation and pulsed modulation IPDA lidar.

Fig. 5
Fig. 5

Receiver block diagram for a direct detection photon counting pulsed modulation IPDA lidar.

Fig. 6
Fig. 6

Receiver SNR vs. the average detected number of signal photons from the laboratory tests of the sine-wave modulation with lock-in detection technique and the pulsed modulation and direct detection technique under detector dark noise only and 3e6/s detected background photons. The solid and dashed curves are the theoretical predictions based on the equations given in Section 3. The experimental data agreed well with the theory except at high signal photon count rate, likely due to the onset of receiver saturation. The system parameters of the experiments and the theoretical analysis are given in Table 1.

Tables (1)

Tables Icon

Table 1 Experiment Parameters

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

s(t)= s(t) +ε(t)
s(t) = A on cos( ω on t+ ϕ on )
A on =2 η det hf η c q P sig 2 P LO ,
N n =2[ η det hf q 2 P LO +( η det hf q P LO )( η det hf q N bg )+ N cir ].
u a (t)={ [ A on cos( ω on t+ ϕ on )+ε(t) ]cos( ω on t ) } h LPF (t) = A on 2 cos( ϕ on )+[ ε(t)cos( ω on t ) ] h LPF (t)
u b (t)={ [ A on cos( ω on t+ ϕ on )+ε(t) ]sin( ω on t ) } h LPF (t) = A on 2 sin( ϕ on )+[ ε(t)sin( ω on t ) ] h LPF (t).
v coh (t)= u a 2 (t)+ u b 2 (t) = ( A on 2 ) 2 +2 A on 2 [ ε(t)( cos( ω on t )cos( ϕ on )sin( ω on t )sin( ϕ on ) ) ] h LPF (t) + [ ( ε(t)cos( ω on t ) ) h LPF (t) ] 2 + [ ( ε(t)sin( ω on t ) ) h LPF (t) ] 2 .
μ coh = v coh (t) = ( A on 2 ) 2 + [ ( ε(t)cos( ω on t ) ) h LPF (t) ] 2 + [ ( ε(t)sin( ω on t ) ) h LPF (t) ] 2
ε(t)= ε c (t)cos( ω on t )+ ε s (t)sin( ω on t )
N c ( ω )= N s ( ω )=[ N( ω ω on )+N( ω+ ω on ) ].
σ c 2 = [ ( ε(t)cos( ω on t ) ) h LPF (t) ] 2 = [ ( ( ε c (t)cos( ω on t )+ ε s (t)sin( ω on t ) )cos( ω on t ) ) h LPF (t) ] 2 = [ 1 2 ε c (t) h LPF (t) ] 2 = ( 1 2 ) 2 1 2π N c (ω) | H LPF (ω) | 2 dω .
μ coh = ( A on 2 ) 2 + N n B LPF = ( A on 2 ) 2 ( 1+ N n B LPF ( A on /2 ) 2 ).
σ coh 2 = ( v coh (t) v coh (t) ) 2 A on 2 [ ( ε(t)cos( ω on t+ ϕ on ) ) h LPF (t) ] 2 = A on 2 N n B LPF 2 .
SN R coh μ coh σ coh A on 2 2 N n B LPF .
μ coh = ( A on 2 ) 2 ( 1+ 1 2SN R coh 2 ).
B LPF 1 T s
SN R coh = η c η det hf P sig T s 2 2 1+( η det hf q N bg ) .
SN R coh = η c 2 n sig 2
n sig η det hf P sig T s .
S L = P sig 2 { [ 1+cos( ω on t ) ]+[ 1+cos( ω off t ) ] }
A on = η det hf q P sig 2
N n =2[ η det hf q 2 ( P sig + N bg Δλ )+ N cir ].
v d (t)= u a 2 (t)+ u b 2 (t) A on 2 { 1+ 1 2 1 ( A on 2 ) 2 [ A on [ ε(t)cos( ω on t+ ϕ on ) ] h LPF (t) + [ ( ε(t)cos( ω on t ) ) h LPF (t) ] 2 + [ ( ε(t)sin( ω on t ) ) h LPF (t) ] 2 ] }.
μ sin = v d (t) = A on 2 ( 1+ 2 N n B LPF A 2 on ) A on 2 .
σ sin 2 = [ v d (t) v d (t) ] 2 [ ( ε(t)cos( ω on t+ ϕ on ) ) h LPF (t) ] 2 = N n B LPF 2 .
SN R sin = μ sin σ sin = 1 2 η det hf q P sig 2 2[ η det hf q 2 ( P sig + N bg Δλ )+ N cir ] 1 2 T s = n sig 4 n sig +( n bg + n dard + n cir ) T s
μ pul =( f pul T s 2 )( η det hf P sig 1 f pul )= 1 2 η det hf P sig T s = 1 2 n sig .
σ pul = ( f pul T s 2 )[ η det hf P sig f pul +( η det hf P bg Δλ+ I dark q + N cir q 2 ) τ pw ] = 1 2 [ n sig +( n bg + n dard + n cir ) T s α duty ]
SN R pul = μ pul σ pul = n sig 2 n sig +( n bg + n dard + n cir ) T s α duty .
SN R sin SN R coh 2 2 and SN R pul SN R coh 2
SN R pul SN R sin =2 2 n sig +( n bg + n dard + n cir ) T s n sig +( n bg + n dard + n cir ) T s α duty .

Metrics