Abstract

The paper outlines the optimization of plasmonic nanostructures in order to improve their sensing properties such as their sensitivity and their ease of manipulation. The key point in this study is the optimization of the localized surface plasmon resonance (LSPR) properties essential to the sensor characteristics, and more especially for surface-enhanced Raman scattering (SERS). Two aspects were considered in order to optimize the sensing performance: apolar plasmonic nanostructures for non polarization dependent detection and improvements of SERS sensitivity by using a molecular adhesion layer between gold nanostructures and glass. Both issues could be generalized to all plasmon-resonance-based sensing applications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.)16(19), 1685–1706 (2004).
    [CrossRef]
  2. W. Fritzsche and T. A. Taton, “Metal nanoparticles as labels for heterogeneous chip-based DNA detection,” Nanotechnology14(12), R63–R73 (2003).
    [CrossRef] [PubMed]
  3. S. Nie and S. R. Emory, “Probing Single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
    [CrossRef] [PubMed]
  4. A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc.124(35), 10596–10604 (2002).
    [CrossRef] [PubMed]
  5. H. X. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(33 Pt B), 4318–4324 (2000).
    [CrossRef] [PubMed]
  6. K. Kneipp, W. Yang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
    [CrossRef]
  7. Z. Q. Tian, B. Ren, and D. Y. Wu, “Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures,” J. Phys. Chem. B106(37), 9463–9483 (2002).
    [CrossRef]
  8. F. Neubrech, A. Garcia-Etxarri, D. Weber, J. Bochterle, H. Shen, M. Lamy de la Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96(21), 213111 (2010).
    [CrossRef]
  9. A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B.247(8), 2071–2074 (2010).
    [CrossRef]
  10. C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence: potential applications in HTS,” Comb. Chem. High Throughput Screen.6(2), 109–117 (2003).
    [CrossRef] [PubMed]
  11. J. A. Sánchez-Gil, J. V. García-Ramos, and E. R. Méndez, “Electromagnetic mechanism in surface-enhanced Raman scattering from Gaussian-correlated randomly rough metal substrates,” Opt. Express10(17), 879–886 (2002).
    [PubMed]
  12. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
    [CrossRef]
  13. E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique,” J. Phys. Chem. B110(4), 1944–1948 (2006).
    [CrossRef] [PubMed]
  14. E. C. Le Ru and P. G. Etchegoin, “Single-molecule surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem.63(1), 65–87 (2012).
    [CrossRef] [PubMed]
  15. H. X. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett.83(21), 4357–4360 (1999).
    [CrossRef]
  16. E. M. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
    [CrossRef] [PubMed]
  17. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005).
    [CrossRef] [PubMed]
  18. P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett.487(4-6), 153–164 (2010).
    [CrossRef]
  19. K.- Yoshida, T. Itoh, H. Tamaru, V. Biju, M. Ishikawa, and Y. Ozaki, “Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures,” Phys. Rev. B81(11), 115406 (2010).
    [CrossRef]
  20. J. Grand, M. de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B72(3), 033407 (2005).
    [CrossRef]
  21. H. V. Chu, Y. J. Liu, Y. W. Huang, and Y. P. Zhao, “A high sensitive fiber SERS probe based on silver nanorod arrays,” Opt. Express15(19), 12230–12239 (2007).
    [CrossRef] [PubMed]
  22. C. L. Haynes and R. P. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B107(30), 7426–7433 (2003).
    [CrossRef]
  23. A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B109(22), 11279–11285 (2005).
    [CrossRef] [PubMed]
  24. N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett.82(18), 3095–3097 (2003).
    [CrossRef]
  25. N. Guillot, H. Shen, B. Frémaux, O. Peron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett.97(2), 023113 (2010).
    [CrossRef]
  26. N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
    [CrossRef]
  27. L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett.78(6), 802–804 (2001).
    [CrossRef]
  28. J. P. Schmidt, S. E. Cross, and S. K. Buratto, “Surface-enhanced Raman scattering from ordered Ag nanocluster arrays,” J. Chem. Phys.121(21), 10657–10659 (2004).
    [CrossRef] [PubMed]
  29. L. Billot, M. Lamy de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett.422(4-6), 303–307 (2006).
    [CrossRef]
  30. J. Janata, Principles of Chemical Sensors (Plenum Press, New York, New York, 1989)
  31. M. Sackmann, S. Bom, T. Balster, and A. Materny, “Nanostructured gold surfaces as reproducible substrates for surface-enhanced Raman spectroscopy,” J. Raman Spectrosc.38(3), 277–282 (2007).
    [CrossRef]
  32. Y. B. Zheng, B. K. Juluri, X. L. Mao, T. R. Walker, and T. J. Huang, “Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays,” J. Appl. Phys.103(1), 014308–014317 (2008).
    [CrossRef]
  33. H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. J. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano3(7), 2043–2048 (2009).
    [CrossRef] [PubMed]
  34. M. Lamy de la Chapelle, N. Guillot, B. Frémaux, H. Shen, and T. Toury, “Novel apolar plasmonic nanostructures with extended optical tunability for sensing applications,” Plasmonics (2012), doi:.
    [CrossRef]
  35. J. Jerphagnon, D. Chemla, and R. Bonneville, “The description of the physical properties of condensed matter using irreducible tensors,” Adv. Phys.27(4), 609–650 (1978).
    [CrossRef]
  36. J. Zyss, “Molecular engineering implication of rotational invariance in quadratic nonlinear optics: From dipolar to octupolar molecules and materials,” J. Chem. Phys.98(9), 6583–6600 (1993).
    [CrossRef]
  37. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80(19), 4249–4252 (1998).
    [CrossRef]
  38. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007)
  39. S. H. Park, J.-H. Im, J.-W. Im, B.-H. Chun, and J.-H. Kim, “Adsorption kinetics of Au and Ag nanoparticles on functionalized glass surfaces,” Microchem. J.63(1), 71–91 (1999).
    [CrossRef]
  40. C. A. Goss, D. H. Charych, and M. Majda, “Application of 3-Mercaptopropyl)trimethoxysliane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates,” Anal. Chem.63(1), 85–88 (1991).
    [CrossRef]
  41. X. J. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: influence of adhesion layers,” Plasmonics4(1), 37–50 (2009).
    [CrossRef]
  42. T. C. Tisone and J. Drobek, “Diffusion in thin film Ti-Au, Ti-Pd, and Ti-Pt couples,” J. Vac. Sci. Technol.9(1), 271–275 (1972).
    [CrossRef]

2012 (2)

E. C. Le Ru and P. G. Etchegoin, “Single-molecule surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem.63(1), 65–87 (2012).
[CrossRef] [PubMed]

M. Lamy de la Chapelle, N. Guillot, B. Frémaux, H. Shen, and T. Toury, “Novel apolar plasmonic nanostructures with extended optical tunability for sensing applications,” Plasmonics (2012), doi:.
[CrossRef]

2010 (5)

N. Guillot, H. Shen, B. Frémaux, O. Peron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett.97(2), 023113 (2010).
[CrossRef]

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett.487(4-6), 153–164 (2010).
[CrossRef]

K.- Yoshida, T. Itoh, H. Tamaru, V. Biju, M. Ishikawa, and Y. Ozaki, “Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures,” Phys. Rev. B81(11), 115406 (2010).
[CrossRef]

F. Neubrech, A. Garcia-Etxarri, D. Weber, J. Bochterle, H. Shen, M. Lamy de la Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96(21), 213111 (2010).
[CrossRef]

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B.247(8), 2071–2074 (2010).
[CrossRef]

2009 (2)

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. J. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano3(7), 2043–2048 (2009).
[CrossRef] [PubMed]

X. J. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: influence of adhesion layers,” Plasmonics4(1), 37–50 (2009).
[CrossRef]

2008 (1)

Y. B. Zheng, B. K. Juluri, X. L. Mao, T. R. Walker, and T. J. Huang, “Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays,” J. Appl. Phys.103(1), 014308–014317 (2008).
[CrossRef]

2007 (2)

M. Sackmann, S. Bom, T. Balster, and A. Materny, “Nanostructured gold surfaces as reproducible substrates for surface-enhanced Raman spectroscopy,” J. Raman Spectrosc.38(3), 277–282 (2007).
[CrossRef]

H. V. Chu, Y. J. Liu, Y. W. Huang, and Y. P. Zhao, “A high sensitive fiber SERS probe based on silver nanorod arrays,” Opt. Express15(19), 12230–12239 (2007).
[CrossRef] [PubMed]

2006 (2)

L. Billot, M. Lamy de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett.422(4-6), 303–307 (2006).
[CrossRef]

E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique,” J. Phys. Chem. B110(4), 1944–1948 (2006).
[CrossRef] [PubMed]

2005 (3)

J. Grand, M. de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B72(3), 033407 (2005).
[CrossRef]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

2004 (2)

J. P. Schmidt, S. E. Cross, and S. K. Buratto, “Surface-enhanced Raman scattering from ordered Ag nanocluster arrays,” J. Chem. Phys.121(21), 10657–10659 (2004).
[CrossRef] [PubMed]

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.)16(19), 1685–1706 (2004).
[CrossRef]

2003 (5)

W. Fritzsche and T. A. Taton, “Metal nanoparticles as labels for heterogeneous chip-based DNA detection,” Nanotechnology14(12), R63–R73 (2003).
[CrossRef] [PubMed]

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence: potential applications in HTS,” Comb. Chem. High Throughput Screen.6(2), 109–117 (2003).
[CrossRef] [PubMed]

C. L. Haynes and R. P. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B107(30), 7426–7433 (2003).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett.82(18), 3095–3097 (2003).
[CrossRef]

E. M. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

2002 (4)

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

Z. Q. Tian, B. Ren, and D. Y. Wu, “Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures,” J. Phys. Chem. B106(37), 9463–9483 (2002).
[CrossRef]

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc.124(35), 10596–10604 (2002).
[CrossRef] [PubMed]

J. A. Sánchez-Gil, J. V. García-Ramos, and E. R. Méndez, “Electromagnetic mechanism in surface-enhanced Raman scattering from Gaussian-correlated randomly rough metal substrates,” Opt. Express10(17), 879–886 (2002).
[PubMed]

2001 (1)

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett.78(6), 802–804 (2001).
[CrossRef]

2000 (1)

H. X. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(33 Pt B), 4318–4324 (2000).
[CrossRef] [PubMed]

1999 (2)

H. X. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett.83(21), 4357–4360 (1999).
[CrossRef]

S. H. Park, J.-H. Im, J.-W. Im, B.-H. Chun, and J.-H. Kim, “Adsorption kinetics of Au and Ag nanoparticles on functionalized glass surfaces,” Microchem. J.63(1), 71–91 (1999).
[CrossRef]

1998 (1)

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80(19), 4249–4252 (1998).
[CrossRef]

1997 (3)

K. Kneipp, W. Yang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

S. Nie and S. R. Emory, “Probing Single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

1993 (1)

J. Zyss, “Molecular engineering implication of rotational invariance in quadratic nonlinear optics: From dipolar to octupolar molecules and materials,” J. Chem. Phys.98(9), 6583–6600 (1993).
[CrossRef]

1991 (1)

C. A. Goss, D. H. Charych, and M. Majda, “Application of 3-Mercaptopropyl)trimethoxysliane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates,” Anal. Chem.63(1), 85–88 (1991).
[CrossRef]

1978 (1)

J. Jerphagnon, D. Chemla, and R. Bonneville, “The description of the physical properties of condensed matter using irreducible tensors,” Adv. Phys.27(4), 609–650 (1978).
[CrossRef]

1972 (1)

T. C. Tisone and J. Drobek, “Diffusion in thin film Ti-Au, Ti-Pd, and Ti-Pt couples,” J. Vac. Sci. Technol.9(1), 271–275 (1972).
[CrossRef]

Adam, P.-M.

L. Billot, M. Lamy de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett.422(4-6), 303–307 (2006).
[CrossRef]

J. Grand, M. de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B72(3), 033407 (2005).
[CrossRef]

Aizpurua, J.

F. Neubrech, A. Garcia-Etxarri, D. Weber, J. Bochterle, H. Shen, M. Lamy de la Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96(21), 213111 (2010).
[CrossRef]

H. X. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(33 Pt B), 4318–4324 (2000).
[CrossRef] [PubMed]

Aouani, H.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. J. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano3(7), 2043–2048 (2009).
[CrossRef] [PubMed]

Apell, P.

H. X. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(33 Pt B), 4318–4324 (2000).
[CrossRef] [PubMed]

Aubard, J.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett.82(18), 3095–3097 (2003).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

Aussenegg, F. R.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett.82(18), 3095–3097 (2003).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

Balster, T.

M. Sackmann, S. Bom, T. Balster, and A. Materny, “Nanostructured gold surfaces as reproducible substrates for surface-enhanced Raman spectroscopy,” J. Raman Spectrosc.38(3), 277–282 (2007).
[CrossRef]

Barchiesi, D.

L. Billot, M. Lamy de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett.422(4-6), 303–307 (2006).
[CrossRef]

Bijeon, J.-L.

L. Billot, M. Lamy de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett.422(4-6), 303–307 (2006).
[CrossRef]

J. Grand, M. de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B72(3), 033407 (2005).
[CrossRef]

Biju, V.

K.- Yoshida, T. Itoh, H. Tamaru, V. Biju, M. Ishikawa, and Y. Ozaki, “Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures,” Phys. Rev. B81(11), 115406 (2010).
[CrossRef]

Billot, L.

L. Billot, M. Lamy de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett.422(4-6), 303–307 (2006).
[CrossRef]

Bjerneld, E. J.

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett.78(6), 802–804 (2001).
[CrossRef]

H. X. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett.83(21), 4357–4360 (1999).
[CrossRef]

Blair, S.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. J. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano3(7), 2043–2048 (2009).
[CrossRef] [PubMed]

X. J. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: influence of adhesion layers,” Plasmonics4(1), 37–50 (2009).
[CrossRef]

Bochterle, J.

F. Neubrech, A. Garcia-Etxarri, D. Weber, J. Bochterle, H. Shen, M. Lamy de la Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96(21), 213111 (2010).
[CrossRef]

Bom, S.

M. Sackmann, S. Bom, T. Balster, and A. Materny, “Nanostructured gold surfaces as reproducible substrates for surface-enhanced Raman spectroscopy,” J. Raman Spectrosc.38(3), 277–282 (2007).
[CrossRef]

Bonneville, R.

J. Jerphagnon, D. Chemla, and R. Bonneville, “The description of the physical properties of condensed matter using irreducible tensors,” Adv. Phys.27(4), 609–650 (1978).
[CrossRef]

Börjesson, L.

H. X. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett.83(21), 4357–4360 (1999).
[CrossRef]

Bryant, G. W.

F. Neubrech, A. Garcia-Etxarri, D. Weber, J. Bochterle, H. Shen, M. Lamy de la Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96(21), 213111 (2010).
[CrossRef]

Buratto, S. K.

J. P. Schmidt, S. E. Cross, and S. K. Buratto, “Surface-enhanced Raman scattering from ordered Ag nanocluster arrays,” J. Chem. Phys.121(21), 10657–10659 (2004).
[CrossRef] [PubMed]

Charych, D. H.

C. A. Goss, D. H. Charych, and M. Majda, “Application of 3-Mercaptopropyl)trimethoxysliane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates,” Anal. Chem.63(1), 85–88 (1991).
[CrossRef]

Chemla, D.

J. Jerphagnon, D. Chemla, and R. Bonneville, “The description of the physical properties of condensed matter using irreducible tensors,” Adv. Phys.27(4), 609–650 (1978).
[CrossRef]

Chu, H. V.

Chun, B.-H.

S. H. Park, J.-H. Im, J.-W. Im, B.-H. Chun, and J.-H. Kim, “Adsorption kinetics of Au and Ag nanoparticles on functionalized glass surfaces,” Microchem. J.63(1), 71–91 (1999).
[CrossRef]

Cross, S. E.

J. P. Schmidt, S. E. Cross, and S. K. Buratto, “Surface-enhanced Raman scattering from ordered Ag nanocluster arrays,” J. Chem. Phys.121(21), 10657–10659 (2004).
[CrossRef] [PubMed]

Dasari, R.

K. Kneipp, W. Yang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

de la Chapelle, M.

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B.247(8), 2071–2074 (2010).
[CrossRef]

J. Grand, M. de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B72(3), 033407 (2005).
[CrossRef]

Devaux, E.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. J. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano3(7), 2043–2048 (2009).
[CrossRef] [PubMed]

Dieringer, J. A.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

Drobek, J.

T. C. Tisone and J. Drobek, “Diffusion in thin film Ti-Au, Ti-Pd, and Ti-Pt couples,” J. Vac. Sci. Technol.9(1), 271–275 (1972).
[CrossRef]

Ebbesen, T. W.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. J. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano3(7), 2043–2048 (2009).
[CrossRef] [PubMed]

El-Sayed, M. A.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett.487(4-6), 153–164 (2010).
[CrossRef]

Emory, S. R.

S. Nie and S. R. Emory, “Probing Single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Etchegoin, P. G.

E. C. Le Ru and P. G. Etchegoin, “Single-molecule surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem.63(1), 65–87 (2012).
[CrossRef] [PubMed]

E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique,” J. Phys. Chem. B110(4), 1944–1948 (2006).
[CrossRef] [PubMed]

Feld, M.

K. Kneipp, W. Yang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Feldmann, J.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80(19), 4249–4252 (1998).
[CrossRef]

Félidj, N.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett.82(18), 3095–3097 (2003).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

Fendler, J. H.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.)16(19), 1685–1706 (2004).
[CrossRef]

Frémaux, B.

M. Lamy de la Chapelle, N. Guillot, B. Frémaux, H. Shen, and T. Toury, “Novel apolar plasmonic nanostructures with extended optical tunability for sensing applications,” Plasmonics (2012), doi:.
[CrossRef]

N. Guillot, H. Shen, B. Frémaux, O. Peron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett.97(2), 023113 (2010).
[CrossRef]

Fritzsche, W.

W. Fritzsche and T. A. Taton, “Metal nanoparticles as labels for heterogeneous chip-based DNA detection,” Nanotechnology14(12), R63–R73 (2003).
[CrossRef] [PubMed]

Garcia-Etxarri, A.

F. Neubrech, A. Garcia-Etxarri, D. Weber, J. Bochterle, H. Shen, M. Lamy de la Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96(21), 213111 (2010).
[CrossRef]

García-Ramos, J. V.

Geddes, C. D.

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence: potential applications in HTS,” Comb. Chem. High Throughput Screen.6(2), 109–117 (2003).
[CrossRef] [PubMed]

Gérard, D.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. J. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano3(7), 2043–2048 (2009).
[CrossRef] [PubMed]

Goeckeritz, J.

X. J. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: influence of adhesion layers,” Plasmonics4(1), 37–50 (2009).
[CrossRef]

Goss, C. A.

C. A. Goss, D. H. Charych, and M. Majda, “Application of 3-Mercaptopropyl)trimethoxysliane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates,” Anal. Chem.63(1), 85–88 (1991).
[CrossRef]

Grady, N. K.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Grand, J.

J. Grand, M. de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B72(3), 033407 (2005).
[CrossRef]

Grimault, A.-S.

L. Billot, M. Lamy de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett.422(4-6), 303–307 (2006).
[CrossRef]

Grosse, S.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80(19), 4249–4252 (1998).
[CrossRef]

Gryczynski, I.

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence: potential applications in HTS,” Comb. Chem. High Throughput Screen.6(2), 109–117 (2003).
[CrossRef] [PubMed]

Gryczynski, Z.

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence: potential applications in HTS,” Comb. Chem. High Throughput Screen.6(2), 109–117 (2003).
[CrossRef] [PubMed]

Guillot, N.

M. Lamy de la Chapelle, N. Guillot, B. Frémaux, H. Shen, and T. Toury, “Novel apolar plasmonic nanostructures with extended optical tunability for sensing applications,” Plasmonics (2012), doi:.
[CrossRef]

N. Guillot, H. Shen, B. Frémaux, O. Peron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett.97(2), 023113 (2010).
[CrossRef]

Gunnarsson, L.

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett.78(6), 802–804 (2001).
[CrossRef]

Haes, A. J.

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc.124(35), 10596–10604 (2002).
[CrossRef] [PubMed]

Halas, N. J.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

E. M. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Haynes, C. L.

C. L. Haynes and R. P. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B107(30), 7426–7433 (2003).
[CrossRef]

Hohenau, A.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett.82(18), 3095–3097 (2003).
[CrossRef]

Hollars, C. W.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Hong, S.

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B.247(8), 2071–2074 (2010).
[CrossRef]

Huang, T. J.

Y. B. Zheng, B. K. Juluri, X. L. Mao, T. R. Walker, and T. J. Huang, “Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays,” J. Appl. Phys.103(1), 014308–014317 (2008).
[CrossRef]

Huang, Y. W.

Huser, T. R.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Hutter, E.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.)16(19), 1685–1706 (2004).
[CrossRef]

Im, J.-H.

S. H. Park, J.-H. Im, J.-W. Im, B.-H. Chun, and J.-H. Kim, “Adsorption kinetics of Au and Ag nanoparticles on functionalized glass surfaces,” Microchem. J.63(1), 71–91 (1999).
[CrossRef]

Im, J.-W.

S. H. Park, J.-H. Im, J.-W. Im, B.-H. Chun, and J.-H. Kim, “Adsorption kinetics of Au and Ag nanoparticles on functionalized glass surfaces,” Microchem. J.63(1), 71–91 (1999).
[CrossRef]

Ishikawa, M.

K.- Yoshida, T. Itoh, H. Tamaru, V. Biju, M. Ishikawa, and Y. Ozaki, “Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures,” Phys. Rev. B81(11), 115406 (2010).
[CrossRef]

Itoh, T.

K.- Yoshida, T. Itoh, H. Tamaru, V. Biju, M. Ishikawa, and Y. Ozaki, “Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures,” Phys. Rev. B81(11), 115406 (2010).
[CrossRef]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

K. Kneipp, W. Yang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Jackson, J. B.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Jain, P. K.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett.487(4-6), 153–164 (2010).
[CrossRef]

Jerphagnon, J.

J. Jerphagnon, D. Chemla, and R. Bonneville, “The description of the physical properties of condensed matter using irreducible tensors,” Adv. Phys.27(4), 609–650 (1978).
[CrossRef]

Jiao, X. J.

X. J. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: influence of adhesion layers,” Plasmonics4(1), 37–50 (2009).
[CrossRef]

Juluri, B. K.

Y. B. Zheng, B. K. Juluri, X. L. Mao, T. R. Walker, and T. J. Huang, “Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays,” J. Appl. Phys.103(1), 014308–014317 (2008).
[CrossRef]

Käll, M.

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett.78(6), 802–804 (2001).
[CrossRef]

H. X. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(33 Pt B), 4318–4324 (2000).
[CrossRef] [PubMed]

H. X. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett.83(21), 4357–4360 (1999).
[CrossRef]

Kasemo, B.

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett.78(6), 802–804 (2001).
[CrossRef]

Kim, J.-H.

S. H. Park, J.-H. Im, J.-W. Im, B.-H. Chun, and J.-H. Kim, “Adsorption kinetics of Au and Ag nanoparticles on functionalized glass surfaces,” Microchem. J.63(1), 71–91 (1999).
[CrossRef]

Klar, T.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80(19), 4249–4252 (1998).
[CrossRef]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

K. Kneipp, W. Yang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, W. Yang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Krenn, J. R.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett.82(18), 3095–3097 (2003).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

Lakowicz, J. R.

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence: potential applications in HTS,” Comb. Chem. High Throughput Screen.6(2), 109–117 (2003).
[CrossRef] [PubMed]

Lamprecht, B.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

Lamy de la Chapelle, M.

M. Lamy de la Chapelle, N. Guillot, B. Frémaux, H. Shen, and T. Toury, “Novel apolar plasmonic nanostructures with extended optical tunability for sensing applications,” Plasmonics (2012), doi:.
[CrossRef]

N. Guillot, H. Shen, B. Frémaux, O. Peron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett.97(2), 023113 (2010).
[CrossRef]

F. Neubrech, A. Garcia-Etxarri, D. Weber, J. Bochterle, H. Shen, M. Lamy de la Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96(21), 213111 (2010).
[CrossRef]

L. Billot, M. Lamy de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett.422(4-6), 303–307 (2006).
[CrossRef]

Lane, S. M.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Le Ru, E. C.

E. C. Le Ru and P. G. Etchegoin, “Single-molecule surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem.63(1), 65–87 (2012).
[CrossRef] [PubMed]

E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique,” J. Phys. Chem. B110(4), 1944–1948 (2006).
[CrossRef] [PubMed]

Leitner, A.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett.82(18), 3095–3097 (2003).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

Lévi, G.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett.82(18), 3095–3097 (2003).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

Liu, Y. J.

Mahdavi, F.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. J. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano3(7), 2043–2048 (2009).
[CrossRef] [PubMed]

Majda, M.

C. A. Goss, D. H. Charych, and M. Majda, “Application of 3-Mercaptopropyl)trimethoxysliane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates,” Anal. Chem.63(1), 85–88 (1991).
[CrossRef]

Malicka, J.

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence: potential applications in HTS,” Comb. Chem. High Throughput Screen.6(2), 109–117 (2003).
[CrossRef] [PubMed]

Mao, X. L.

Y. B. Zheng, B. K. Juluri, X. L. Mao, T. R. Walker, and T. J. Huang, “Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays,” J. Appl. Phys.103(1), 014308–014317 (2008).
[CrossRef]

Materny, A.

M. Sackmann, S. Bom, T. Balster, and A. Materny, “Nanostructured gold surfaces as reproducible substrates for surface-enhanced Raman spectroscopy,” J. Raman Spectrosc.38(3), 277–282 (2007).
[CrossRef]

McFarland, A. D.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

Méndez, E. R.

Meyer, M.

E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique,” J. Phys. Chem. B110(4), 1944–1948 (2006).
[CrossRef] [PubMed]

Neubrech, F.

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B.247(8), 2071–2074 (2010).
[CrossRef]

F. Neubrech, A. Garcia-Etxarri, D. Weber, J. Bochterle, H. Shen, M. Lamy de la Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96(21), 213111 (2010).
[CrossRef]

Nie, S.

S. Nie and S. R. Emory, “Probing Single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Nordlander, P.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

E. M. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Oldham, M.

X. J. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: influence of adhesion layers,” Plasmonics4(1), 37–50 (2009).
[CrossRef]

Oubre, C.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Ozaki, Y.

K.- Yoshida, T. Itoh, H. Tamaru, V. Biju, M. Ishikawa, and Y. Ozaki, “Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures,” Phys. Rev. B81(11), 115406 (2010).
[CrossRef]

Park, S. H.

S. H. Park, J.-H. Im, J.-W. Im, B.-H. Chun, and J.-H. Kim, “Adsorption kinetics of Au and Ag nanoparticles on functionalized glass surfaces,” Microchem. J.63(1), 71–91 (1999).
[CrossRef]

Perelman, L.

K. Kneipp, W. Yang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Perner, M.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80(19), 4249–4252 (1998).
[CrossRef]

Peron, O.

N. Guillot, H. Shen, B. Frémaux, O. Peron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett.97(2), 023113 (2010).
[CrossRef]

Petronis, S.

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett.78(6), 802–804 (2001).
[CrossRef]

Prodan, E. M.

E. M. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Pucci, A.

F. Neubrech, A. Garcia-Etxarri, D. Weber, J. Bochterle, H. Shen, M. Lamy de la Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96(21), 213111 (2010).
[CrossRef]

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B.247(8), 2071–2074 (2010).
[CrossRef]

Radloff, C.

E. M. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Ren, B.

Z. Q. Tian, B. Ren, and D. Y. Wu, “Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures,” J. Phys. Chem. B106(37), 9463–9483 (2002).
[CrossRef]

Rigneault, H.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. J. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano3(7), 2043–2048 (2009).
[CrossRef] [PubMed]

Rinnert, E.

N. Guillot, H. Shen, B. Frémaux, O. Peron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett.97(2), 023113 (2010).
[CrossRef]

Royer, P.

L. Billot, M. Lamy de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett.422(4-6), 303–307 (2006).
[CrossRef]

J. Grand, M. de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B72(3), 033407 (2005).
[CrossRef]

Sackmann, M.

M. Sackmann, S. Bom, T. Balster, and A. Materny, “Nanostructured gold surfaces as reproducible substrates for surface-enhanced Raman spectroscopy,” J. Raman Spectrosc.38(3), 277–282 (2007).
[CrossRef]

Salerno, M.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

Sánchez-Gil, J. A.

Schider, G.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett.82(18), 3095–3097 (2003).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

Schmidt, J. P.

J. P. Schmidt, S. E. Cross, and S. K. Buratto, “Surface-enhanced Raman scattering from ordered Ag nanocluster arrays,” J. Chem. Phys.121(21), 10657–10659 (2004).
[CrossRef] [PubMed]

Shen, H.

M. Lamy de la Chapelle, N. Guillot, B. Frémaux, H. Shen, and T. Toury, “Novel apolar plasmonic nanostructures with extended optical tunability for sensing applications,” Plasmonics (2012), doi:.
[CrossRef]

N. Guillot, H. Shen, B. Frémaux, O. Peron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett.97(2), 023113 (2010).
[CrossRef]

F. Neubrech, A. Garcia-Etxarri, D. Weber, J. Bochterle, H. Shen, M. Lamy de la Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96(21), 213111 (2010).
[CrossRef]

Spirkl, W.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80(19), 4249–4252 (1998).
[CrossRef]

Talley, C. E.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Tamaru, H.

K.- Yoshida, T. Itoh, H. Tamaru, V. Biju, M. Ishikawa, and Y. Ozaki, “Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures,” Phys. Rev. B81(11), 115406 (2010).
[CrossRef]

Taton, T. A.

W. Fritzsche and T. A. Taton, “Metal nanoparticles as labels for heterogeneous chip-based DNA detection,” Nanotechnology14(12), R63–R73 (2003).
[CrossRef] [PubMed]

Tian, Z. Q.

Z. Q. Tian, B. Ren, and D. Y. Wu, “Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures,” J. Phys. Chem. B106(37), 9463–9483 (2002).
[CrossRef]

Tisone, T. C.

T. C. Tisone and J. Drobek, “Diffusion in thin film Ti-Au, Ti-Pd, and Ti-Pt couples,” J. Vac. Sci. Technol.9(1), 271–275 (1972).
[CrossRef]

Toury, T.

M. Lamy de la Chapelle, N. Guillot, B. Frémaux, H. Shen, and T. Toury, “Novel apolar plasmonic nanostructures with extended optical tunability for sensing applications,” Plasmonics (2012), doi:.
[CrossRef]

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B.247(8), 2071–2074 (2010).
[CrossRef]

N. Guillot, H. Shen, B. Frémaux, O. Peron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett.97(2), 023113 (2010).
[CrossRef]

Van Duyne, R. P.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

C. L. Haynes and R. P. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B107(30), 7426–7433 (2003).
[CrossRef]

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc.124(35), 10596–10604 (2002).
[CrossRef] [PubMed]

Vial, A.

L. Billot, M. Lamy de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett.422(4-6), 303–307 (2006).
[CrossRef]

J. Grand, M. de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B72(3), 033407 (2005).
[CrossRef]

von Plessen, G.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80(19), 4249–4252 (1998).
[CrossRef]

Walker, T. R.

Y. B. Zheng, B. K. Juluri, X. L. Mao, T. R. Walker, and T. J. Huang, “Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays,” J. Appl. Phys.103(1), 014308–014317 (2008).
[CrossRef]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Weber, D.

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B.247(8), 2071–2074 (2010).
[CrossRef]

F. Neubrech, A. Garcia-Etxarri, D. Weber, J. Bochterle, H. Shen, M. Lamy de la Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96(21), 213111 (2010).
[CrossRef]

Wenger, J.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. J. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano3(7), 2043–2048 (2009).
[CrossRef] [PubMed]

Wu, D. Y.

Z. Q. Tian, B. Ren, and D. Y. Wu, “Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures,” J. Phys. Chem. B106(37), 9463–9483 (2002).
[CrossRef]

Xu, H.

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett.78(6), 802–804 (2001).
[CrossRef]

Xu, H. X.

H. X. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(33 Pt B), 4318–4324 (2000).
[CrossRef] [PubMed]

H. X. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett.83(21), 4357–4360 (1999).
[CrossRef]

Xu, T. J.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. J. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano3(7), 2043–2048 (2009).
[CrossRef] [PubMed]

Yang, W.

K. Kneipp, W. Yang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Yoshida, K.-

K.- Yoshida, T. Itoh, H. Tamaru, V. Biju, M. Ishikawa, and Y. Ozaki, “Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures,” Phys. Rev. B81(11), 115406 (2010).
[CrossRef]

Young, M. A.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

Zhao, Y. P.

Zheng, Y. B.

Y. B. Zheng, B. K. Juluri, X. L. Mao, T. R. Walker, and T. J. Huang, “Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays,” J. Appl. Phys.103(1), 014308–014317 (2008).
[CrossRef]

Zyss, J.

J. Zyss, “Molecular engineering implication of rotational invariance in quadratic nonlinear optics: From dipolar to octupolar molecules and materials,” J. Chem. Phys.98(9), 6583–6600 (1993).
[CrossRef]

ACS Nano (1)

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. J. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano3(7), 2043–2048 (2009).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.)16(19), 1685–1706 (2004).
[CrossRef]

Adv. Phys. (1)

J. Jerphagnon, D. Chemla, and R. Bonneville, “The description of the physical properties of condensed matter using irreducible tensors,” Adv. Phys.27(4), 609–650 (1978).
[CrossRef]

Anal. Chem. (1)

C. A. Goss, D. H. Charych, and M. Majda, “Application of 3-Mercaptopropyl)trimethoxysliane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates,” Anal. Chem.63(1), 85–88 (1991).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

E. C. Le Ru and P. G. Etchegoin, “Single-molecule surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem.63(1), 65–87 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

F. Neubrech, A. Garcia-Etxarri, D. Weber, J. Bochterle, H. Shen, M. Lamy de la Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96(21), 213111 (2010).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett.82(18), 3095–3097 (2003).
[CrossRef]

N. Guillot, H. Shen, B. Frémaux, O. Peron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett.97(2), 023113 (2010).
[CrossRef]

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett.78(6), 802–804 (2001).
[CrossRef]

Chem. Phys. Lett. (2)

L. Billot, M. Lamy de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett.422(4-6), 303–307 (2006).
[CrossRef]

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett.487(4-6), 153–164 (2010).
[CrossRef]

Comb. Chem. High Throughput Screen. (1)

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence: potential applications in HTS,” Comb. Chem. High Throughput Screen.6(2), 109–117 (2003).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc.124(35), 10596–10604 (2002).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

Y. B. Zheng, B. K. Juluri, X. L. Mao, T. R. Walker, and T. J. Huang, “Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays,” J. Appl. Phys.103(1), 014308–014317 (2008).
[CrossRef]

J. Chem. Phys. (2)

J. Zyss, “Molecular engineering implication of rotational invariance in quadratic nonlinear optics: From dipolar to octupolar molecules and materials,” J. Chem. Phys.98(9), 6583–6600 (1993).
[CrossRef]

J. P. Schmidt, S. E. Cross, and S. K. Buratto, “Surface-enhanced Raman scattering from ordered Ag nanocluster arrays,” J. Chem. Phys.121(21), 10657–10659 (2004).
[CrossRef] [PubMed]

J. Phys. Chem. B (4)

C. L. Haynes and R. P. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B107(30), 7426–7433 (2003).
[CrossRef]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

Z. Q. Tian, B. Ren, and D. Y. Wu, “Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures,” J. Phys. Chem. B106(37), 9463–9483 (2002).
[CrossRef]

E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique,” J. Phys. Chem. B110(4), 1944–1948 (2006).
[CrossRef] [PubMed]

J. Raman Spectrosc. (1)

M. Sackmann, S. Bom, T. Balster, and A. Materny, “Nanostructured gold surfaces as reproducible substrates for surface-enhanced Raman spectroscopy,” J. Raman Spectrosc.38(3), 277–282 (2007).
[CrossRef]

J. Vac. Sci. Technol. (1)

T. C. Tisone and J. Drobek, “Diffusion in thin film Ti-Au, Ti-Pd, and Ti-Pt couples,” J. Vac. Sci. Technol.9(1), 271–275 (1972).
[CrossRef]

Microchem. J. (1)

S. H. Park, J.-H. Im, J.-W. Im, B.-H. Chun, and J.-H. Kim, “Adsorption kinetics of Au and Ag nanoparticles on functionalized glass surfaces,” Microchem. J.63(1), 71–91 (1999).
[CrossRef]

Nano Lett. (1)

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Nanotechnology (1)

W. Fritzsche and T. A. Taton, “Metal nanoparticles as labels for heterogeneous chip-based DNA detection,” Nanotechnology14(12), R63–R73 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rev. B (3)

K.- Yoshida, T. Itoh, H. Tamaru, V. Biju, M. Ishikawa, and Y. Ozaki, “Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures,” Phys. Rev. B81(11), 115406 (2010).
[CrossRef]

J. Grand, M. de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B72(3), 033407 (2005).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

H. X. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(33 Pt B), 4318–4324 (2000).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

K. Kneipp, W. Yang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

H. X. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett.83(21), 4357–4360 (1999).
[CrossRef]

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80(19), 4249–4252 (1998).
[CrossRef]

Phys. Status Solidi B. (1)

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B.247(8), 2071–2074 (2010).
[CrossRef]

Plasmonics (2)

M. Lamy de la Chapelle, N. Guillot, B. Frémaux, H. Shen, and T. Toury, “Novel apolar plasmonic nanostructures with extended optical tunability for sensing applications,” Plasmonics (2012), doi:.
[CrossRef]

X. J. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: influence of adhesion layers,” Plasmonics4(1), 37–50 (2009).
[CrossRef]

Science (2)

S. Nie and S. R. Emory, “Probing Single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

E. M. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Other (2)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007)

J. Janata, Principles of Chemical Sensors (Plenum Press, New York, New York, 1989)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

SEM images of nano-star (a) nano-triangle (b) nano-cylinder (c) and nano-ellipse (d); (e) schematic of the experimental setup for extinction and SERS measurements

Fig. 2
Fig. 2

Extinction spectra of gold nano-cylinders (diameter 260 nm, height 50 nm) (red line) and gold nano-stars (side length 150 nm, height 50 nm) (green line) (a): each has a resonance peak at 790 nm, the values of the Full Width at Half Maximum (FWHM) are 110 nm and 83 nm respectively for nano-cylinders (red arrow) and nano-stars (green arrow); Extinction spectra of gold nano-stars (b) and nano-cylinders (c) (the same particles in (a)) with perpendicular polarization directions.

Fig. 3
Fig. 3

LSPR position (a) and intensity (b) versus incidence polarization angle for nano-stars (length 150 nm, height 50 nm) and nano-ellipses. Nano-ellipses (length 80 nm, width 40 nm, height 50 nm) have two LSPR position (one for short axis, another one for the long axis). Only their strength depends on polarization. Nanostars have only one major LSPR.

Fig. 4
Fig. 4

SERS intensity (normalized by average value) versus incidence polarization angle for nano-stars (a) and nano-triangles (b) (length: 100 nm, height, 80 nm), standard deviations around the average value are indicated in the figure (σ = 21% for nano-star and σ = 15.7% for nano-triangle). The SERS intensity was estimated by calculating the area of the 1200 cm−1 BPE band fitted by a lorentzian curves.

Fig. 5
Fig. 5

Schematic presentation of EBL fabrication process with MPTMS: the MPTMS is deposited on glass surface just after the glass treatment; then, parameters for a common lift-off process of EBL are slightly adjusted.

Fig. 6
Fig. 6

Extinction spectra of gold nanocylinders (diameter of 100 nm) with chromium (black) and MPTMS (blue) as adhesion layers: the values of the Full Width at Half Maximum (FWHM) are 116 nm and 81 nm respectively for the nano-cylinders with chromium and MPTMS as adhesion layer. The inset was the evolution of FWHM of the extinction spectra for different nano-cylinder diameters measured with chromium (black squares) and MPTMS (circles) as adhesion layers, the fits are represented to guide the eyes.

Fig. 7
Fig. 7

The reverse dependence of the 4th power of line width 1/Γ4 (FWHM) on the nano-cylinder diameters. The continuous and dotted lines are just guide to the eyes.

Fig. 8
Fig. 8

SERS measurements of BPE on Au nano-cylinder of 130 nm with Cr (black) and MPTMS (blue) as adhesive layer. For both spectra, the baseline has been substracted to compare their relative intensity.

Fig. 9
Fig. 9

Evolution of SERS intensity versus LSPR position of Au nano-cylinders (square, with Cr; circle, with MPTMS), the dashed lines are Lorentz fitting of the measured data.

Tables (1)

Tables Icon

Table 1 LSPR property of nanostructures under polarization rotation for 4 different shapes: LSPR position with its maximum variation between square brackets; standard deviation of the LSPR intensity with the ratio of the maximum to the minimum LSPR intensity between square brackets

Metrics