Abstract

In this paper, a new type of optical waveguide based on potassium tantalate niobate (KTN) electro-optic crystal is presented. The guiding property of the optical waveguide can be quickly (on the order of nanosecond) tuned and controlled by the applied external electric field, which can be useful for many applications such as broadband ultrafast optical modulators, variable optical attenuators, and dynamic gain equalizers.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. S. Chen, J. E. Geusic, S. K. Kurtz, J. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys.37(1), 388–398 (1966).
    [CrossRef]
  2. J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett.4(8), 141–143 (1964).
    [CrossRef]
  3. T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1-xNbxO3,” NTT Tech. Rev.5, 1–8 (2007).
  4. S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, “Low-driving -voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides,” Jap. J. Appl. Phys.43(8B), 5862–5866 (2004).
    [CrossRef]
  5. K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1-xNbxO3,” Appl. Phys. Lett.89(13), 131115 (2006).
    [CrossRef]
  6. J. Miyazu, Y. Sasaki, K. Naganuma, T. Imai, S. Toyoda, T. Yanagawa, M. Sasaura, S. Yagi, and K. Fujiura, “400 kHz beam scanning using KTa1-xNbxO3,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2010), paper CTuG5.
  7. A. Yariv and P. Yeh, Optical waves in crystals (John Wiley & Sons, 1984), Chap. 7.

2007 (1)

T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1-xNbxO3,” NTT Tech. Rev.5, 1–8 (2007).

2006 (1)

K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1-xNbxO3,” Appl. Phys. Lett.89(13), 131115 (2006).
[CrossRef]

2004 (1)

S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, “Low-driving -voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides,” Jap. J. Appl. Phys.43(8B), 5862–5866 (2004).
[CrossRef]

1966 (1)

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys.37(1), 388–398 (1966).
[CrossRef]

1964 (1)

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett.4(8), 141–143 (1964).
[CrossRef]

Chen, F. S.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys.37(1), 388–398 (1966).
[CrossRef]

Enbutsu, K.

S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, “Low-driving -voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides,” Jap. J. Appl. Phys.43(8B), 5862–5866 (2004).
[CrossRef]

Fujiura, K.

T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1-xNbxO3,” NTT Tech. Rev.5, 1–8 (2007).

K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1-xNbxO3,” Appl. Phys. Lett.89(13), 131115 (2006).
[CrossRef]

S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, “Low-driving -voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides,” Jap. J. Appl. Phys.43(8B), 5862–5866 (2004).
[CrossRef]

Fushimi, H.

S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, “Low-driving -voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides,” Jap. J. Appl. Phys.43(8B), 5862–5866 (2004).
[CrossRef]

Geusic, J. E.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys.37(1), 388–398 (1966).
[CrossRef]

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett.4(8), 141–143 (1964).
[CrossRef]

Imai, T.

T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1-xNbxO3,” NTT Tech. Rev.5, 1–8 (2007).

S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, “Low-driving -voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides,” Jap. J. Appl. Phys.43(8B), 5862–5866 (2004).
[CrossRef]

Kurihara, T.

S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, “Low-driving -voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides,” Jap. J. Appl. Phys.43(8B), 5862–5866 (2004).
[CrossRef]

Kurtz, S. K.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys.37(1), 388–398 (1966).
[CrossRef]

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett.4(8), 141–143 (1964).
[CrossRef]

Manabe, K.

S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, “Low-driving -voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides,” Jap. J. Appl. Phys.43(8B), 5862–5866 (2004).
[CrossRef]

Matsuura, T.

S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, “Low-driving -voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides,” Jap. J. Appl. Phys.43(8B), 5862–5866 (2004).
[CrossRef]

Miyazu, J.

K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1-xNbxO3,” Appl. Phys. Lett.89(13), 131115 (2006).
[CrossRef]

Nakamura, K.

T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1-xNbxO3,” NTT Tech. Rev.5, 1–8 (2007).

K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1-xNbxO3,” Appl. Phys. Lett.89(13), 131115 (2006).
[CrossRef]

Sasaura, M.

T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1-xNbxO3,” NTT Tech. Rev.5, 1–8 (2007).

K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1-xNbxO3,” Appl. Phys. Lett.89(13), 131115 (2006).
[CrossRef]

S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, “Low-driving -voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides,” Jap. J. Appl. Phys.43(8B), 5862–5866 (2004).
[CrossRef]

Shimokozono, M.

S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, “Low-driving -voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides,” Jap. J. Appl. Phys.43(8B), 5862–5866 (2004).
[CrossRef]

Skinner, J.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys.37(1), 388–398 (1966).
[CrossRef]

Tate, A.

S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, “Low-driving -voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides,” Jap. J. Appl. Phys.43(8B), 5862–5866 (2004).
[CrossRef]

Toyoda, S.

S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, “Low-driving -voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides,” Jap. J. Appl. Phys.43(8B), 5862–5866 (2004).
[CrossRef]

Van Uitert, L. G.

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett.4(8), 141–143 (1964).
[CrossRef]

Wemple, S. H.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys.37(1), 388–398 (1966).
[CrossRef]

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett.4(8), 141–143 (1964).
[CrossRef]

Appl. Phys. Lett. (2)

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett.4(8), 141–143 (1964).
[CrossRef]

K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1-xNbxO3,” Appl. Phys. Lett.89(13), 131115 (2006).
[CrossRef]

J. Appl. Phys. (1)

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys.37(1), 388–398 (1966).
[CrossRef]

Jap. J. Appl. Phys. (1)

S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, “Low-driving -voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides,” Jap. J. Appl. Phys.43(8B), 5862–5866 (2004).
[CrossRef]

NTT Tech. Rev. (1)

T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1-xNbxO3,” NTT Tech. Rev.5, 1–8 (2007).

Other (2)

J. Miyazu, Y. Sasaki, K. Naganuma, T. Imai, S. Toyoda, T. Yanagawa, M. Sasaura, S. Yagi, and K. Fujiura, “400 kHz beam scanning using KTa1-xNbxO3,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2010), paper CTuG5.

A. Yariv and P. Yeh, Optical waves in crystals (John Wiley & Sons, 1984), Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

A schematic illustration of coordinate rotation.

Fig. 2
Fig. 2

A schematic illustration of the ellipse of indices in both x-y and x'-y' coordinates when the field is applied in the space.

Fig. 3
Fig. 3

An illustration of configuration of dynamic optical waveguide based on KTN electro optical crystal.

Fig. 4
Fig. 4

The simulated electric field distribution is plotted in x-y cross-sectional plane when the bias voltage is 100 V. The black arrows and the rainbow color, respectively, indicate the proportional field vector, E (x,y) , and the field magnitude in x-component, E x (x,y) (V/m).

Fig. 5
Fig. 5

(a) the electric field of x-component, E x (0,y) , in the central region, and (b) the induced refractive index changes, Δ n x,y (0,y) for the x and y polarized light beams, respectively.

Fig. 6
Fig. 6

The calculated optical field amplitude in conditions of (a) without applying voltage in both polarization states; (b) with applying voltage in H-polarization; (c) with applying voltage in V-polarization. Here, the gray color renders the area of the crystal.

Fig. 7
Fig. 7

The single-mode character is shown in the simulation when the electrode gap is reduced. (a) The distribution of field amplitude is maintained in various propagation distances. Here, the gray color renders the area of the crystal. (b) The output amplitude (z = 20 mm) is modulated in various applied voltages.

Fig. 8
Fig. 8

A schematic illustration of experimental setup for testing the dynamic optical waveguides based on KTN crystals, including a 532 nm DPSS laser, two mirrors (M1 and M2), an objective lens (OB), a pinhole (PH), two lenses (L1 and L2), a quarter wave plate (QWP), a polarizer (P1), a KTN crystal based dynamic waveguide, and a photodetector (PD).

Fig. 9
Fig. 9

Experimentally measured light intensity distribution at the exit end of the dynamic optical waveguide: (a) without the biasing voltage, (b) with the biasing voltage for the H-polarized wave, and (c) with the biasing voltage for the V-polarized wave.

Fig. 10
Fig. 10

The experimentally measured response time of dynamic optical waveguide based on KTN crystal.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

x 2 ( 1 n 0x 2 + s 11 E x 2 + s 12 E y 2 + s 13 E z 2 +2 s 14 E y E z +2 s 15 E z E x +2 s 16 E x E y ) + y 2 ( 1 n 0y 2 + s 21 E x 2 + s 22 E y 2 + s 23 E z 2 +2 s 24 E y E z +2 s 25 E z E x +2 s 26 E x E y ) + z 2 ( 1 n 0x 2 + s 31 E x 2 + s 32 E y 2 + s 33 E z 2 +2 s 34 E y E z +2 s 35 E z E x +2 s 36 E x E y ) +2yz( s 41 E x 2 + s 42 E y 2 + s 43 E z 2 +2 s 44 E y E z +2 s 45 E z E x +2 s 46 E x E y ) +2zx( s 51 E x 2 + s 52 E y 2 + s 53 E z 2 +2 s 54 E y E z +2 s 55 E z E x +2 s 56 E x E y ) +2xy( s 61 E x 2 + s 62 E y 2 + s 63 E z 2 +2 s 64 E y E z +2 s 65 E z E x +2 s 66 E x E y )=1,
s ij =( s 11 s 12 s 12 0 0 0 s 12 s 11 s 12 0 0 0 s 12 s 12 s 11 0 0 0 0 0 0 s 44 0 0 0 0 0 0 s 44 0 0 0 0 0 0 s 44 ).
( 1 n 2 + s 11 E x 2 + s 12 E y 2 ) x 2 +( 1 n 2 + s 12 E x 2 + s 11 E y 2 ) y 2 +( 1 n 2 + s 12 E x 2 + s 12 E y 2 ) z 2 +4xy s 44 E x E y =1.
x= x ' cosθ+y'sinθ y= x ' sinθ+y'cosθ.
[ ( 1 n 2 + s 11 E x 2 + s 12 E y 2 ) cos 2 θ+( 1 n 2 + s 12 E x 2 + s 11 E y 2 ) sin 2 θ2 s 44 E x E y sin2θ ]x ' 2 +[ ( 1 n 2 + s 11 E x 2 + s 12 E y 2 ) sin 2 θ+( 1 n 2 + s 12 E x 2 + s 11 E y 2 ) cos 2 θ+2 s 44 E x E y sin2θ ]y ' 2 +( 1 n 2 + s 12 E x 2 + s 12 E y 2 )z ' 2 +[ ( s 11 s 12 )( E x 2 E y 2 )sin2θ+4 s 44 E x E y cos2θ ]x'y'=1.
tan2θ= 4 s 44 E x E y ( s 12 s 11 )( E x 2 E y 2 ) .
1 n x' 2 = 1 n 2 +( s 11 E x 2 + s 12 E y 2 ) cos 2 θ+( s 12 E x 2 + s 11 E y 2 ) sin 2 θ2 s 44 E x E y sin2θ, 1 n y' 2 = 1 n 2 +( s 11 E x 2 + s 12 E y 2 ) sin 2 θ+( s 12 E x 2 + s 11 E y 2 ) cos 2 θ+2 s 44 E x E y sin2θ, 1 n z' 2 = 1 n z 2 = 1 n 2 + s 12 E x 2 + s 12 E y 2 .

Metrics