Abstract

Ubiquitous, low power consumption and high bandwidth density communication will require passive athermal optical filters for WDM transceivers in Si-CMOS architecture. Two silicon-polymer composite structures, deposited using initiated chemical vapor deposition (iCVD), poly(perfluorodecyl acrylate) (pPFDA) and poly(perfluorodecyl acrylate-co-divinyl benzene) p(PFDA-co-DVB), are analyzed as candidates for thermal compensation. The addition of DVB to a fluorinated acrylate backbone reduces the C-F bond density, increases the density in the copolymer and thereby increases refractive index. The addition of DVB also increases the volume expansion coefficient of the copolymer, resulting in an increased thermo-optic (TO) coefficient for the copolymer system. The increased index and TO coefficient of the co-polymer gives improved bend loss, footprint and FSR performance for athermal silicon photonic circuits.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Deerfield Beach Fla.)14(19), 1339–1365 (2002).
    [CrossRef]
  2. T. A. Tumolilo and P. R. Ashley, “Fabrication and design considerations for multilevel active polymeric devices,” Proc. SPIE-Int Soc.Opt. Eng.2025, 507–515 (1993).
  3. L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun.137(4-6), 239–243 (1997).
    [CrossRef]
  4. M. Georgas, J. Leu, B. Moss, C. Sun, and V. Stojanovic, “Addressing link-level design tradeoffs for integrated photonic interconnects,” in Custom Integrated Circuits Conference (Institute of Electrical and Electronics Engineers, 2011), 978–1-4577–0233–5/11.
  5. V. Raghunathan, W. N. Ye, J. Hu, T. Izuhara, J. Michel, and L. C. Kimerling, “Athermal operation of silicon waveguides: spectral, second order and footprint dependencies,” Opt. Express18(17), 17631–17639 (2010).
    [CrossRef] [PubMed]
  6. J. M. Lee, D. J. Kim, H. Ahn, S. H. Park, and G. Kim, “Temperature dependence of silicon nanophotonic ring resonator with a polymeric overlayer,” J. Lightwave Technol.25(8), 2236–2243 (2007).
    [CrossRef]
  7. J. M. Lee, D. J. Kim, G. H. Kim, O. K. Kwon, K. J. Kim, and G. Kim, “Controlling temperature dependence of silicon waveguides using slot structure,” Opt. Express16(3), 1645–1652 (2008).
    [CrossRef]
  8. W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett.20(11), 882–885 (2008).
    [CrossRef]
  9. V. Raghunathan, J. Hu, W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal silicon ring resonators,” in Conference on Integrated Photonic Research, Silicon and Nanophotonics, Technical Digest (CD) (Optical Society of America, 2010), paper IMC5.
  10. V. Raghunathan, T. Izuhara, J. Michel, and L. C. Kimerling, “Stability of polymer-dielectric bi-layers for athermal silicon photonics,” Opt. Express20(14), 16059–16066 (2012).
    [CrossRef] [PubMed]
  11. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express17(17), 14627–14633 (2009).
    [CrossRef] [PubMed]
  12. M. Gupta and K. K. Gleason, “Initiated chemical vapor deposition of poly(1H,1H,2H,2H-perfluorodecyl acrylate) thin films,” Langmuir22(24), 10047–10052 (2006).
    [CrossRef] [PubMed]
  13. W. Groh and A. Zimmermann, “What is the lowest refractive index of an organic polymer,” Macromolecules24(25), 6660–6663 (1991).
    [CrossRef]
  14. K. K. S. Lau and K. K. Gleason, “Initiated chemical vapor deposition (iCVD) of Poly(alkyl acrylates): an experimental study,” Macromolecules39(10), 3688–3694 (2006).
    [CrossRef]
  15. K. K. S. Lau and K. K. Gleason, “Initiated chemical vapor deposition (iCVD) of Poly(alkyl acrylates): a kinetic model,” Macromolecules39(10), 3695–3703 (2006).
    [CrossRef]
  16. L. H. Lee and K. K. Gleason, “Cross-linked organic sacrificial material for air gap formation by initiated chemical vapor deposition,” J. Electrochem. Soc.155(4), G78–G86 (2008).
    [CrossRef]
  17. L. Junyan, H. Ling, and Z. Yuansuo, “Synthesis and property investigation of three core-shell fluoroacrylate copolymer latexes,” J. Appl. Polym. Sci.112(3), 1615–1621 (2009).
    [CrossRef]
  18. C. D. Petruczok, Department of Chemical Engineering, Massachussetts Institute of Technology, Cambridge, MA 02139 and K. K. Gleason have submitted a manuscript to Advanced Materials called “Initiated chemical vapor deposition (iCVD) method for patterning polymer and metal microstructures on curved substrates.”
  19. D. O. W. Chemical Corporate, “Specialty Monomers- DVB,” http://www.dow.com/specialtymonomers/prod/divin.htm .
  20. MATBASE, “Commodity polymers- PMMA,” http://www.matbase.com/material/polymers/commodity/pmma/properties .

2012

2010

2009

2008

L. H. Lee and K. K. Gleason, “Cross-linked organic sacrificial material for air gap formation by initiated chemical vapor deposition,” J. Electrochem. Soc.155(4), G78–G86 (2008).
[CrossRef]

J. M. Lee, D. J. Kim, G. H. Kim, O. K. Kwon, K. J. Kim, and G. Kim, “Controlling temperature dependence of silicon waveguides using slot structure,” Opt. Express16(3), 1645–1652 (2008).
[CrossRef]

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett.20(11), 882–885 (2008).
[CrossRef]

2007

2006

M. Gupta and K. K. Gleason, “Initiated chemical vapor deposition of poly(1H,1H,2H,2H-perfluorodecyl acrylate) thin films,” Langmuir22(24), 10047–10052 (2006).
[CrossRef] [PubMed]

K. K. S. Lau and K. K. Gleason, “Initiated chemical vapor deposition (iCVD) of Poly(alkyl acrylates): an experimental study,” Macromolecules39(10), 3688–3694 (2006).
[CrossRef]

K. K. S. Lau and K. K. Gleason, “Initiated chemical vapor deposition (iCVD) of Poly(alkyl acrylates): a kinetic model,” Macromolecules39(10), 3695–3703 (2006).
[CrossRef]

2002

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Deerfield Beach Fla.)14(19), 1339–1365 (2002).
[CrossRef]

1997

L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun.137(4-6), 239–243 (1997).
[CrossRef]

1993

T. A. Tumolilo and P. R. Ashley, “Fabrication and design considerations for multilevel active polymeric devices,” Proc. SPIE-Int Soc.Opt. Eng.2025, 507–515 (1993).

1991

W. Groh and A. Zimmermann, “What is the lowest refractive index of an organic polymer,” Macromolecules24(25), 6660–6663 (1991).
[CrossRef]

Ahn, H.

Ashley, P. R.

T. A. Tumolilo and P. R. Ashley, “Fabrication and design considerations for multilevel active polymeric devices,” Proc. SPIE-Int Soc.Opt. Eng.2025, 507–515 (1993).

Baets, R.

Bogaerts, W.

Bräuer, A.

L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun.137(4-6), 239–243 (1997).
[CrossRef]

Dalton, L. R.

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Deerfield Beach Fla.)14(19), 1339–1365 (2002).
[CrossRef]

Dannberg, P.

L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun.137(4-6), 239–243 (1997).
[CrossRef]

Dumon, P.

Friedrich, L.

L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun.137(4-6), 239–243 (1997).
[CrossRef]

Gleason, K. K.

L. H. Lee and K. K. Gleason, “Cross-linked organic sacrificial material for air gap formation by initiated chemical vapor deposition,” J. Electrochem. Soc.155(4), G78–G86 (2008).
[CrossRef]

K. K. S. Lau and K. K. Gleason, “Initiated chemical vapor deposition (iCVD) of Poly(alkyl acrylates): a kinetic model,” Macromolecules39(10), 3695–3703 (2006).
[CrossRef]

M. Gupta and K. K. Gleason, “Initiated chemical vapor deposition of poly(1H,1H,2H,2H-perfluorodecyl acrylate) thin films,” Langmuir22(24), 10047–10052 (2006).
[CrossRef] [PubMed]

K. K. S. Lau and K. K. Gleason, “Initiated chemical vapor deposition (iCVD) of Poly(alkyl acrylates): an experimental study,” Macromolecules39(10), 3688–3694 (2006).
[CrossRef]

Groh, W.

W. Groh and A. Zimmermann, “What is the lowest refractive index of an organic polymer,” Macromolecules24(25), 6660–6663 (1991).
[CrossRef]

Gupta, M.

M. Gupta and K. K. Gleason, “Initiated chemical vapor deposition of poly(1H,1H,2H,2H-perfluorodecyl acrylate) thin films,” Langmuir22(24), 10047–10052 (2006).
[CrossRef] [PubMed]

Han, X.

Hennig, T.

L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun.137(4-6), 239–243 (1997).
[CrossRef]

Hu, J.

Izuhara, T.

Jen, A. K. Y.

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Deerfield Beach Fla.)14(19), 1339–1365 (2002).
[CrossRef]

Jian, X.

Junyan, L.

L. Junyan, H. Ling, and Z. Yuansuo, “Synthesis and property investigation of three core-shell fluoroacrylate copolymer latexes,” J. Appl. Polym. Sci.112(3), 1615–1621 (2009).
[CrossRef]

Karthe, W.

L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun.137(4-6), 239–243 (1997).
[CrossRef]

Kim, D. J.

Kim, G.

Kim, G. H.

Kim, K. J.

Kimerling, L. C.

Kwon, O. K.

Lau, K. K. S.

K. K. S. Lau and K. K. Gleason, “Initiated chemical vapor deposition (iCVD) of Poly(alkyl acrylates): a kinetic model,” Macromolecules39(10), 3695–3703 (2006).
[CrossRef]

K. K. S. Lau and K. K. Gleason, “Initiated chemical vapor deposition (iCVD) of Poly(alkyl acrylates): an experimental study,” Macromolecules39(10), 3688–3694 (2006).
[CrossRef]

Lee, J. M.

Lee, L. H.

L. H. Lee and K. K. Gleason, “Cross-linked organic sacrificial material for air gap formation by initiated chemical vapor deposition,” J. Electrochem. Soc.155(4), G78–G86 (2008).
[CrossRef]

Ling, H.

L. Junyan, H. Ling, and Z. Yuansuo, “Synthesis and property investigation of three core-shell fluoroacrylate copolymer latexes,” J. Appl. Polym. Sci.112(3), 1615–1621 (2009).
[CrossRef]

Ma, H.

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Deerfield Beach Fla.)14(19), 1339–1365 (2002).
[CrossRef]

Michel, J.

Morthier, G.

Park, S. H.

Raghunathan, V.

Teng, J.

Tumolilo, T. A.

T. A. Tumolilo and P. R. Ashley, “Fabrication and design considerations for multilevel active polymeric devices,” Proc. SPIE-Int Soc.Opt. Eng.2025, 507–515 (1993).

Wächter, C.

L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun.137(4-6), 239–243 (1997).
[CrossRef]

Ye, W. N.

Yuansuo, Z.

L. Junyan, H. Ling, and Z. Yuansuo, “Synthesis and property investigation of three core-shell fluoroacrylate copolymer latexes,” J. Appl. Polym. Sci.112(3), 1615–1621 (2009).
[CrossRef]

Zhang, H.

Zhao, M.

Zimmermann, A.

W. Groh and A. Zimmermann, “What is the lowest refractive index of an organic polymer,” Macromolecules24(25), 6660–6663 (1991).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Deerfield Beach Fla.)14(19), 1339–1365 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett.20(11), 882–885 (2008).
[CrossRef]

J. Appl. Polym. Sci.

L. Junyan, H. Ling, and Z. Yuansuo, “Synthesis and property investigation of three core-shell fluoroacrylate copolymer latexes,” J. Appl. Polym. Sci.112(3), 1615–1621 (2009).
[CrossRef]

J. Electrochem. Soc.

L. H. Lee and K. K. Gleason, “Cross-linked organic sacrificial material for air gap formation by initiated chemical vapor deposition,” J. Electrochem. Soc.155(4), G78–G86 (2008).
[CrossRef]

J. Lightwave Technol.

Langmuir

M. Gupta and K. K. Gleason, “Initiated chemical vapor deposition of poly(1H,1H,2H,2H-perfluorodecyl acrylate) thin films,” Langmuir22(24), 10047–10052 (2006).
[CrossRef] [PubMed]

Macromolecules

W. Groh and A. Zimmermann, “What is the lowest refractive index of an organic polymer,” Macromolecules24(25), 6660–6663 (1991).
[CrossRef]

K. K. S. Lau and K. K. Gleason, “Initiated chemical vapor deposition (iCVD) of Poly(alkyl acrylates): an experimental study,” Macromolecules39(10), 3688–3694 (2006).
[CrossRef]

K. K. S. Lau and K. K. Gleason, “Initiated chemical vapor deposition (iCVD) of Poly(alkyl acrylates): a kinetic model,” Macromolecules39(10), 3695–3703 (2006).
[CrossRef]

Opt. Commun.

L. Friedrich, P. Dannberg, C. Wächter, T. Hennig, A. Bräuer, and W. Karthe, “Directional coupler device using a three-dimensional waveguide structure,” Opt. Commun.137(4-6), 239–243 (1997).
[CrossRef]

Opt. Express

Proc. SPIE-Int Soc.

T. A. Tumolilo and P. R. Ashley, “Fabrication and design considerations for multilevel active polymeric devices,” Proc. SPIE-Int Soc.Opt. Eng.2025, 507–515 (1993).

Other

M. Georgas, J. Leu, B. Moss, C. Sun, and V. Stojanovic, “Addressing link-level design tradeoffs for integrated photonic interconnects,” in Custom Integrated Circuits Conference (Institute of Electrical and Electronics Engineers, 2011), 978–1-4577–0233–5/11.

V. Raghunathan, J. Hu, W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal silicon ring resonators,” in Conference on Integrated Photonic Research, Silicon and Nanophotonics, Technical Digest (CD) (Optical Society of America, 2010), paper IMC5.

C. D. Petruczok, Department of Chemical Engineering, Massachussetts Institute of Technology, Cambridge, MA 02139 and K. K. Gleason have submitted a manuscript to Advanced Materials called “Initiated chemical vapor deposition (iCVD) method for patterning polymer and metal microstructures on curved substrates.”

D. O. W. Chemical Corporate, “Specialty Monomers- DVB,” http://www.dow.com/specialtymonomers/prod/divin.htm .

MATBASE, “Commodity polymers- PMMA,” http://www.matbase.com/material/polymers/commodity/pmma/properties .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Characteristic FTIR bands of pPFDA correspond to –CF2-CF3 end group at 1149 cm−1, symmetric stretching of -CF2 moiety at 1203 cm−1, asymmetric stretching of –CF2 moiety at 1232 cm−1, and C = O stretching at 1738 cm−1. Addition of DVB as a cross- linker brings down the intensity of these characteristic bands in the copolymer.

Fig. 2
Fig. 2

The resonance peak shift with temperature is positive for the pPFDA top cladding while negative for the p(PFDA-co-DVB) top cladding suggesting that the TO magnitude of copolymer (−3.1 × 10−4) is higher than that of pPFDA (−2.1 × 10−4). The inset shows the schematic of a-Si resonator whose TM transmission is measured at various temperatures for 2 different iCVD polymer top cladding choices: pPFDA (flow rate: 0.6 sccm) and p(PFDA-co-DVB) (flow rate: 0.6 sccm) (flow rate: 1 sccm).

Fig. 3
Fig. 3

Bending loss performance of both the cladding choices are compared by plotting the simulated bending Q for various bending radii. For a bending Q of 104, co-polymer cladded device has a bending radius of 5 μm while that of PFDA cladded device is 12.5 μm

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n 2 1 n 2 +2 = R V
2n dn dT = 3 (1x) 2 dx dT ,where x= R V
dx dT = 1 V dR dT x α V where α V is the volume expansion coefficient
dn dT = ( n 2 1)( n 2 +2) 6n α V
1 n g d n eff dT = 1 λ r d λ r dT

Metrics