Abstract

Ammonia detection is highly relevant for combustion in boilers and furnaces since NH3 is able to suppress nitric oxide levels by catalytic as well as non-catalytic reduction. The mixing of ammonia with flue gases is an important parameter to obtain efficient non-catalytic reduction. In this paper picosecond DIAL was used for range-resolved, single ended, NH3 detection, utilizing a tunable picosecond laser source. The absorption spectrum of the A(ν2 = 1)←X(ν2 = 0) band was recorded and 212.2 and 214.5 nm was selected as the on- and off-resonance wavelength, respectively. One-dimensional concentration profiles with various NH3 concentration distributions are presented. The detection limit was found to be 40 ppm with a spatial resolution of 16 cm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kohse-Höinghaus and J. B. Jeffries, eds., Applied combustion diagnostics (Taylor&Francis, 2002).
  2. W. Meienburg, H. Neckel, and J. Wolfrum, “In situ measurement of ammonia with a 13CO2-waveguide laser system,” Appl. Phys. B51(2), 94–98 (1990).
    [CrossRef]
  3. W. Meienburg, J. Wolfrum, and H. Neckel, “In situ measurement of ammonia concentration in industrial combustion systems,” Proc. Combust. Inst.23, 231–236 (1990).
  4. A. Hinz and S. Horler, “CO2-laser sensor system for in-situ measurement of ammonia in flue gas,” Tech. Mess.63, 282–287 (1996).
  5. M. Aldén and S. Wallin, “CARS experiments in a full-scale (10 x 10 m) industrial coal furnace,” Appl. Opt.24(21), 3434–3437 (1985).
    [CrossRef] [PubMed]
  6. C. Weitkamp, ed., Lidar Range-resolved Optical Remote Sensing of the Atmosphere (Springer, 2005).
  7. B. Kaldvee, A. Ehn, J. Bood, and M. Aldén, “Development of a picosecond lidar system for large-scale combustion diagnostics,” Appl. Opt.48(4), B65–B72 (2009).
    [CrossRef] [PubMed]
  8. B. Kaldvee, J. Bood, and M. Alden, “Picosecond-lidar thermometry in a measurement volume surrounded by highly scattering media,” Meas. Sci. Technol.22(12), 125302 (2011).
    [CrossRef]
  9. B. Kaldvee, Division of combustion physics, Lund University, Box 118, 221 00 Lund, Sweden, J. Wahlqvist, M. Jonsson, C. Brackmann, B. Andersson, P. van Hees, J. Bood, and M. Aldén are preparing a manuscript to be called “Room fire characterization using lidar diagnostics and CFD.”
  10. L. J. Muzio and G. C. Quartucy, “Implementing NOx control: research to application,” Pror. Energy Combust. Sci.23(3), 233–266 (1997).
    [CrossRef]
  11. M. Østberg, K. Dam-Johansen, and J. E. Johnsson, “Influence of mixing on the SNCR process,” Chem. Eng. Sci.52(15), 2511–2525 (1997).
    [CrossRef]
  12. G.-W. Lee, B.-H. Shon, J.-G. Yoo, J.-H. Jung, and K.-J. Oh, “The influence of mixing between NH3 and NO for a DeNOx reaction in the SNCR process,” J. Ind. Eng. Chem. (Amsterdam Neth.)14, 457–467 (2008).
  13. A. P. Force, D. K. Killinger, W. E. DeFeo, and N. Menyuk, “Laser remote sensing of atmospheric ammonia using a CO2 lidar system,” Appl. Opt.24(17), 2837–2841 (1985).
    [CrossRef] [PubMed]
  14. A. Duncan, “The ultraviolet absorption spectrum of ammonia,” Phys. Rev.47(11), 822–827 (1935).
    [CrossRef]
  15. B.-M. Cheng, H.-C. Lu, H.-K. Chen, M. Bahou, Y.-P. Lee, A. M. Mebel, L. C. Lee, M.-C. Liang, and Y. L. Yung, “Absorption cross sections of NH3, NH2D, NHD2, and ND3 in the spectral range 140–220 nm and implications for planetary isotopic fractionation,” Astrophys. J.647(2), 1535–1542 (2006).
    [CrossRef]
  16. R. Gall, D. Perner, and A. Ladstätter-Weissenmayer, “Simultaneous determination of NH3, SO2, NO and NO2 by direct UV-absorption in ambient air,” Fresenius J. Anal. Chem.340, 646–649 (1991).
    [CrossRef]
  17. G. H. Mount, B. Rumburg, J. Havig, B. Lamb, H. Westberg, D. Yonge, K. Johnson, and R. Kincaid, “Measurement of atmospheric ammonia at a dairy using differential optical absorption spectroscopy in the mid-ultraviolet,” Atmos. Environ.36(11), 1799–1810 (2002).
    [CrossRef]
  18. R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol.12(5), R33–R51 (2001).
    [CrossRef]
  19. J. A. Sutton and J. F. Driscoll, “Rayleigh scattering cross sections of combustion species at 266, 355, and 532 nm for thermometry applications,” Opt. Lett.29(22), 2620–2622 (2004).
    [CrossRef] [PubMed]
  20. H. Edner, A. Sunesson, and S. Svanberg, “NO plume mapping by laser-radar techniques,” Opt. Lett.13(9), 704–706 (1988).
    [CrossRef] [PubMed]
  21. H. Volten, J. B. Bergwerff, M. Haaima, D. E. Lolkema, A. J. C. Berkhout, G. R. van der Hoff, C. J. M. Potma, R. J. W. Kruit, W. A. J. van Pul, and D. P. J. Swart, “Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere,” Atmos. Meas. Technol.5(2), 413–427 (2012).
    [CrossRef]

2012 (1)

H. Volten, J. B. Bergwerff, M. Haaima, D. E. Lolkema, A. J. C. Berkhout, G. R. van der Hoff, C. J. M. Potma, R. J. W. Kruit, W. A. J. van Pul, and D. P. J. Swart, “Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere,” Atmos. Meas. Technol.5(2), 413–427 (2012).
[CrossRef]

2011 (1)

B. Kaldvee, J. Bood, and M. Alden, “Picosecond-lidar thermometry in a measurement volume surrounded by highly scattering media,” Meas. Sci. Technol.22(12), 125302 (2011).
[CrossRef]

2009 (1)

2008 (1)

G.-W. Lee, B.-H. Shon, J.-G. Yoo, J.-H. Jung, and K.-J. Oh, “The influence of mixing between NH3 and NO for a DeNOx reaction in the SNCR process,” J. Ind. Eng. Chem. (Amsterdam Neth.)14, 457–467 (2008).

2006 (1)

B.-M. Cheng, H.-C. Lu, H.-K. Chen, M. Bahou, Y.-P. Lee, A. M. Mebel, L. C. Lee, M.-C. Liang, and Y. L. Yung, “Absorption cross sections of NH3, NH2D, NHD2, and ND3 in the spectral range 140–220 nm and implications for planetary isotopic fractionation,” Astrophys. J.647(2), 1535–1542 (2006).
[CrossRef]

2004 (1)

2002 (1)

G. H. Mount, B. Rumburg, J. Havig, B. Lamb, H. Westberg, D. Yonge, K. Johnson, and R. Kincaid, “Measurement of atmospheric ammonia at a dairy using differential optical absorption spectroscopy in the mid-ultraviolet,” Atmos. Environ.36(11), 1799–1810 (2002).
[CrossRef]

2001 (1)

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol.12(5), R33–R51 (2001).
[CrossRef]

1997 (2)

L. J. Muzio and G. C. Quartucy, “Implementing NOx control: research to application,” Pror. Energy Combust. Sci.23(3), 233–266 (1997).
[CrossRef]

M. Østberg, K. Dam-Johansen, and J. E. Johnsson, “Influence of mixing on the SNCR process,” Chem. Eng. Sci.52(15), 2511–2525 (1997).
[CrossRef]

1996 (1)

A. Hinz and S. Horler, “CO2-laser sensor system for in-situ measurement of ammonia in flue gas,” Tech. Mess.63, 282–287 (1996).

1991 (1)

R. Gall, D. Perner, and A. Ladstätter-Weissenmayer, “Simultaneous determination of NH3, SO2, NO and NO2 by direct UV-absorption in ambient air,” Fresenius J. Anal. Chem.340, 646–649 (1991).
[CrossRef]

1990 (2)

W. Meienburg, H. Neckel, and J. Wolfrum, “In situ measurement of ammonia with a 13CO2-waveguide laser system,” Appl. Phys. B51(2), 94–98 (1990).
[CrossRef]

W. Meienburg, J. Wolfrum, and H. Neckel, “In situ measurement of ammonia concentration in industrial combustion systems,” Proc. Combust. Inst.23, 231–236 (1990).

1988 (1)

1985 (2)

1935 (1)

A. Duncan, “The ultraviolet absorption spectrum of ammonia,” Phys. Rev.47(11), 822–827 (1935).
[CrossRef]

Alden, M.

B. Kaldvee, J. Bood, and M. Alden, “Picosecond-lidar thermometry in a measurement volume surrounded by highly scattering media,” Meas. Sci. Technol.22(12), 125302 (2011).
[CrossRef]

Aldén, M.

Bahou, M.

B.-M. Cheng, H.-C. Lu, H.-K. Chen, M. Bahou, Y.-P. Lee, A. M. Mebel, L. C. Lee, M.-C. Liang, and Y. L. Yung, “Absorption cross sections of NH3, NH2D, NHD2, and ND3 in the spectral range 140–220 nm and implications for planetary isotopic fractionation,” Astrophys. J.647(2), 1535–1542 (2006).
[CrossRef]

Bergwerff, J. B.

H. Volten, J. B. Bergwerff, M. Haaima, D. E. Lolkema, A. J. C. Berkhout, G. R. van der Hoff, C. J. M. Potma, R. J. W. Kruit, W. A. J. van Pul, and D. P. J. Swart, “Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere,” Atmos. Meas. Technol.5(2), 413–427 (2012).
[CrossRef]

Berkhout, A. J. C.

H. Volten, J. B. Bergwerff, M. Haaima, D. E. Lolkema, A. J. C. Berkhout, G. R. van der Hoff, C. J. M. Potma, R. J. W. Kruit, W. A. J. van Pul, and D. P. J. Swart, “Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere,” Atmos. Meas. Technol.5(2), 413–427 (2012).
[CrossRef]

Bood, J.

B. Kaldvee, J. Bood, and M. Alden, “Picosecond-lidar thermometry in a measurement volume surrounded by highly scattering media,” Meas. Sci. Technol.22(12), 125302 (2011).
[CrossRef]

B. Kaldvee, A. Ehn, J. Bood, and M. Aldén, “Development of a picosecond lidar system for large-scale combustion diagnostics,” Appl. Opt.48(4), B65–B72 (2009).
[CrossRef] [PubMed]

Chen, H.-K.

B.-M. Cheng, H.-C. Lu, H.-K. Chen, M. Bahou, Y.-P. Lee, A. M. Mebel, L. C. Lee, M.-C. Liang, and Y. L. Yung, “Absorption cross sections of NH3, NH2D, NHD2, and ND3 in the spectral range 140–220 nm and implications for planetary isotopic fractionation,” Astrophys. J.647(2), 1535–1542 (2006).
[CrossRef]

Cheng, B.-M.

B.-M. Cheng, H.-C. Lu, H.-K. Chen, M. Bahou, Y.-P. Lee, A. M. Mebel, L. C. Lee, M.-C. Liang, and Y. L. Yung, “Absorption cross sections of NH3, NH2D, NHD2, and ND3 in the spectral range 140–220 nm and implications for planetary isotopic fractionation,” Astrophys. J.647(2), 1535–1542 (2006).
[CrossRef]

Dam-Johansen, K.

M. Østberg, K. Dam-Johansen, and J. E. Johnsson, “Influence of mixing on the SNCR process,” Chem. Eng. Sci.52(15), 2511–2525 (1997).
[CrossRef]

DeFeo, W. E.

Driscoll, J. F.

Duncan, A.

A. Duncan, “The ultraviolet absorption spectrum of ammonia,” Phys. Rev.47(11), 822–827 (1935).
[CrossRef]

Edner, H.

Ehn, A.

Force, A. P.

Forkey, J. N.

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol.12(5), R33–R51 (2001).
[CrossRef]

Gall, R.

R. Gall, D. Perner, and A. Ladstätter-Weissenmayer, “Simultaneous determination of NH3, SO2, NO and NO2 by direct UV-absorption in ambient air,” Fresenius J. Anal. Chem.340, 646–649 (1991).
[CrossRef]

Haaima, M.

H. Volten, J. B. Bergwerff, M. Haaima, D. E. Lolkema, A. J. C. Berkhout, G. R. van der Hoff, C. J. M. Potma, R. J. W. Kruit, W. A. J. van Pul, and D. P. J. Swart, “Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere,” Atmos. Meas. Technol.5(2), 413–427 (2012).
[CrossRef]

Havig, J.

G. H. Mount, B. Rumburg, J. Havig, B. Lamb, H. Westberg, D. Yonge, K. Johnson, and R. Kincaid, “Measurement of atmospheric ammonia at a dairy using differential optical absorption spectroscopy in the mid-ultraviolet,” Atmos. Environ.36(11), 1799–1810 (2002).
[CrossRef]

Hinz, A.

A. Hinz and S. Horler, “CO2-laser sensor system for in-situ measurement of ammonia in flue gas,” Tech. Mess.63, 282–287 (1996).

Horler, S.

A. Hinz and S. Horler, “CO2-laser sensor system for in-situ measurement of ammonia in flue gas,” Tech. Mess.63, 282–287 (1996).

Johnson, K.

G. H. Mount, B. Rumburg, J. Havig, B. Lamb, H. Westberg, D. Yonge, K. Johnson, and R. Kincaid, “Measurement of atmospheric ammonia at a dairy using differential optical absorption spectroscopy in the mid-ultraviolet,” Atmos. Environ.36(11), 1799–1810 (2002).
[CrossRef]

Johnsson, J. E.

M. Østberg, K. Dam-Johansen, and J. E. Johnsson, “Influence of mixing on the SNCR process,” Chem. Eng. Sci.52(15), 2511–2525 (1997).
[CrossRef]

Jung, J.-H.

G.-W. Lee, B.-H. Shon, J.-G. Yoo, J.-H. Jung, and K.-J. Oh, “The influence of mixing between NH3 and NO for a DeNOx reaction in the SNCR process,” J. Ind. Eng. Chem. (Amsterdam Neth.)14, 457–467 (2008).

Kaldvee, B.

B. Kaldvee, J. Bood, and M. Alden, “Picosecond-lidar thermometry in a measurement volume surrounded by highly scattering media,” Meas. Sci. Technol.22(12), 125302 (2011).
[CrossRef]

B. Kaldvee, A. Ehn, J. Bood, and M. Aldén, “Development of a picosecond lidar system for large-scale combustion diagnostics,” Appl. Opt.48(4), B65–B72 (2009).
[CrossRef] [PubMed]

Killinger, D. K.

Kincaid, R.

G. H. Mount, B. Rumburg, J. Havig, B. Lamb, H. Westberg, D. Yonge, K. Johnson, and R. Kincaid, “Measurement of atmospheric ammonia at a dairy using differential optical absorption spectroscopy in the mid-ultraviolet,” Atmos. Environ.36(11), 1799–1810 (2002).
[CrossRef]

Kruit, R. J. W.

H. Volten, J. B. Bergwerff, M. Haaima, D. E. Lolkema, A. J. C. Berkhout, G. R. van der Hoff, C. J. M. Potma, R. J. W. Kruit, W. A. J. van Pul, and D. P. J. Swart, “Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere,” Atmos. Meas. Technol.5(2), 413–427 (2012).
[CrossRef]

Ladstätter-Weissenmayer, A.

R. Gall, D. Perner, and A. Ladstätter-Weissenmayer, “Simultaneous determination of NH3, SO2, NO and NO2 by direct UV-absorption in ambient air,” Fresenius J. Anal. Chem.340, 646–649 (1991).
[CrossRef]

Lamb, B.

G. H. Mount, B. Rumburg, J. Havig, B. Lamb, H. Westberg, D. Yonge, K. Johnson, and R. Kincaid, “Measurement of atmospheric ammonia at a dairy using differential optical absorption spectroscopy in the mid-ultraviolet,” Atmos. Environ.36(11), 1799–1810 (2002).
[CrossRef]

Lee, G.-W.

G.-W. Lee, B.-H. Shon, J.-G. Yoo, J.-H. Jung, and K.-J. Oh, “The influence of mixing between NH3 and NO for a DeNOx reaction in the SNCR process,” J. Ind. Eng. Chem. (Amsterdam Neth.)14, 457–467 (2008).

Lee, L. C.

B.-M. Cheng, H.-C. Lu, H.-K. Chen, M. Bahou, Y.-P. Lee, A. M. Mebel, L. C. Lee, M.-C. Liang, and Y. L. Yung, “Absorption cross sections of NH3, NH2D, NHD2, and ND3 in the spectral range 140–220 nm and implications for planetary isotopic fractionation,” Astrophys. J.647(2), 1535–1542 (2006).
[CrossRef]

Lee, Y.-P.

B.-M. Cheng, H.-C. Lu, H.-K. Chen, M. Bahou, Y.-P. Lee, A. M. Mebel, L. C. Lee, M.-C. Liang, and Y. L. Yung, “Absorption cross sections of NH3, NH2D, NHD2, and ND3 in the spectral range 140–220 nm and implications for planetary isotopic fractionation,” Astrophys. J.647(2), 1535–1542 (2006).
[CrossRef]

Lempert, W. R.

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol.12(5), R33–R51 (2001).
[CrossRef]

Liang, M.-C.

B.-M. Cheng, H.-C. Lu, H.-K. Chen, M. Bahou, Y.-P. Lee, A. M. Mebel, L. C. Lee, M.-C. Liang, and Y. L. Yung, “Absorption cross sections of NH3, NH2D, NHD2, and ND3 in the spectral range 140–220 nm and implications for planetary isotopic fractionation,” Astrophys. J.647(2), 1535–1542 (2006).
[CrossRef]

Lolkema, D. E.

H. Volten, J. B. Bergwerff, M. Haaima, D. E. Lolkema, A. J. C. Berkhout, G. R. van der Hoff, C. J. M. Potma, R. J. W. Kruit, W. A. J. van Pul, and D. P. J. Swart, “Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere,” Atmos. Meas. Technol.5(2), 413–427 (2012).
[CrossRef]

Lu, H.-C.

B.-M. Cheng, H.-C. Lu, H.-K. Chen, M. Bahou, Y.-P. Lee, A. M. Mebel, L. C. Lee, M.-C. Liang, and Y. L. Yung, “Absorption cross sections of NH3, NH2D, NHD2, and ND3 in the spectral range 140–220 nm and implications for planetary isotopic fractionation,” Astrophys. J.647(2), 1535–1542 (2006).
[CrossRef]

Mebel, A. M.

B.-M. Cheng, H.-C. Lu, H.-K. Chen, M. Bahou, Y.-P. Lee, A. M. Mebel, L. C. Lee, M.-C. Liang, and Y. L. Yung, “Absorption cross sections of NH3, NH2D, NHD2, and ND3 in the spectral range 140–220 nm and implications for planetary isotopic fractionation,” Astrophys. J.647(2), 1535–1542 (2006).
[CrossRef]

Meienburg, W.

W. Meienburg, H. Neckel, and J. Wolfrum, “In situ measurement of ammonia with a 13CO2-waveguide laser system,” Appl. Phys. B51(2), 94–98 (1990).
[CrossRef]

W. Meienburg, J. Wolfrum, and H. Neckel, “In situ measurement of ammonia concentration in industrial combustion systems,” Proc. Combust. Inst.23, 231–236 (1990).

Menyuk, N.

Miles, R. B.

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol.12(5), R33–R51 (2001).
[CrossRef]

Mount, G. H.

G. H. Mount, B. Rumburg, J. Havig, B. Lamb, H. Westberg, D. Yonge, K. Johnson, and R. Kincaid, “Measurement of atmospheric ammonia at a dairy using differential optical absorption spectroscopy in the mid-ultraviolet,” Atmos. Environ.36(11), 1799–1810 (2002).
[CrossRef]

Muzio, L. J.

L. J. Muzio and G. C. Quartucy, “Implementing NOx control: research to application,” Pror. Energy Combust. Sci.23(3), 233–266 (1997).
[CrossRef]

Neckel, H.

W. Meienburg, H. Neckel, and J. Wolfrum, “In situ measurement of ammonia with a 13CO2-waveguide laser system,” Appl. Phys. B51(2), 94–98 (1990).
[CrossRef]

W. Meienburg, J. Wolfrum, and H. Neckel, “In situ measurement of ammonia concentration in industrial combustion systems,” Proc. Combust. Inst.23, 231–236 (1990).

Oh, K.-J.

G.-W. Lee, B.-H. Shon, J.-G. Yoo, J.-H. Jung, and K.-J. Oh, “The influence of mixing between NH3 and NO for a DeNOx reaction in the SNCR process,” J. Ind. Eng. Chem. (Amsterdam Neth.)14, 457–467 (2008).

Østberg, M.

M. Østberg, K. Dam-Johansen, and J. E. Johnsson, “Influence of mixing on the SNCR process,” Chem. Eng. Sci.52(15), 2511–2525 (1997).
[CrossRef]

Perner, D.

R. Gall, D. Perner, and A. Ladstätter-Weissenmayer, “Simultaneous determination of NH3, SO2, NO and NO2 by direct UV-absorption in ambient air,” Fresenius J. Anal. Chem.340, 646–649 (1991).
[CrossRef]

Potma, C. J. M.

H. Volten, J. B. Bergwerff, M. Haaima, D. E. Lolkema, A. J. C. Berkhout, G. R. van der Hoff, C. J. M. Potma, R. J. W. Kruit, W. A. J. van Pul, and D. P. J. Swart, “Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere,” Atmos. Meas. Technol.5(2), 413–427 (2012).
[CrossRef]

Quartucy, G. C.

L. J. Muzio and G. C. Quartucy, “Implementing NOx control: research to application,” Pror. Energy Combust. Sci.23(3), 233–266 (1997).
[CrossRef]

Rumburg, B.

G. H. Mount, B. Rumburg, J. Havig, B. Lamb, H. Westberg, D. Yonge, K. Johnson, and R. Kincaid, “Measurement of atmospheric ammonia at a dairy using differential optical absorption spectroscopy in the mid-ultraviolet,” Atmos. Environ.36(11), 1799–1810 (2002).
[CrossRef]

Shon, B.-H.

G.-W. Lee, B.-H. Shon, J.-G. Yoo, J.-H. Jung, and K.-J. Oh, “The influence of mixing between NH3 and NO for a DeNOx reaction in the SNCR process,” J. Ind. Eng. Chem. (Amsterdam Neth.)14, 457–467 (2008).

Sunesson, A.

Sutton, J. A.

Svanberg, S.

Swart, D. P. J.

H. Volten, J. B. Bergwerff, M. Haaima, D. E. Lolkema, A. J. C. Berkhout, G. R. van der Hoff, C. J. M. Potma, R. J. W. Kruit, W. A. J. van Pul, and D. P. J. Swart, “Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere,” Atmos. Meas. Technol.5(2), 413–427 (2012).
[CrossRef]

van der Hoff, G. R.

H. Volten, J. B. Bergwerff, M. Haaima, D. E. Lolkema, A. J. C. Berkhout, G. R. van der Hoff, C. J. M. Potma, R. J. W. Kruit, W. A. J. van Pul, and D. P. J. Swart, “Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere,” Atmos. Meas. Technol.5(2), 413–427 (2012).
[CrossRef]

van Pul, W. A. J.

H. Volten, J. B. Bergwerff, M. Haaima, D. E. Lolkema, A. J. C. Berkhout, G. R. van der Hoff, C. J. M. Potma, R. J. W. Kruit, W. A. J. van Pul, and D. P. J. Swart, “Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere,” Atmos. Meas. Technol.5(2), 413–427 (2012).
[CrossRef]

Volten, H.

H. Volten, J. B. Bergwerff, M. Haaima, D. E. Lolkema, A. J. C. Berkhout, G. R. van der Hoff, C. J. M. Potma, R. J. W. Kruit, W. A. J. van Pul, and D. P. J. Swart, “Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere,” Atmos. Meas. Technol.5(2), 413–427 (2012).
[CrossRef]

Wallin, S.

Westberg, H.

G. H. Mount, B. Rumburg, J. Havig, B. Lamb, H. Westberg, D. Yonge, K. Johnson, and R. Kincaid, “Measurement of atmospheric ammonia at a dairy using differential optical absorption spectroscopy in the mid-ultraviolet,” Atmos. Environ.36(11), 1799–1810 (2002).
[CrossRef]

Wolfrum, J.

W. Meienburg, H. Neckel, and J. Wolfrum, “In situ measurement of ammonia with a 13CO2-waveguide laser system,” Appl. Phys. B51(2), 94–98 (1990).
[CrossRef]

W. Meienburg, J. Wolfrum, and H. Neckel, “In situ measurement of ammonia concentration in industrial combustion systems,” Proc. Combust. Inst.23, 231–236 (1990).

Yonge, D.

G. H. Mount, B. Rumburg, J. Havig, B. Lamb, H. Westberg, D. Yonge, K. Johnson, and R. Kincaid, “Measurement of atmospheric ammonia at a dairy using differential optical absorption spectroscopy in the mid-ultraviolet,” Atmos. Environ.36(11), 1799–1810 (2002).
[CrossRef]

Yoo, J.-G.

G.-W. Lee, B.-H. Shon, J.-G. Yoo, J.-H. Jung, and K.-J. Oh, “The influence of mixing between NH3 and NO for a DeNOx reaction in the SNCR process,” J. Ind. Eng. Chem. (Amsterdam Neth.)14, 457–467 (2008).

Yung, Y. L.

B.-M. Cheng, H.-C. Lu, H.-K. Chen, M. Bahou, Y.-P. Lee, A. M. Mebel, L. C. Lee, M.-C. Liang, and Y. L. Yung, “Absorption cross sections of NH3, NH2D, NHD2, and ND3 in the spectral range 140–220 nm and implications for planetary isotopic fractionation,” Astrophys. J.647(2), 1535–1542 (2006).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

W. Meienburg, H. Neckel, and J. Wolfrum, “In situ measurement of ammonia with a 13CO2-waveguide laser system,” Appl. Phys. B51(2), 94–98 (1990).
[CrossRef]

Astrophys. J. (1)

B.-M. Cheng, H.-C. Lu, H.-K. Chen, M. Bahou, Y.-P. Lee, A. M. Mebel, L. C. Lee, M.-C. Liang, and Y. L. Yung, “Absorption cross sections of NH3, NH2D, NHD2, and ND3 in the spectral range 140–220 nm and implications for planetary isotopic fractionation,” Astrophys. J.647(2), 1535–1542 (2006).
[CrossRef]

Atmos. Environ. (1)

G. H. Mount, B. Rumburg, J. Havig, B. Lamb, H. Westberg, D. Yonge, K. Johnson, and R. Kincaid, “Measurement of atmospheric ammonia at a dairy using differential optical absorption spectroscopy in the mid-ultraviolet,” Atmos. Environ.36(11), 1799–1810 (2002).
[CrossRef]

Atmos. Meas. Technol. (1)

H. Volten, J. B. Bergwerff, M. Haaima, D. E. Lolkema, A. J. C. Berkhout, G. R. van der Hoff, C. J. M. Potma, R. J. W. Kruit, W. A. J. van Pul, and D. P. J. Swart, “Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere,” Atmos. Meas. Technol.5(2), 413–427 (2012).
[CrossRef]

Chem. Eng. Sci. (1)

M. Østberg, K. Dam-Johansen, and J. E. Johnsson, “Influence of mixing on the SNCR process,” Chem. Eng. Sci.52(15), 2511–2525 (1997).
[CrossRef]

Fresenius J. Anal. Chem. (1)

R. Gall, D. Perner, and A. Ladstätter-Weissenmayer, “Simultaneous determination of NH3, SO2, NO and NO2 by direct UV-absorption in ambient air,” Fresenius J. Anal. Chem.340, 646–649 (1991).
[CrossRef]

J. Ind. Eng. Chem. (Amsterdam Neth.) (1)

G.-W. Lee, B.-H. Shon, J.-G. Yoo, J.-H. Jung, and K.-J. Oh, “The influence of mixing between NH3 and NO for a DeNOx reaction in the SNCR process,” J. Ind. Eng. Chem. (Amsterdam Neth.)14, 457–467 (2008).

Meas. Sci. Technol. (2)

B. Kaldvee, J. Bood, and M. Alden, “Picosecond-lidar thermometry in a measurement volume surrounded by highly scattering media,” Meas. Sci. Technol.22(12), 125302 (2011).
[CrossRef]

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol.12(5), R33–R51 (2001).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. (1)

A. Duncan, “The ultraviolet absorption spectrum of ammonia,” Phys. Rev.47(11), 822–827 (1935).
[CrossRef]

Proc. Combust. Inst. (1)

W. Meienburg, J. Wolfrum, and H. Neckel, “In situ measurement of ammonia concentration in industrial combustion systems,” Proc. Combust. Inst.23, 231–236 (1990).

Pror. Energy Combust. Sci. (1)

L. J. Muzio and G. C. Quartucy, “Implementing NOx control: research to application,” Pror. Energy Combust. Sci.23(3), 233–266 (1997).
[CrossRef]

Tech. Mess. (1)

A. Hinz and S. Horler, “CO2-laser sensor system for in-situ measurement of ammonia in flue gas,” Tech. Mess.63, 282–287 (1996).

Other (3)

B. Kaldvee, Division of combustion physics, Lund University, Box 118, 221 00 Lund, Sweden, J. Wahlqvist, M. Jonsson, C. Brackmann, B. Andersson, P. van Hees, J. Bood, and M. Aldén are preparing a manuscript to be called “Room fire characterization using lidar diagnostics and CFD.”

K. Kohse-Höinghaus and J. B. Jeffries, eds., Applied combustion diagnostics (Taylor&Francis, 2002).

C. Weitkamp, ed., Lidar Range-resolved Optical Remote Sensing of the Atmosphere (Springer, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic illustration of the experimental setup for near-field lidar. Pulses from a picosecond Nd:YAG/OPG system are directed into the measurement region by mirror M1. Backscattered radiation is collected by mirrors M2 and M3 to a photomultiplier tube (MCP/PMT). The coordinate system is used to describe positioning of different experimental objects (see measurements section).

Fig. 2
Fig. 2

Absorption spectra of NH3. (a) Broadband spectrum showing absorbance retrieved from deuterium lamp measurements. (b) Laser absorption spectrum over the A←X, ν2’ = 1 band with effective absorption cross sections calculated from the measured data. The band reveals the expected double peak structure also seen in (a).

Fig. 3
Fig. 3

Absorbance vs. column density (number density × absorption path length) at 212.2 nm. The absorption cross section is given by the slope of the linear fit, i.e. 3.0 × 10−18 cm2.

Fig. 4
Fig. 4

Data from DIAL measurements inside an open tube containing binary mixtures of NH3 and CH4. (a) Photomultiplier lidar traces measured off (red) and on (black) resonance. The original time-scale of the horizontal axis has been converted to distance from the telescope collection mirror. NH3 inlet concentrations are given in the legend. (b) Ratio of lidar signals, measured in pure CH4 off and on NH3-resonance, and used to calibrate for differences in the geometrical overlap function. (c) Ratios between off- and on-resonance lidar signals shown in (a). Results evaluated directly from raw-data (green) as well as compensated data (black), obtained using the calibration curve shown in (b).

Fig. 5
Fig. 5

Results from DIAL measurement inside an open tube containing binary mixtures of NH3 and CH4. (a) Measured NH3 concentration versus distance from the light collecting mirror of the telescope for three different NH3 concentrations of the inlet flow, as indicated by the legend. (b) Average NH3 concentrations, evaluated from a 5 cm region located around 200 cm, plotted versus inlet NH3 concentration.

Fig. 6
Fig. 6

DIAL data acquired in identical binary mixtures of NH3 and CH4 flowing through two separate porous plug-burners. (a) lidar curves measured off (red) and on (black) NH3-resonance for burner distances 30 cm and 70 cm. (b) Ratios between off- and on-resonance lidar-signals shown in (a).

Fig. 7
Fig. 7

Range-resolved NH3 detection shown in concentration profiles recorded along a path intersected by two porous plug burners fed with a NH3/CH4 mixture (0.5% NH3) at a total flow of 7.5 l/min. The center-to-center distances of the burners are indicated in the legend.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N( R )= 1 2Δσ d dR ln P( R, λ off ) P( R, λ on )

Metrics