Abstract

In response to a comment by H. T. Yura and T. S. Rose on our recent work about the exponentiated Weibull distribution [Opt. Express 20, 13055–13064 (2012)], we present here a defense of the proposed model from their criticism.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Barrios and F. Dios, “Exponentiated Weibull distribution family under aperture averaging for Gaussian beam waves,” Opt. Express20, 13055–13064 (2012).
    [CrossRef] [PubMed]
  2. F. S. Vetelino, C. Young, L. C. Andrews, and J. Recolons, “Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence,” Appl. Opt.46, 2099–2109 (2007).
    [CrossRef] [PubMed]
  3. R. Barrios and F. Dios, “Exponentiated Weibull model for the irradiance probability density function of a laser beam propagating through atmospheric turbulence,” Opt. Laser Technol. Manuscript ID: JOLT2788 (to be published).
    [CrossRef]
  4. S. D. Lyke, D. G. Voelz, and M. C. Roggemann, “Probability density of aperture-averaged irradiance fluctuations for long range free space optical communication links,” Appl. Opt.48, 6511–6527 (2009).
    [CrossRef] [PubMed]
  5. R. D. Gupta, “Exponentiated exponential family: An alternative to Gamma and Weibull distributions,” Biometrical J.43, 117–130 (2001).
    [CrossRef]
  6. S. Nadarajah and S. Kotz, “The exponentiated type distributions,” Acta Appl. Math.92, 97–111 (2006).
    [CrossRef]
  7. C. D. Lai, M. Xie, and D. N. P. Murthy, “A modified Weibull distribution,” IEEE Trans. Reliab.52, 33–37 (2003).
    [CrossRef]
  8. M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng.40, 1554–1562 (2001).
    [CrossRef]

2012

2009

2007

2006

S. Nadarajah and S. Kotz, “The exponentiated type distributions,” Acta Appl. Math.92, 97–111 (2006).
[CrossRef]

2003

C. D. Lai, M. Xie, and D. N. P. Murthy, “A modified Weibull distribution,” IEEE Trans. Reliab.52, 33–37 (2003).
[CrossRef]

2001

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng.40, 1554–1562 (2001).
[CrossRef]

R. D. Gupta, “Exponentiated exponential family: An alternative to Gamma and Weibull distributions,” Biometrical J.43, 117–130 (2001).
[CrossRef]

Al-Habash, M. A.

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng.40, 1554–1562 (2001).
[CrossRef]

Andrews, L. C.

F. S. Vetelino, C. Young, L. C. Andrews, and J. Recolons, “Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence,” Appl. Opt.46, 2099–2109 (2007).
[CrossRef] [PubMed]

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng.40, 1554–1562 (2001).
[CrossRef]

Barrios, R.

R. Barrios and F. Dios, “Exponentiated Weibull distribution family under aperture averaging for Gaussian beam waves,” Opt. Express20, 13055–13064 (2012).
[CrossRef] [PubMed]

R. Barrios and F. Dios, “Exponentiated Weibull model for the irradiance probability density function of a laser beam propagating through atmospheric turbulence,” Opt. Laser Technol. Manuscript ID: JOLT2788 (to be published).
[CrossRef]

Dios, F.

R. Barrios and F. Dios, “Exponentiated Weibull distribution family under aperture averaging for Gaussian beam waves,” Opt. Express20, 13055–13064 (2012).
[CrossRef] [PubMed]

R. Barrios and F. Dios, “Exponentiated Weibull model for the irradiance probability density function of a laser beam propagating through atmospheric turbulence,” Opt. Laser Technol. Manuscript ID: JOLT2788 (to be published).
[CrossRef]

Gupta, R. D.

R. D. Gupta, “Exponentiated exponential family: An alternative to Gamma and Weibull distributions,” Biometrical J.43, 117–130 (2001).
[CrossRef]

Kotz, S.

S. Nadarajah and S. Kotz, “The exponentiated type distributions,” Acta Appl. Math.92, 97–111 (2006).
[CrossRef]

Lai, C. D.

C. D. Lai, M. Xie, and D. N. P. Murthy, “A modified Weibull distribution,” IEEE Trans. Reliab.52, 33–37 (2003).
[CrossRef]

Lyke, S. D.

Murthy, D. N. P.

C. D. Lai, M. Xie, and D. N. P. Murthy, “A modified Weibull distribution,” IEEE Trans. Reliab.52, 33–37 (2003).
[CrossRef]

Nadarajah, S.

S. Nadarajah and S. Kotz, “The exponentiated type distributions,” Acta Appl. Math.92, 97–111 (2006).
[CrossRef]

Phillips, R. L.

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng.40, 1554–1562 (2001).
[CrossRef]

Recolons, J.

Roggemann, M. C.

Vetelino, F. S.

Voelz, D. G.

Xie, M.

C. D. Lai, M. Xie, and D. N. P. Murthy, “A modified Weibull distribution,” IEEE Trans. Reliab.52, 33–37 (2003).
[CrossRef]

Young, C.

Acta Appl. Math.

S. Nadarajah and S. Kotz, “The exponentiated type distributions,” Acta Appl. Math.92, 97–111 (2006).
[CrossRef]

Appl. Opt.

Biometrical J.

R. D. Gupta, “Exponentiated exponential family: An alternative to Gamma and Weibull distributions,” Biometrical J.43, 117–130 (2001).
[CrossRef]

IEEE Trans. Reliab.

C. D. Lai, M. Xie, and D. N. P. Murthy, “A modified Weibull distribution,” IEEE Trans. Reliab.52, 33–37 (2003).
[CrossRef]

Opt. Eng.

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng.40, 1554–1562 (2001).
[CrossRef]

Opt. Express

Opt. Laser Technol

R. Barrios and F. Dios, “Exponentiated Weibull model for the irradiance probability density function of a laser beam propagating through atmospheric turbulence,” Opt. Laser Technol. Manuscript ID: JOLT2788 (to be published).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Simulation data results from [1, Fig. 2]. The Gamma-Gamma and the Weibull fit curves are dropped from the original figure. A curve for the EW model using [1, Eqs. (10)–(12)] is added with a magenta solid line and labeled as EW*.

Metrics