Abstract

Emission and absorption are two main properties of active optical fibers that are important for fiber amplifiers and lasers. We propose a direct side pumping scheme for non-deconstructive evaluation of active optical fibers. This scheme enables a simple in situ test of both emission and absorption characteristics without cutting fiber and produces good accuracy with very low pumping background. A commercial Er-doped fiber and a home-made Bi/Er co-doped optical fiber have been tested to demonstrate that the scheme is a useful alternative technique for characterizing active optical fiber or waveguides.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-doped Fiber Amplifiers Fundamentals and Technology, (Academic, 1999), Chap.1 and Chap. 4.
  2. J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400-nm-bandwidth emission from a Cr-doped glass fiber,” Photon. Technol. Lett.19(8), 595–597 (2007).
    [CrossRef]
  3. Y. Ohishi, T. Kanamori, T. Kitagawa, S. Takahashi, E. Snitzer, and G. H. Sigel., “Pr-doped fluoride fiber amplifier operating at 131 µm,” Opt. Lett.16(22), 1747–1749 (1991).
    [CrossRef] [PubMed]
  4. T. Kasamatsu, Y. Yano, and H. Sekita, “1.50um-band gain-shifted thulium-doped fiber amplifier with 1.05um and 1.56um dual-wavelength pumping,” Opt. Lett.24(23), 1684–1686 (1999).
    [CrossRef] [PubMed]
  5. S. D. Jackson, “2.7-W Ho3+-doped silica fibre laser pumped at 1100 nm and operating at 2.1 µm,” Appl. Phys. B76(7), 793–795 (2003).
    [CrossRef]
  6. V. V. Dvoyrin, V. M. Mashinsky, L. I. Bulatov, I. A. Bufetov, A. V. Shubin, M. A. Melkumov, E. F. Kustov, E. M. Dianov, A. A. Umnikov, V. F. Khopin, M. V. Yashkov, and A. N. Guryanov, “Bismuth-doped-glass optical fibers--a new active medium for lasers and amplifiers,” Opt. Lett.31(20), 2966–2968 (2006).
    [CrossRef] [PubMed]
  7. V. V. Dvoyrin, O. I. Medvedkov, V. M. Mashinsky, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Optical amplification in 1430-1495 nm range and laser action in Bi-doped fibers,” Opt. Express16(21), 16971–16976 (2008).
    [CrossRef] [PubMed]
  8. I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett.6(7), 487–504 (2009).
    [CrossRef]
  9. S. M. Yeh, S. L. Huang, Y. J. Chiu, H. Taga, P. L. Huang, Y.-C. Huang, Y.-K. Lu, J.-P. Wu, W.-L. Wang, D.-M. Kong, K.-Y. Huang, J.-S. Wang, P. Yeh, and W.-H. Cheng, “Broadband chromium-doped fiber amplifiers for next-generation optical communication systems,” J. Lightwave Technol.30(6), 921–927 (2012).
    [CrossRef]
  10. H. Liang, Q. Zhang, Z. Q. Zheng, H. Ming, Z. C. Li, J. Xu, B. Chen, and H. Zhao, “Optical amplification of Eu(DBM)3Phen-doped polymer optical fiber,” Opt. Lett.29(5), 477–479 (2004).
    [CrossRef] [PubMed]
  11. Z. J. Hu, W. W. Qiu, X. S. Cheng, Y. H. Luo, C. B. Qin, W. X. Wu, X. Wang, X. J. Tian, T. X. Wang, L. J. Wang, Q. J. Zhang, B. Zhu, G. Zou, Q. Zhang, and Y. Chen, “Optical amplification of Eu(TTA)3Phen solution-filled hollow optical fiber,” Opt. Lett.36(10), 1902–1904 (2011).
    [CrossRef] [PubMed]
  12. S. Yliniemi, J. Albert, Q. Wang, and S. Honkanen, “UV-exposed Bragg gratings for laser applications in silver-sodium ion-exchanged phosphate glass waveguides,” Opt. Express14(7), 2898–2903 (2006).
    [CrossRef] [PubMed]
  13. G. Della Valle, A. Festa, G. Sorbello, K. Ennser, C. Cassagnetes, D. Barbier, and S. Taccheo, “Single-mode and high power waveguide lasers fabricated by ion-exchange,” Opt. Express16(16), 12334–12341 (2008).
    [CrossRef] [PubMed]
  14. A. Tünnermann, T. Schreiber, and J. Limpert, “Fiber lasers and amplifiers: an ultrafast performance evolution,” Appl. Opt.49(25), F71–F78 (2010).
    [CrossRef] [PubMed]
  15. S. Jarabo and J. M. Alvarez, “Experimental cross sections of erbium-doped silica fibers pumped at 1480nm,” Appl. Opt.37(12), 2288–2295 (1998).
    [CrossRef] [PubMed]

2012

2011

2010

2009

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett.6(7), 487–504 (2009).
[CrossRef]

2008

2007

J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400-nm-bandwidth emission from a Cr-doped glass fiber,” Photon. Technol. Lett.19(8), 595–597 (2007).
[CrossRef]

2006

2004

2003

S. D. Jackson, “2.7-W Ho3+-doped silica fibre laser pumped at 1100 nm and operating at 2.1 µm,” Appl. Phys. B76(7), 793–795 (2003).
[CrossRef]

1999

1998

1991

Albert, J.

Alvarez, J. M.

Barbier, D.

Bufetov, I. A.

Bulatov, L. I.

Cassagnetes, C.

Chang, T. Y.

J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400-nm-bandwidth emission from a Cr-doped glass fiber,” Photon. Technol. Lett.19(8), 595–597 (2007).
[CrossRef]

Chen, B.

Chen, J. C.

J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400-nm-bandwidth emission from a Cr-doped glass fiber,” Photon. Technol. Lett.19(8), 595–597 (2007).
[CrossRef]

Chen, Y.

Cheng, W.-H.

Cheng, X. S.

Chiu, Y. J.

Della Valle, G.

Dianov, E. M.

Dvoyrin, V. V.

Ennser, K.

Festa, A.

Guryanov, A. N.

Honkanen, S.

Hu, Z. J.

Huang, K. Y.

J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400-nm-bandwidth emission from a Cr-doped glass fiber,” Photon. Technol. Lett.19(8), 595–597 (2007).
[CrossRef]

Huang, K.-Y.

Huang, P. L.

Huang, S. L.

S. M. Yeh, S. L. Huang, Y. J. Chiu, H. Taga, P. L. Huang, Y.-C. Huang, Y.-K. Lu, J.-P. Wu, W.-L. Wang, D.-M. Kong, K.-Y. Huang, J.-S. Wang, P. Yeh, and W.-H. Cheng, “Broadband chromium-doped fiber amplifiers for next-generation optical communication systems,” J. Lightwave Technol.30(6), 921–927 (2012).
[CrossRef]

J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400-nm-bandwidth emission from a Cr-doped glass fiber,” Photon. Technol. Lett.19(8), 595–597 (2007).
[CrossRef]

Huang, Y.-C.

Jackson, S. D.

S. D. Jackson, “2.7-W Ho3+-doped silica fibre laser pumped at 1100 nm and operating at 2.1 µm,” Appl. Phys. B76(7), 793–795 (2003).
[CrossRef]

Jarabo, S.

Kanamori, T.

Kao, F. J.

J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400-nm-bandwidth emission from a Cr-doped glass fiber,” Photon. Technol. Lett.19(8), 595–597 (2007).
[CrossRef]

Kasamatsu, T.

Khopin, V. F.

Kitagawa, T.

Kong, D.-M.

Kustov, E. F.

Lai, C. C.

J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400-nm-bandwidth emission from a Cr-doped glass fiber,” Photon. Technol. Lett.19(8), 595–597 (2007).
[CrossRef]

Li, Z. C.

Liang, H.

Limpert, J.

Lin, Y. S.

J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400-nm-bandwidth emission from a Cr-doped glass fiber,” Photon. Technol. Lett.19(8), 595–597 (2007).
[CrossRef]

Lu, Y.-K.

Luo, Y. H.

Mashinsky, V. M.

Medvedkov, O. I.

Melkumov, M. A.

Ming, H.

Ohishi, Y.

Qin, C. B.

Qiu, W. W.

Schreiber, T.

Sekita, H.

Shr, R. C.

J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400-nm-bandwidth emission from a Cr-doped glass fiber,” Photon. Technol. Lett.19(8), 595–597 (2007).
[CrossRef]

Shubin, A. V.

Sigel, G. H.

Snitzer, E.

Sorbello, G.

Su, W. Z.

J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400-nm-bandwidth emission from a Cr-doped glass fiber,” Photon. Technol. Lett.19(8), 595–597 (2007).
[CrossRef]

Taccheo, S.

Taga, H.

Takahashi, S.

Tian, X. J.

Tsai, C. N.

J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400-nm-bandwidth emission from a Cr-doped glass fiber,” Photon. Technol. Lett.19(8), 595–597 (2007).
[CrossRef]

Tünnermann, A.

Umnikov, A. A.

Wang, J.-S.

Wang, L. J.

Wang, Q.

Wang, T. X.

Wang, W.-L.

Wang, X.

Wu, J.-P.

Wu, W. X.

Xu, J.

Yano, Y.

Yashkov, M. V.

Yeh, P.

Yeh, S. M.

Yliniemi, S.

Zhang, Q.

Zhang, Q. J.

Zhao, H.

Zheng, Z. Q.

Zhu, B.

Zou, G.

Appl. Opt.

Appl. Phys. B

S. D. Jackson, “2.7-W Ho3+-doped silica fibre laser pumped at 1100 nm and operating at 2.1 µm,” Appl. Phys. B76(7), 793–795 (2003).
[CrossRef]

J. Lightwave Technol.

Laser Phys. Lett.

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett.6(7), 487–504 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Photon. Technol. Lett.

J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400-nm-bandwidth emission from a Cr-doped glass fiber,” Photon. Technol. Lett.19(8), 595–597 (2007).
[CrossRef]

Other

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-doped Fiber Amplifiers Fundamentals and Technology, (Academic, 1999), Chap.1 and Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) The configuration of the emission and absorption measurement of active optical fiber, (b) the coordinate system of the active fiber.

Fig. 2
Fig. 2

The side pumping experimental results of Er doped fiber (EDL001). (a) two channel spectra when pumped at ZA = 2cm, (b) an emission spectrum sample without FUT’s re-absorption and an absorption spectrum based on one channel method. (c) the peak power vibration of the emission spectra when pumped by a multimode laser diode of ~810nm in wavelength, (d) the peak power vibration of the emission spectra when pumped by a single mode laser of ~244nm in wavelength,(e) the calculated peak absorption based on the multimode laser diode and one channel method, (f) the calculated peak absorption based on the single mode laser and one channel method, (g) the calculated absorption spectra based on two channel method when ZB-ZA = 6cm, (h) the calculated absorption spectra based on two channel method when ZB-ZA = 12cm.

Fig. 3
Fig. 3

(a) The emission spectra of Bi/Er co-doped fiber, (b) the calculated absorption spectra based on two channel method, and (c) the measurement stability of the peak absorption at around 1390nm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I 1 (λ)= C L (λ) S A_L (λ) e α(λ) Z A
I 2 (λ)= C R (λ) S A_R (λ) e α(λ)( Z 0 Z A )
I 1 '(λ)= C L (λ) S B_L (λ) e α(λ) Z B
I 2 '(λ)= C R (λ) S B_R (λ) e α(λ)( Z 0 Z B )
α(λ)=ln[ I 1 (λ) I 1 '(λ) ]/( Z B Z A )
α(λ)= ln[ I 1 (λ) I 2 '(λ) I 1 '(λ) I 2 (λ) ] 2( Z B Z A )

Metrics