Abstract

We study in detail a novel type of optical nanoantennas made of high-permittivity low-loss dielectric particles. In addition to the electric resonances, the dielectric particles exhibit very strong magnetic resonances at the nanoscale, that can be employed in the Yagi-Uda geometry for creating highly efficient optical nanoantennas. By comparing plasmonic and dielectric nanoantennas, we demonstrate that all-dielectric nanoantennas may exhibit better radiation efficiency also allowing more compact design.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express16, 10858–10866 (2008).
    [CrossRef] [PubMed]
  2. L. Novotny, “Optical antennas tuned to pitch,” Nature (London)455, 887 (2008).
    [CrossRef]
  3. A. F. Koenderink, “Plasmon Nanoparticle Array Waveguides for Single Photon and Single Plasmon Sources,” Nano Lett.9, 4228–4233 (2009).
    [CrossRef] [PubMed]
  4. A. Devilez, B. Stout, and N. Bonod, “Compact Metallo-Dielectric Optical Antenna for Ultra Directional and Enhanced Radiative Emission,” ACS Nano4, 3390–3396 (2010).
    [CrossRef] [PubMed]
  5. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5, 83–90 (2010).
    [CrossRef]
  6. J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and Harald Giessen, “Near-Field Dynamics of Optical Yagi-Uda Nanoantennas,” Nano Lett.11, 2819–2824 (2011).
    [CrossRef] [PubMed]
  7. A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivshar, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL5, 347–349 (2011).
    [CrossRef]
  8. C. Balanis, Antenna Theory: Analysis and Design (New York ; Brisbane: J. Wiley, 1982).
  9. S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. USA108, 3147–3151 (2011).
    [CrossRef] [PubMed]
  10. M. K. Schmidt, R. Esteban, J. J. Saenz, I. Suarez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas -a suitable platform for controlling magnetic dipolar emission: errata,” Opt. Express20, 18609–18610 (2012).
    [CrossRef]
  11. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region,” Nano Lett.12, 3749–3755 (2012).
    [CrossRef] [PubMed]
  12. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep.2, 492 (2012).
    [CrossRef] [PubMed]
  13. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Yu. S. Kivshar, “Huygens optical elements and Yagi-Uda nanoantennas based on dielectric nanoparticles,” JETP Letters94, 635–640 (2011).
    [CrossRef]
  14. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Yu. S. Kivshar, “Broadband Unidirectional Scattering by Magneto-Electric CoreShell Nanoparticles,” ACS Nano6, 54895497 (2012).
    [CrossRef] [PubMed]
  15. C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles (New York : Wiley, 1998).
    [CrossRef]
  16. A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically Induced Interaction of Magnetic Moments in Hybrid Metamaterials,” ACS Nano6, 837–842 (2012).
    [CrossRef]
  17. E. Palik, Handbook of Optical Constant of Solids (San Diego, Academic, 1985).
  18. O. Merchiers, F. Moreno, F. Gonzalez, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A76, 043834 (2007).
    [CrossRef]
  19. M. Kerker, P. Scheiner, and D. D. Cooke, “The range of validity of the Rayleigh and Thomson limits for Lorenz-Mie scattering,” J. Opt. Soc. Am.68, 135–137 (1978).
    [CrossRef]
  20. B. Rolly, B. Stout, S. Bidault, and N. Bonod, “Crucial role of the emitterparticle distance on the directivity of optical antennas,” Opt. Lett.36, 3368–3370 (2011).
    [CrossRef] [PubMed]
  21. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006).
    [CrossRef]
  22. H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys.87, 1355–1360 (1987).
    [CrossRef]
  23. Yu-lin Xu and Bo A. S. Gustafson, “A generalized multiparticle Mie-solution: further experimental verification,” Quant J. Spectrosc. Radiat. Transfer70, 395–419 (2001).
    [CrossRef]
  24. E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression,” Nano Lett.5, 585–589 (2005).
    [CrossRef] [PubMed]
  25. B. Stout, A. Devilez, B. Rolly, and N. Bonod, “Multipole methods for nanoantennas design: applications to Yagi-Uda configurations,” J. Opt. Soc. Am. B28, 1213–1223 (2011).
    [CrossRef]

2012 (5)

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region,” Nano Lett.12, 3749–3755 (2012).
[CrossRef] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep.2, 492 (2012).
[CrossRef] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Yu. S. Kivshar, “Broadband Unidirectional Scattering by Magneto-Electric CoreShell Nanoparticles,” ACS Nano6, 54895497 (2012).
[CrossRef] [PubMed]

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically Induced Interaction of Magnetic Moments in Hybrid Metamaterials,” ACS Nano6, 837–842 (2012).
[CrossRef]

M. K. Schmidt, R. Esteban, J. J. Saenz, I. Suarez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas -a suitable platform for controlling magnetic dipolar emission: errata,” Opt. Express20, 18609–18610 (2012).
[CrossRef]

2011 (6)

B. Stout, A. Devilez, B. Rolly, and N. Bonod, “Multipole methods for nanoantennas design: applications to Yagi-Uda configurations,” J. Opt. Soc. Am. B28, 1213–1223 (2011).
[CrossRef]

B. Rolly, B. Stout, S. Bidault, and N. Bonod, “Crucial role of the emitterparticle distance on the directivity of optical antennas,” Opt. Lett.36, 3368–3370 (2011).
[CrossRef] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Yu. S. Kivshar, “Huygens optical elements and Yagi-Uda nanoantennas based on dielectric nanoparticles,” JETP Letters94, 635–640 (2011).
[CrossRef]

J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and Harald Giessen, “Near-Field Dynamics of Optical Yagi-Uda Nanoantennas,” Nano Lett.11, 2819–2824 (2011).
[CrossRef] [PubMed]

A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivshar, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL5, 347–349 (2011).
[CrossRef]

S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. USA108, 3147–3151 (2011).
[CrossRef] [PubMed]

2010 (2)

A. Devilez, B. Stout, and N. Bonod, “Compact Metallo-Dielectric Optical Antenna for Ultra Directional and Enhanced Radiative Emission,” ACS Nano4, 3390–3396 (2010).
[CrossRef] [PubMed]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5, 83–90 (2010).
[CrossRef]

2009 (1)

A. F. Koenderink, “Plasmon Nanoparticle Array Waveguides for Single Photon and Single Plasmon Sources,” Nano Lett.9, 4228–4233 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (1)

O. Merchiers, F. Moreno, F. Gonzalez, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A76, 043834 (2007).
[CrossRef]

2005 (1)

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression,” Nano Lett.5, 585–589 (2005).
[CrossRef] [PubMed]

2001 (1)

Yu-lin Xu and Bo A. S. Gustafson, “A generalized multiparticle Mie-solution: further experimental verification,” Quant J. Spectrosc. Radiat. Transfer70, 395–419 (2001).
[CrossRef]

1987 (1)

H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys.87, 1355–1360 (1987).
[CrossRef]

1978 (1)

Aizpurua, J.

Balanis, C.

C. Balanis, Antenna Theory: Analysis and Design (New York ; Brisbane: J. Wiley, 1982).

Belov, P.

A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivshar, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL5, 347–349 (2011).
[CrossRef]

Belov, P. A.

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Yu. S. Kivshar, “Huygens optical elements and Yagi-Uda nanoantennas based on dielectric nanoparticles,” JETP Letters94, 635–640 (2011).
[CrossRef]

Bidault, S.

Bohren, C.F.

C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles (New York : Wiley, 1998).
[CrossRef]

Bonod, N.

Boriskina, S. V.

S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. USA108, 3147–3151 (2011).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region,” Nano Lett.12, 3749–3755 (2012).
[CrossRef] [PubMed]

Chew, H.

H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys.87, 1355–1360 (1987).
[CrossRef]

Chichkov, B. N.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region,” Nano Lett.12, 3749–3755 (2012).
[CrossRef] [PubMed]

Cooke, D. D.

Davoyan, A. R.

A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivshar, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL5, 347–349 (2011).
[CrossRef]

Devilez, A.

B. Stout, A. Devilez, B. Rolly, and N. Bonod, “Multipole methods for nanoantennas design: applications to Yagi-Uda configurations,” J. Opt. Soc. Am. B28, 1213–1223 (2011).
[CrossRef]

A. Devilez, B. Stout, and N. Bonod, “Compact Metallo-Dielectric Optical Antenna for Ultra Directional and Enhanced Radiative Emission,” ACS Nano4, 3390–3396 (2010).
[CrossRef] [PubMed]

Dorfmuller, J.

J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and Harald Giessen, “Near-Field Dynamics of Optical Yagi-Uda Nanoantennas,” Nano Lett.11, 2819–2824 (2011).
[CrossRef] [PubMed]

Dregely, D.

J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and Harald Giessen, “Near-Field Dynamics of Optical Yagi-Uda Nanoantennas,” Nano Lett.11, 2819–2824 (2011).
[CrossRef] [PubMed]

Dulkeith, E.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression,” Nano Lett.5, 585–589 (2005).
[CrossRef] [PubMed]

Eriksen, R. L.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region,” Nano Lett.12, 3749–3755 (2012).
[CrossRef] [PubMed]

Esslinger, M.

J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and Harald Giessen, “Near-Field Dynamics of Optical Yagi-Uda Nanoantennas,” Nano Lett.11, 2819–2824 (2011).
[CrossRef] [PubMed]

Esteban, R.

Evlyukhin, A. B.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region,” Nano Lett.12, 3749–3755 (2012).
[CrossRef] [PubMed]

Feldmann, J.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression,” Nano Lett.5, 585–589 (2005).
[CrossRef] [PubMed]

Fu, Y. H.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep.2, 492 (2012).
[CrossRef] [PubMed]

Giessen, Harald

J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and Harald Giessen, “Near-Field Dynamics of Optical Yagi-Uda Nanoantennas,” Nano Lett.11, 2819–2824 (2011).
[CrossRef] [PubMed]

Gonzalez, F.

O. Merchiers, F. Moreno, F. Gonzalez, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A76, 043834 (2007).
[CrossRef]

Gustafson, Bo A. S.

Yu-lin Xu and Bo A. S. Gustafson, “A generalized multiparticle Mie-solution: further experimental verification,” Quant J. Spectrosc. Radiat. Transfer70, 395–419 (2001).
[CrossRef]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006).
[CrossRef]

Huffman, D.R.

C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles (New York : Wiley, 1998).
[CrossRef]

Javier, A. M.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression,” Nano Lett.5, 585–589 (2005).
[CrossRef] [PubMed]

Kerker, M.

Kern, K.

J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and Harald Giessen, “Near-Field Dynamics of Optical Yagi-Uda Nanoantennas,” Nano Lett.11, 2819–2824 (2011).
[CrossRef] [PubMed]

Khunsin, W.

J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and Harald Giessen, “Near-Field Dynamics of Optical Yagi-Uda Nanoantennas,” Nano Lett.11, 2819–2824 (2011).
[CrossRef] [PubMed]

Kivshar, Y. S.

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically Induced Interaction of Magnetic Moments in Hybrid Metamaterials,” ACS Nano6, 837–842 (2012).
[CrossRef]

A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivshar, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL5, 347–349 (2011).
[CrossRef]

Kivshar, Yu. S.

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Yu. S. Kivshar, “Broadband Unidirectional Scattering by Magneto-Electric CoreShell Nanoparticles,” ACS Nano6, 54895497 (2012).
[CrossRef] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Yu. S. Kivshar, “Huygens optical elements and Yagi-Uda nanoantennas based on dielectric nanoparticles,” JETP Letters94, 635–640 (2011).
[CrossRef]

Klar, T. A.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression,” Nano Lett.5, 585–589 (2005).
[CrossRef] [PubMed]

Koenderink, A. F.

A. F. Koenderink, “Plasmon Nanoparticle Array Waveguides for Single Photon and Single Plasmon Sources,” Nano Lett.9, 4228–4233 (2009).
[CrossRef] [PubMed]

Krasnok, A. E.

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Yu. S. Kivshar, “Huygens optical elements and Yagi-Uda nanoantennas based on dielectric nanoparticles,” JETP Letters94, 635–640 (2011).
[CrossRef]

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep.2, 492 (2012).
[CrossRef] [PubMed]

Liu, W.

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Yu. S. Kivshar, “Broadband Unidirectional Scattering by Magneto-Electric CoreShell Nanoparticles,” ACS Nano6, 54895497 (2012).
[CrossRef] [PubMed]

Luk’yanchuk, B.

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically Induced Interaction of Magnetic Moments in Hybrid Metamaterials,” ACS Nano6, 837–842 (2012).
[CrossRef]

Lukyanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep.2, 492 (2012).
[CrossRef] [PubMed]

Mackowski, S.

Maier, S. A.

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically Induced Interaction of Magnetic Moments in Hybrid Metamaterials,” ACS Nano6, 837–842 (2012).
[CrossRef]

Maksymov, I. S.

A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivshar, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL5, 347–349 (2011).
[CrossRef]

Merchiers, O.

O. Merchiers, F. Moreno, F. Gonzalez, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A76, 043834 (2007).
[CrossRef]

Miroshnichenko, A. E.

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Yu. S. Kivshar, “Broadband Unidirectional Scattering by Magneto-Electric CoreShell Nanoparticles,” ACS Nano6, 54895497 (2012).
[CrossRef] [PubMed]

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically Induced Interaction of Magnetic Moments in Hybrid Metamaterials,” ACS Nano6, 837–842 (2012).
[CrossRef]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep.2, 492 (2012).
[CrossRef] [PubMed]

A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivshar, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL5, 347–349 (2011).
[CrossRef]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Yu. S. Kivshar, “Huygens optical elements and Yagi-Uda nanoantennas based on dielectric nanoparticles,” JETP Letters94, 635–640 (2011).
[CrossRef]

Moreno, F.

O. Merchiers, F. Moreno, F. Gonzalez, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A76, 043834 (2007).
[CrossRef]

Neshev, D. N.

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Yu. S. Kivshar, “Broadband Unidirectional Scattering by Magneto-Electric CoreShell Nanoparticles,” ACS Nano6, 54895497 (2012).
[CrossRef] [PubMed]

Novikov, S. M.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region,” Nano Lett.12, 3749–3755 (2012).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5, 83–90 (2010).
[CrossRef]

L. Novotny, “Optical antennas tuned to pitch,” Nature (London)455, 887 (2008).
[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006).
[CrossRef]

Palik, E.

E. Palik, Handbook of Optical Constant of Solids (San Diego, Academic, 1985).

Parak, W. J.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression,” Nano Lett.5, 585–589 (2005).
[CrossRef] [PubMed]

Reinhard, B. M.

S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. USA108, 3147–3151 (2011).
[CrossRef] [PubMed]

Reinhardt, C.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region,” Nano Lett.12, 3749–3755 (2012).
[CrossRef] [PubMed]

Ringler, M.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression,” Nano Lett.5, 585–589 (2005).
[CrossRef] [PubMed]

Rolly, B.

Saenz, J. J.

Saiz, J. M.

O. Merchiers, F. Moreno, F. Gonzalez, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A76, 043834 (2007).
[CrossRef]

Scheiner, P.

Schmidt, M. K.

Simovski, C.

A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivshar, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL5, 347–349 (2011).
[CrossRef]

Stefani, F. D.

Stout, B.

Suarez-Lacalle, I.

Taminiau, T. H.

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5, 83–90 (2010).
[CrossRef]

van Hulst, N. F.

Vogelgesang, R.

J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and Harald Giessen, “Near-Field Dynamics of Optical Yagi-Uda Nanoantennas,” Nano Lett.11, 2819–2824 (2011).
[CrossRef] [PubMed]

Xu, Yu-lin

Yu-lin Xu and Bo A. S. Gustafson, “A generalized multiparticle Mie-solution: further experimental verification,” Quant J. Spectrosc. Radiat. Transfer70, 395–419 (2001).
[CrossRef]

Zhang, J.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep.2, 492 (2012).
[CrossRef] [PubMed]

Zywietz, U.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region,” Nano Lett.12, 3749–3755 (2012).
[CrossRef] [PubMed]

ACS Nano (3)

A. Devilez, B. Stout, and N. Bonod, “Compact Metallo-Dielectric Optical Antenna for Ultra Directional and Enhanced Radiative Emission,” ACS Nano4, 3390–3396 (2010).
[CrossRef] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Yu. S. Kivshar, “Broadband Unidirectional Scattering by Magneto-Electric CoreShell Nanoparticles,” ACS Nano6, 54895497 (2012).
[CrossRef] [PubMed]

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically Induced Interaction of Magnetic Moments in Hybrid Metamaterials,” ACS Nano6, 837–842 (2012).
[CrossRef]

J. Chem. Phys. (1)

H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys.87, 1355–1360 (1987).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

JETP Letters (1)

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Yu. S. Kivshar, “Huygens optical elements and Yagi-Uda nanoantennas based on dielectric nanoparticles,” JETP Letters94, 635–640 (2011).
[CrossRef]

Nano Lett. (4)

A. F. Koenderink, “Plasmon Nanoparticle Array Waveguides for Single Photon and Single Plasmon Sources,” Nano Lett.9, 4228–4233 (2009).
[CrossRef] [PubMed]

J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and Harald Giessen, “Near-Field Dynamics of Optical Yagi-Uda Nanoantennas,” Nano Lett.11, 2819–2824 (2011).
[CrossRef] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region,” Nano Lett.12, 3749–3755 (2012).
[CrossRef] [PubMed]

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression,” Nano Lett.5, 585–589 (2005).
[CrossRef] [PubMed]

Nat. Photonics (1)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5, 83–90 (2010).
[CrossRef]

Nature (London) (1)

L. Novotny, “Optical antennas tuned to pitch,” Nature (London)455, 887 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

O. Merchiers, F. Moreno, F. Gonzalez, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A76, 043834 (2007).
[CrossRef]

Phys. Status Solidi RRL (1)

A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivshar, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL5, 347–349 (2011).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. USA108, 3147–3151 (2011).
[CrossRef] [PubMed]

Quant J. Spectrosc. Radiat. Transfer (1)

Yu-lin Xu and Bo A. S. Gustafson, “A generalized multiparticle Mie-solution: further experimental verification,” Quant J. Spectrosc. Radiat. Transfer70, 395–419 (2001).
[CrossRef]

Sci. Rep. (1)

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep.2, 492 (2012).
[CrossRef] [PubMed]

Other (4)

C. Balanis, Antenna Theory: Analysis and Design (New York ; Brisbane: J. Wiley, 1982).

C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles (New York : Wiley, 1998).
[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006).
[CrossRef]

E. Palik, Handbook of Optical Constant of Solids (San Diego, Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic view of an all-dielectric optical Yagi-Uda nanoantenna, consisting of the reflector 1 of the radius Rr = 75 nm, and smaller director 2–5 of the radii Rd = 70 nm. The dipole source is placed equally from the reflector and the first director surfaces at the distance D. The separation between surfaces of the neighbouring directors is also equal to D.

Fig. 2
Fig. 2

Wavelength dependence of the directivity of two types of all-dielectric nanoantennas consisting of (a) single dielectric nanoparticle, (b) Yagi-Uda like design for the separation distance D = 70 nm. Insets show 3D radiation pattern diagrams at particular wavelengths.

Fig. 3
Fig. 3

Radiation efficiencies of (a) dielectric (Si) and (b) plasmonic (Ag) Yagi-Uda optical nanoantennas of the same geometrical designs for various values of the separation distance.

Fig. 4
Fig. 4

Purcell factor of all-dielectric Yagi-Uda nanoantenna vs wavelength for various values of the separation distance D.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D = 4 π P rad Max [ p ( θ , φ ) ] , η rad = P rad P rad + P loss ,

Metrics