Abstract

We demonstrate a process to fabricate silicon photonic devices directly on a plastic film which is both flexible and transparent. This process allows the integration of complex structures on plastic films without the need of transferring from another substrate. Waveguides, grating couplers, and microring resonators are fabricated and optically characterized. An optical strain sensor is shown as an application using 5 µm-radius microring resonators on the flexible substrate. When strain is applied, resonance wavelength shifts of the microring resonators are observed. Contributions of different effects are analyzed and evaluated. Finally, we measure the influence of residual strain and confirm the material undergoes elastic deformation within the applied strain range.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics4(2), 117–122 (2010).
    [CrossRef]
  2. L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. H. Qi, “An all-silicon passive optical diode,” Science335(6067), 447–450 (2012).
    [CrossRef] [PubMed]
  3. F. Cavallo and M. G. Lagally, “Semiconductors turn soft: inorganic nanomembranes,” Soft Matter6(3), 439–455 (2010).
    [CrossRef]
  4. D.-H. Kim and J. A. Rogers, “Bend, buckle, and fold: mechanical engineering with nanomembranes,” ACS Nano3(3), 498–501 (2009).
    [CrossRef] [PubMed]
  5. D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008).
    [CrossRef] [PubMed]
  6. J. A. Rogers, M. G. Lagally, and R. G. Nuzzo, “Synthesis, assembly and applications of semiconductor nanomembranes,” Nature477(7362), 45–53 (2011).
    [CrossRef] [PubMed]
  7. S. R. Quake and A. Scherer, “From micro- to nanofabrication with soft materials,” Science290(5496), 1536–1540 (2000).
    [CrossRef] [PubMed]
  8. S. Ashkenazi, C. Y. Chao, L. J. Guo, and M. O'Donnell, “Ultrasound detection using polymer microring optical resonator,” Appl. Phys. Lett.85(22), 5418–5420 (2004).
    [CrossRef]
  9. B. Bhola and W. H. Steier, “A novel optical microring resonator accelerometer,” IEEE Sens. J.7(12), 1759–1766 (2007).
    [CrossRef]
  10. J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Polymer microring coupled-resonator optical waveguides,” J. Lightwave Technol.24(4), 1843–1849 (2006).
    [CrossRef]
  11. B. Bhola, H. C. Song, H. Tazawa, and W. H. Steier, “Polymer microresonator strain sensors,” IEEE Photon. Technol. Lett.17(4), 867–869 (2005).
    [CrossRef]
  12. D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol.6(7), 402–407 (2011).
    [CrossRef] [PubMed]
  13. W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
    [CrossRef]
  14. D. Taillaert, W. V. Paepegem, J. Vlekken, and R. Baets, “A thin foil optical strain gage based on silicon-on-insulator microresonators,” Proc. SPIE6619, 661914, 661914-4 (2007).
    [CrossRef]
  15. J. Yoon, L. F. Li, A. V. Semichaevsky, J. H. Ryu, H. T. Johnson, R. G. Nuzzo, and J. A. Rogers, “Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides,” Nat Commun2, 343 (2011).
    [CrossRef] [PubMed]
  16. D.-H. Kim, N. Lu, R. Ghaffari, and J. A. Rogers, “Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics,” NPG Asia Mater.4(4), e15 (2012).
    [CrossRef]
  17. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of Photonic Wire and Crystal Circuits in Silicon-on-Insulator Using 193-nm Optical Lithography,” J. Lightwave Technol.27(18), 4076–4083 (2009).
    [CrossRef]
  18. W. Bogaerts, P. Dumon, D. Taillaert, V. Wiaux, S. Beckx, B. Luyssaert, J. Van Campenhout, D. Van Thourhout, and R. Baets, “SOI nanophotonic waveguide structures fabricated with deep UV lithography,” Photon. Nano. Fund. Appl.2(2), 81–86 (2004).
    [CrossRef]
  19. U. Plachetka, N. Koo, T. Wahlbrink, J. Bolten, M. Waldow, T. Plotzing, M. Forst, and H. Kurz, “Fabrication of photonic ring resonator device in silicon waveguide technology using soft UV-nanoimprint lithography,” IEEE Photon. Technol. Lett.20(7), 490–492 (2008).
    [CrossRef]
  20. W. J. Westerveld, J. Pozo, P. J. Harmsma, R. Schmits, E. Tabak, T. C. van den Dool, S. M. Leinders, K. W. A. van Dongen, H. P. Urbach, and M. Yousefi, “Characterization of a photonic strain sensor in silicon-on-insulator technology,” Opt. Lett.37(4), 479–481 (2012).
    [CrossRef] [PubMed]
  21. Y. Amemiya, Y. Tanushi, T. Tokunaga, and S. Yokoyama, “Photoelastic effect in silicon ring resonators,” Jpn. J. Appl. Phys.47(4), 2910–2914 (2008).
    [CrossRef]
  22. A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett.41(25), 1377–1379 (2005).
    [CrossRef]
  23. S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282(9), 1767–1770 (2009).
    [CrossRef]
  24. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express18(24), 25283–25291 (2010).
    [CrossRef] [PubMed]
  25. R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett.94(14), 141108 (2009).
    [CrossRef]
  26. T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness, in microphotonic waveguides,” J. Lightwave Technol.23(9), 2719–2732 (2005).
    [CrossRef]
  27. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
    [CrossRef]
  28. Y. B. Tang, D. X. Dai, and S. L. He, “Proposal for a Grating Waveguide Serving as Both a Polarization Splitter and an Efficient Coupler for Silicon-on-Insulator Nanophotonic Circuits,” IEEE Photon. Technol. Lett.21(4), 242–244 (2009).
    [CrossRef]
  29. L. B. Freund and S. Suresh, Thin Film Materials: Stress, Defect Formation, and Surface eEolution (Cambridge University Press, Cambridge, UK; New York, 2003).
  30. O. Renner and J. Zemek, “Density of amorphous silicon films,” Czech. J. Phys. B23, 1273–1276 (1973).
  31. D. J. McClure, “Polyester (PET) Film as a Substrate: a Tutorial,” in Proceedings of the 50th Anuual Technical Conference of the Society of Vacuum Coaters(2007), pp. 692–699 (2007).
  32. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
    [CrossRef]
  33. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8(3), 173–190 (2001).
    [CrossRef] [PubMed]
  34. H. Gleskova and S. Wagner, “Amorphous silicon thin-film transistors on compliant polyimide foil substrates,” IEEE Electron Device Lett.20(9), 473–475 (1999).
    [CrossRef]
  35. Z. Suo, E. Y. Ma, H. Gleskova, and S. Wagner, “Mechanics of rollable and foldable film-on-foil electronics,” Appl. Phys. Lett.74(8), 1177–1179 (1999).
    [CrossRef]

2012 (4)

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. H. Qi, “An all-silicon passive optical diode,” Science335(6067), 447–450 (2012).
[CrossRef] [PubMed]

D.-H. Kim, N. Lu, R. Ghaffari, and J. A. Rogers, “Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics,” NPG Asia Mater.4(4), e15 (2012).
[CrossRef]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

W. J. Westerveld, J. Pozo, P. J. Harmsma, R. Schmits, E. Tabak, T. C. van den Dool, S. M. Leinders, K. W. A. van Dongen, H. P. Urbach, and M. Yousefi, “Characterization of a photonic strain sensor in silicon-on-insulator technology,” Opt. Lett.37(4), 479–481 (2012).
[CrossRef] [PubMed]

2011 (3)

J. Yoon, L. F. Li, A. V. Semichaevsky, J. H. Ryu, H. T. Johnson, R. G. Nuzzo, and J. A. Rogers, “Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides,” Nat Commun2, 343 (2011).
[CrossRef] [PubMed]

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol.6(7), 402–407 (2011).
[CrossRef] [PubMed]

J. A. Rogers, M. G. Lagally, and R. G. Nuzzo, “Synthesis, assembly and applications of semiconductor nanomembranes,” Nature477(7362), 45–53 (2011).
[CrossRef] [PubMed]

2010 (3)

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics4(2), 117–122 (2010).
[CrossRef]

F. Cavallo and M. G. Lagally, “Semiconductors turn soft: inorganic nanomembranes,” Soft Matter6(3), 439–455 (2010).
[CrossRef]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express18(24), 25283–25291 (2010).
[CrossRef] [PubMed]

2009 (6)

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of Photonic Wire and Crystal Circuits in Silicon-on-Insulator Using 193-nm Optical Lithography,” J. Lightwave Technol.27(18), 4076–4083 (2009).
[CrossRef]

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett.94(14), 141108 (2009).
[CrossRef]

Y. B. Tang, D. X. Dai, and S. L. He, “Proposal for a Grating Waveguide Serving as Both a Polarization Splitter and an Efficient Coupler for Silicon-on-Insulator Nanophotonic Circuits,” IEEE Photon. Technol. Lett.21(4), 242–244 (2009).
[CrossRef]

D.-H. Kim and J. A. Rogers, “Bend, buckle, and fold: mechanical engineering with nanomembranes,” ACS Nano3(3), 498–501 (2009).
[CrossRef] [PubMed]

W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282(9), 1767–1770 (2009).
[CrossRef]

2008 (3)

Y. Amemiya, Y. Tanushi, T. Tokunaga, and S. Yokoyama, “Photoelastic effect in silicon ring resonators,” Jpn. J. Appl. Phys.47(4), 2910–2914 (2008).
[CrossRef]

D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008).
[CrossRef] [PubMed]

U. Plachetka, N. Koo, T. Wahlbrink, J. Bolten, M. Waldow, T. Plotzing, M. Forst, and H. Kurz, “Fabrication of photonic ring resonator device in silicon waveguide technology using soft UV-nanoimprint lithography,” IEEE Photon. Technol. Lett.20(7), 490–492 (2008).
[CrossRef]

2007 (2)

D. Taillaert, W. V. Paepegem, J. Vlekken, and R. Baets, “A thin foil optical strain gage based on silicon-on-insulator microresonators,” Proc. SPIE6619, 661914, 661914-4 (2007).
[CrossRef]

B. Bhola and W. H. Steier, “A novel optical microring resonator accelerometer,” IEEE Sens. J.7(12), 1759–1766 (2007).
[CrossRef]

2006 (1)

2005 (3)

T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness, in microphotonic waveguides,” J. Lightwave Technol.23(9), 2719–2732 (2005).
[CrossRef]

B. Bhola, H. C. Song, H. Tazawa, and W. H. Steier, “Polymer microresonator strain sensors,” IEEE Photon. Technol. Lett.17(4), 867–869 (2005).
[CrossRef]

A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett.41(25), 1377–1379 (2005).
[CrossRef]

2004 (2)

W. Bogaerts, P. Dumon, D. Taillaert, V. Wiaux, S. Beckx, B. Luyssaert, J. Van Campenhout, D. Van Thourhout, and R. Baets, “SOI nanophotonic waveguide structures fabricated with deep UV lithography,” Photon. Nano. Fund. Appl.2(2), 81–86 (2004).
[CrossRef]

S. Ashkenazi, C. Y. Chao, L. J. Guo, and M. O'Donnell, “Ultrasound detection using polymer microring optical resonator,” Appl. Phys. Lett.85(22), 5418–5420 (2004).
[CrossRef]

2002 (1)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

2001 (1)

2000 (1)

S. R. Quake and A. Scherer, “From micro- to nanofabrication with soft materials,” Science290(5496), 1536–1540 (2000).
[CrossRef] [PubMed]

1999 (2)

H. Gleskova and S. Wagner, “Amorphous silicon thin-film transistors on compliant polyimide foil substrates,” IEEE Electron Device Lett.20(9), 473–475 (1999).
[CrossRef]

Z. Suo, E. Y. Ma, H. Gleskova, and S. Wagner, “Mechanics of rollable and foldable film-on-foil electronics,” Appl. Phys. Lett.74(8), 1177–1179 (1999).
[CrossRef]

1973 (1)

O. Renner and J. Zemek, “Density of amorphous silicon films,” Czech. J. Phys. B23, 1273–1276 (1973).

Ahn, J. H.

D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008).
[CrossRef] [PubMed]

Amemiya, Y.

Y. Amemiya, Y. Tanushi, T. Tokunaga, and S. Yokoyama, “Photoelastic effect in silicon ring resonators,” Jpn. J. Appl. Phys.47(4), 2910–2914 (2008).
[CrossRef]

Ashkenazi, S.

S. Ashkenazi, C. Y. Chao, L. J. Guo, and M. O'Donnell, “Ultrasound detection using polymer microring optical resonator,” Appl. Phys. Lett.85(22), 5418–5420 (2004).
[CrossRef]

Baca, A. J.

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol.6(7), 402–407 (2011).
[CrossRef] [PubMed]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of Photonic Wire and Crystal Circuits in Silicon-on-Insulator Using 193-nm Optical Lithography,” J. Lightwave Technol.27(18), 4076–4083 (2009).
[CrossRef]

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282(9), 1767–1770 (2009).
[CrossRef]

D. Taillaert, W. V. Paepegem, J. Vlekken, and R. Baets, “A thin foil optical strain gage based on silicon-on-insulator microresonators,” Proc. SPIE6619, 661914, 661914-4 (2007).
[CrossRef]

W. Bogaerts, P. Dumon, D. Taillaert, V. Wiaux, S. Beckx, B. Luyssaert, J. Van Campenhout, D. Van Thourhout, and R. Baets, “SOI nanophotonic waveguide structures fabricated with deep UV lithography,” Photon. Nano. Fund. Appl.2(2), 81–86 (2004).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

Barwicz, T.

Beals, M.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett.94(14), 141108 (2009).
[CrossRef]

Beckx, S.

W. Bogaerts, P. Dumon, D. Taillaert, V. Wiaux, S. Beckx, B. Luyssaert, J. Van Campenhout, D. Van Thourhout, and R. Baets, “SOI nanophotonic waveguide structures fabricated with deep UV lithography,” Photon. Nano. Fund. Appl.2(2), 81–86 (2004).
[CrossRef]

Bhola, B.

B. Bhola and W. H. Steier, “A novel optical microring resonator accelerometer,” IEEE Sens. J.7(12), 1759–1766 (2007).
[CrossRef]

B. Bhola, H. C. Song, H. Tazawa, and W. H. Steier, “Polymer microresonator strain sensors,” IEEE Photon. Technol. Lett.17(4), 867–869 (2005).
[CrossRef]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of Photonic Wire and Crystal Circuits in Silicon-on-Insulator Using 193-nm Optical Lithography,” J. Lightwave Technol.27(18), 4076–4083 (2009).
[CrossRef]

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282(9), 1767–1770 (2009).
[CrossRef]

W. Bogaerts, P. Dumon, D. Taillaert, V. Wiaux, S. Beckx, B. Luyssaert, J. Van Campenhout, D. Van Thourhout, and R. Baets, “SOI nanophotonic waveguide structures fabricated with deep UV lithography,” Photon. Nano. Fund. Appl.2(2), 81–86 (2004).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

Bogart, G. R.

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol.6(7), 402–407 (2011).
[CrossRef] [PubMed]

Bolten, J.

U. Plachetka, N. Koo, T. Wahlbrink, J. Bolten, M. Waldow, T. Plotzing, M. Forst, and H. Kurz, “Fabrication of photonic ring resonator device in silicon waveguide technology using soft UV-nanoimprint lithography,” IEEE Photon. Technol. Lett.20(7), 490–492 (2008).
[CrossRef]

Braun, P.

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol.6(7), 402–407 (2011).
[CrossRef] [PubMed]

Cain, T.

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol.6(7), 402–407 (2011).
[CrossRef] [PubMed]

Carlson, A.

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol.6(7), 402–407 (2011).
[CrossRef] [PubMed]

Cavallo, F.

F. Cavallo and M. G. Lagally, “Semiconductors turn soft: inorganic nanomembranes,” Soft Matter6(3), 439–455 (2010).
[CrossRef]

Chanda, D.

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol.6(7), 402–407 (2011).
[CrossRef] [PubMed]

Chao, C. Y.

S. Ashkenazi, C. Y. Chao, L. J. Guo, and M. O'Donnell, “Ultrasound detection using polymer microring optical resonator,” Appl. Phys. Lett.85(22), 5418–5420 (2004).
[CrossRef]

Chen, L.

W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

Cheng, J.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett.94(14), 141108 (2009).
[CrossRef]

Choi, W. M.

D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008).
[CrossRef] [PubMed]

Chuwongin, S.

W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

Dai, D. X.

Y. B. Tang, D. X. Dai, and S. L. He, “Proposal for a Grating Waveguide Serving as Both a Polarization Splitter and an Efficient Coupler for Silicon-on-Insulator Nanophotonic Circuits,” IEEE Photon. Technol. Lett.21(4), 242–244 (2009).
[CrossRef]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

De Mesel, K.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

DeRose, G. A.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of Photonic Wire and Crystal Circuits in Silicon-on-Insulator Using 193-nm Optical Lithography,” J. Lightwave Technol.27(18), 4076–4083 (2009).
[CrossRef]

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282(9), 1767–1770 (2009).
[CrossRef]

W. Bogaerts, P. Dumon, D. Taillaert, V. Wiaux, S. Beckx, B. Luyssaert, J. Van Campenhout, D. Van Thourhout, and R. Baets, “SOI nanophotonic waveguide structures fabricated with deep UV lithography,” Photon. Nano. Fund. Appl.2(2), 81–86 (2004).
[CrossRef]

Fan, L.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. H. Qi, “An all-silicon passive optical diode,” Science335(6067), 447–450 (2012).
[CrossRef] [PubMed]

Forst, M.

U. Plachetka, N. Koo, T. Wahlbrink, J. Bolten, M. Waldow, T. Plotzing, M. Forst, and H. Kurz, “Fabrication of photonic ring resonator device in silicon waveguide technology using soft UV-nanoimprint lithography,” IEEE Photon. Technol. Lett.20(7), 490–492 (2008).
[CrossRef]

Ghaffari, R.

D.-H. Kim, N. Lu, R. Ghaffari, and J. A. Rogers, “Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics,” NPG Asia Mater.4(4), e15 (2012).
[CrossRef]

Gleskova, H.

H. Gleskova and S. Wagner, “Amorphous silicon thin-film transistors on compliant polyimide foil substrates,” IEEE Electron Device Lett.20(9), 473–475 (1999).
[CrossRef]

Z. Suo, E. Y. Ma, H. Gleskova, and S. Wagner, “Mechanics of rollable and foldable film-on-foil electronics,” Appl. Phys. Lett.74(8), 1177–1179 (1999).
[CrossRef]

Guo, L. J.

S. Ashkenazi, C. Y. Chao, L. J. Guo, and M. O'Donnell, “Ultrasound detection using polymer microring optical resonator,” Appl. Phys. Lett.85(22), 5418–5420 (2004).
[CrossRef]

Gupta, S.

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol.6(7), 402–407 (2011).
[CrossRef] [PubMed]

Harke, A.

A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett.41(25), 1377–1379 (2005).
[CrossRef]

Harmsma, P. J.

Haus, H. A.

He, S. L.

Y. B. Tang, D. X. Dai, and S. L. He, “Proposal for a Grating Waveguide Serving as Both a Polarization Splitter and an Efficient Coupler for Silicon-on-Insulator Nanophotonic Circuits,” IEEE Photon. Technol. Lett.21(4), 242–244 (2009).
[CrossRef]

Huang, Y. Y.

D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008).
[CrossRef] [PubMed]

Jaenen, P.

Joannopoulos, J. D.

Johnson, H. T.

J. Yoon, L. F. Li, A. V. Semichaevsky, J. H. Ryu, H. T. Johnson, R. G. Nuzzo, and J. A. Rogers, “Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides,” Nat Commun2, 343 (2011).
[CrossRef] [PubMed]

Johnson, S. G.

Khan, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics4(2), 117–122 (2010).
[CrossRef]

Kim, D. H.

D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008).
[CrossRef] [PubMed]

Kim, D.-H.

D.-H. Kim, N. Lu, R. Ghaffari, and J. A. Rogers, “Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics,” NPG Asia Mater.4(4), e15 (2012).
[CrossRef]

D.-H. Kim and J. A. Rogers, “Bend, buckle, and fold: mechanical engineering with nanomembranes,” ACS Nano3(3), 498–501 (2009).
[CrossRef] [PubMed]

Kim, H. S.

D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008).
[CrossRef] [PubMed]

Kim, T. H.

D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008).
[CrossRef] [PubMed]

Kimerling, L. C.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett.94(14), 141108 (2009).
[CrossRef]

Koo, N.

U. Plachetka, N. Koo, T. Wahlbrink, J. Bolten, M. Waldow, T. Plotzing, M. Forst, and H. Kurz, “Fabrication of photonic ring resonator device in silicon waveguide technology using soft UV-nanoimprint lithography,” IEEE Photon. Technol. Lett.20(7), 490–492 (2008).
[CrossRef]

Krause, M.

A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett.41(25), 1377–1379 (2005).
[CrossRef]

Krauss, T. F.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

Kurz, H.

U. Plachetka, N. Koo, T. Wahlbrink, J. Bolten, M. Waldow, T. Plotzing, M. Forst, and H. Kurz, “Fabrication of photonic ring resonator device in silicon waveguide technology using soft UV-nanoimprint lithography,” IEEE Photon. Technol. Lett.20(7), 490–492 (2008).
[CrossRef]

Kwong, D. L.

Lagally, M. G.

J. A. Rogers, M. G. Lagally, and R. G. Nuzzo, “Synthesis, assembly and applications of semiconductor nanomembranes,” Nature477(7362), 45–53 (2011).
[CrossRef] [PubMed]

F. Cavallo and M. G. Lagally, “Semiconductors turn soft: inorganic nanomembranes,” Soft Matter6(3), 439–455 (2010).
[CrossRef]

Leaird, D. E.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics4(2), 117–122 (2010).
[CrossRef]

Leinders, S. M.

Li, L. F.

J. Yoon, L. F. Li, A. V. Semichaevsky, J. H. Ryu, H. T. Johnson, R. G. Nuzzo, and J. A. Rogers, “Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides,” Nat Commun2, 343 (2011).
[CrossRef] [PubMed]

Liu, Z. J.

D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008).
[CrossRef] [PubMed]

Lo, G. Q.

Lu, C.

D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008).
[CrossRef] [PubMed]

Lu, N.

D.-H. Kim, N. Lu, R. Ghaffari, and J. A. Rogers, “Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics,” NPG Asia Mater.4(4), e15 (2012).
[CrossRef]

Luyssaert, B.

W. Bogaerts, P. Dumon, D. Taillaert, V. Wiaux, S. Beckx, B. Luyssaert, J. Van Campenhout, D. Van Thourhout, and R. Baets, “SOI nanophotonic waveguide structures fabricated with deep UV lithography,” Photon. Nano. Fund. Appl.2(2), 81–86 (2004).
[CrossRef]

Ma, E. Y.

Z. Suo, E. Y. Ma, H. Gleskova, and S. Wagner, “Mechanics of rollable and foldable film-on-foil electronics,” Appl. Phys. Lett.74(8), 1177–1179 (1999).
[CrossRef]

Ma, Z. Q.

W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

McComber, K.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett.94(14), 141108 (2009).
[CrossRef]

Michel, J.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett.94(14), 141108 (2009).
[CrossRef]

Mihi, A.

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol.6(7), 402–407 (2011).
[CrossRef] [PubMed]

Moerman, I.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

Mueller, J.

A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett.41(25), 1377–1379 (2005).
[CrossRef]

Niu, B.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. H. Qi, “An all-silicon passive optical diode,” Science335(6067), 447–450 (2012).
[CrossRef] [PubMed]

Nuzzo, R. G.

J. A. Rogers, M. G. Lagally, and R. G. Nuzzo, “Synthesis, assembly and applications of semiconductor nanomembranes,” Nature477(7362), 45–53 (2011).
[CrossRef] [PubMed]

J. Yoon, L. F. Li, A. V. Semichaevsky, J. H. Ryu, H. T. Johnson, R. G. Nuzzo, and J. A. Rogers, “Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides,” Nat Commun2, 343 (2011).
[CrossRef] [PubMed]

O'Donnell, M.

S. Ashkenazi, C. Y. Chao, L. J. Guo, and M. O'Donnell, “Ultrasound detection using polymer microring optical resonator,” Appl. Phys. Lett.85(22), 5418–5420 (2004).
[CrossRef]

Paepegem, W. V.

D. Taillaert, W. V. Paepegem, J. Vlekken, and R. Baets, “A thin foil optical strain gage based on silicon-on-insulator microresonators,” Proc. SPIE6619, 661914, 661914-4 (2007).
[CrossRef]

Pang, H. Q.

W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

Plachetka, U.

U. Plachetka, N. Koo, T. Wahlbrink, J. Bolten, M. Waldow, T. Plotzing, M. Forst, and H. Kurz, “Fabrication of photonic ring resonator device in silicon waveguide technology using soft UV-nanoimprint lithography,” IEEE Photon. Technol. Lett.20(7), 490–492 (2008).
[CrossRef]

Plotzing, T.

U. Plachetka, N. Koo, T. Wahlbrink, J. Bolten, M. Waldow, T. Plotzing, M. Forst, and H. Kurz, “Fabrication of photonic ring resonator device in silicon waveguide technology using soft UV-nanoimprint lithography,” IEEE Photon. Technol. Lett.20(7), 490–492 (2008).
[CrossRef]

Poon, J. K. S.

Pozo, J.

Qi, M. H.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. H. Qi, “An all-silicon passive optical diode,” Science335(6067), 447–450 (2012).
[CrossRef] [PubMed]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics4(2), 117–122 (2010).
[CrossRef]

Qiang, Z. X.

W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

Qin, G. X.

W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

Quake, S. R.

S. R. Quake and A. Scherer, “From micro- to nanofabrication with soft materials,” Science290(5496), 1536–1540 (2000).
[CrossRef] [PubMed]

Renner, O.

O. Renner and J. Zemek, “Density of amorphous silicon films,” Czech. J. Phys. B23, 1273–1276 (1973).

Rogers, J. A.

D.-H. Kim, N. Lu, R. Ghaffari, and J. A. Rogers, “Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics,” NPG Asia Mater.4(4), e15 (2012).
[CrossRef]

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol.6(7), 402–407 (2011).
[CrossRef] [PubMed]

J. Yoon, L. F. Li, A. V. Semichaevsky, J. H. Ryu, H. T. Johnson, R. G. Nuzzo, and J. A. Rogers, “Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides,” Nat Commun2, 343 (2011).
[CrossRef] [PubMed]

J. A. Rogers, M. G. Lagally, and R. G. Nuzzo, “Synthesis, assembly and applications of semiconductor nanomembranes,” Nature477(7362), 45–53 (2011).
[CrossRef] [PubMed]

D.-H. Kim and J. A. Rogers, “Bend, buckle, and fold: mechanical engineering with nanomembranes,” ACS Nano3(3), 498–501 (2009).
[CrossRef] [PubMed]

D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008).
[CrossRef] [PubMed]

Ryu, J. H.

J. Yoon, L. F. Li, A. V. Semichaevsky, J. H. Ryu, H. T. Johnson, R. G. Nuzzo, and J. A. Rogers, “Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides,” Nat Commun2, 343 (2011).
[CrossRef] [PubMed]

Schaekers, M.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282(9), 1767–1770 (2009).
[CrossRef]

Scherer, A.

S. R. Quake and A. Scherer, “From micro- to nanofabrication with soft materials,” Science290(5496), 1536–1540 (2000).
[CrossRef] [PubMed]

Schmits, R.

Selvaraja, S. K.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282(9), 1767–1770 (2009).
[CrossRef]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of Photonic Wire and Crystal Circuits in Silicon-on-Insulator Using 193-nm Optical Lithography,” J. Lightwave Technol.27(18), 4076–4083 (2009).
[CrossRef]

Semichaevsky, A. V.

J. Yoon, L. F. Li, A. V. Semichaevsky, J. H. Ryu, H. T. Johnson, R. G. Nuzzo, and J. A. Rogers, “Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides,” Nat Commun2, 343 (2011).
[CrossRef] [PubMed]

Shen, H.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. H. Qi, “An all-silicon passive optical diode,” Science335(6067), 447–450 (2012).
[CrossRef] [PubMed]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics4(2), 117–122 (2010).
[CrossRef]

Shigeta, K.

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol.6(7), 402–407 (2011).
[CrossRef] [PubMed]

Sleeckx, E.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282(9), 1767–1770 (2009).
[CrossRef]

Song, H. C.

B. Bhola, H. C. Song, H. Tazawa, and W. H. Steier, “Polymer microresonator strain sensors,” IEEE Photon. Technol. Lett.17(4), 867–869 (2005).
[CrossRef]

Song, J. Z.

D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008).
[CrossRef] [PubMed]

Sparacin, D. K.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett.94(14), 141108 (2009).
[CrossRef]

Steier, W. H.

B. Bhola and W. H. Steier, “A novel optical microring resonator accelerometer,” IEEE Sens. J.7(12), 1759–1766 (2007).
[CrossRef]

B. Bhola, H. C. Song, H. Tazawa, and W. H. Steier, “Polymer microresonator strain sensors,” IEEE Photon. Technol. Lett.17(4), 867–869 (2005).
[CrossRef]

Sun, R.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett.94(14), 141108 (2009).
[CrossRef]

Suo, Z.

Z. Suo, E. Y. Ma, H. Gleskova, and S. Wagner, “Mechanics of rollable and foldable film-on-foil electronics,” Appl. Phys. Lett.74(8), 1177–1179 (1999).
[CrossRef]

Tabak, E.

Taillaert, D.

D. Taillaert, W. V. Paepegem, J. Vlekken, and R. Baets, “A thin foil optical strain gage based on silicon-on-insulator microresonators,” Proc. SPIE6619, 661914, 661914-4 (2007).
[CrossRef]

W. Bogaerts, P. Dumon, D. Taillaert, V. Wiaux, S. Beckx, B. Luyssaert, J. Van Campenhout, D. Van Thourhout, and R. Baets, “SOI nanophotonic waveguide structures fabricated with deep UV lithography,” Photon. Nano. Fund. Appl.2(2), 81–86 (2004).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

Tang, Y. B.

Y. B. Tang, D. X. Dai, and S. L. He, “Proposal for a Grating Waveguide Serving as Both a Polarization Splitter and an Efficient Coupler for Silicon-on-Insulator Nanophotonic Circuits,” IEEE Photon. Technol. Lett.21(4), 242–244 (2009).
[CrossRef]

Tanushi, Y.

Y. Amemiya, Y. Tanushi, T. Tokunaga, and S. Yokoyama, “Photoelastic effect in silicon ring resonators,” Jpn. J. Appl. Phys.47(4), 2910–2914 (2008).
[CrossRef]

Tazawa, H.

B. Bhola, H. C. Song, H. Tazawa, and W. H. Steier, “Polymer microresonator strain sensors,” IEEE Photon. Technol. Lett.17(4), 867–869 (2005).
[CrossRef]

Tokunaga, T.

Y. Amemiya, Y. Tanushi, T. Tokunaga, and S. Yokoyama, “Photoelastic effect in silicon ring resonators,” Jpn. J. Appl. Phys.47(4), 2910–2914 (2008).
[CrossRef]

Urbach, H. P.

Van Campenhout, J.

W. Bogaerts, P. Dumon, D. Taillaert, V. Wiaux, S. Beckx, B. Luyssaert, J. Van Campenhout, D. Van Thourhout, and R. Baets, “SOI nanophotonic waveguide structures fabricated with deep UV lithography,” Photon. Nano. Fund. Appl.2(2), 81–86 (2004).
[CrossRef]

Van Daele, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

van den Dool, T. C.

van Dongen, K. W. A.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of Photonic Wire and Crystal Circuits in Silicon-on-Insulator Using 193-nm Optical Lithography,” J. Lightwave Technol.27(18), 4076–4083 (2009).
[CrossRef]

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282(9), 1767–1770 (2009).
[CrossRef]

W. Bogaerts, P. Dumon, D. Taillaert, V. Wiaux, S. Beckx, B. Luyssaert, J. Van Campenhout, D. Van Thourhout, and R. Baets, “SOI nanophotonic waveguide structures fabricated with deep UV lithography,” Photon. Nano. Fund. Appl.2(2), 81–86 (2004).
[CrossRef]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

Varghese, L. T.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. H. Qi, “An all-silicon passive optical diode,” Science335(6067), 447–450 (2012).
[CrossRef] [PubMed]

Verstuyft, S.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

Vlekken, J.

D. Taillaert, W. V. Paepegem, J. Vlekken, and R. Baets, “A thin foil optical strain gage based on silicon-on-insulator microresonators,” Proc. SPIE6619, 661914, 661914-4 (2007).
[CrossRef]

Wagner, S.

H. Gleskova and S. Wagner, “Amorphous silicon thin-film transistors on compliant polyimide foil substrates,” IEEE Electron Device Lett.20(9), 473–475 (1999).
[CrossRef]

Z. Suo, E. Y. Ma, H. Gleskova, and S. Wagner, “Mechanics of rollable and foldable film-on-foil electronics,” Appl. Phys. Lett.74(8), 1177–1179 (1999).
[CrossRef]

Wahlbrink, T.

U. Plachetka, N. Koo, T. Wahlbrink, J. Bolten, M. Waldow, T. Plotzing, M. Forst, and H. Kurz, “Fabrication of photonic ring resonator device in silicon waveguide technology using soft UV-nanoimprint lithography,” IEEE Photon. Technol. Lett.20(7), 490–492 (2008).
[CrossRef]

Waldow, M.

U. Plachetka, N. Koo, T. Wahlbrink, J. Bolten, M. Waldow, T. Plotzing, M. Forst, and H. Kurz, “Fabrication of photonic ring resonator device in silicon waveguide technology using soft UV-nanoimprint lithography,” IEEE Photon. Technol. Lett.20(7), 490–492 (2008).
[CrossRef]

Wang, J.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. H. Qi, “An all-silicon passive optical diode,” Science335(6067), 447–450 (2012).
[CrossRef] [PubMed]

Weiner, A. M.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. H. Qi, “An all-silicon passive optical diode,” Science335(6067), 447–450 (2012).
[CrossRef] [PubMed]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics4(2), 117–122 (2010).
[CrossRef]

Westerveld, W. J.

Wiaux, V.

W. Bogaerts, P. Dumon, D. Taillaert, V. Wiaux, S. Beckx, B. Luyssaert, J. Van Campenhout, D. Van Thourhout, and R. Baets, “SOI nanophotonic waveguide structures fabricated with deep UV lithography,” Photon. Nano. Fund. Appl.2(2), 81–86 (2004).
[CrossRef]

Xiao, S. J.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics4(2), 117–122 (2010).
[CrossRef]

Xuan, Y.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. H. Qi, “An all-silicon passive optical diode,” Science335(6067), 447–450 (2012).
[CrossRef] [PubMed]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics4(2), 117–122 (2010).
[CrossRef]

Yang, H. J.

W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

Yang, W. Q.

W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

Yariv, A.

Yokoyama, S.

Y. Amemiya, Y. Tanushi, T. Tokunaga, and S. Yokoyama, “Photoelastic effect in silicon ring resonators,” Jpn. J. Appl. Phys.47(4), 2910–2914 (2008).
[CrossRef]

Yoon, J.

J. Yoon, L. F. Li, A. V. Semichaevsky, J. H. Ryu, H. T. Johnson, R. G. Nuzzo, and J. A. Rogers, “Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides,” Nat Commun2, 343 (2011).
[CrossRef] [PubMed]

Yousefi, M.

Zemek, J.

O. Renner and J. Zemek, “Density of amorphous silicon films,” Czech. J. Phys. B23, 1273–1276 (1973).

Zhao, D. Y.

W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

Zhao, L.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics4(2), 117–122 (2010).
[CrossRef]

Zhou, W. D.

W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

Zhu, L.

Zhu, S. Y.

ACS Nano (1)

D.-H. Kim and J. A. Rogers, “Bend, buckle, and fold: mechanical engineering with nanomembranes,” ACS Nano3(3), 498–501 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

S. Ashkenazi, C. Y. Chao, L. J. Guo, and M. O'Donnell, “Ultrasound detection using polymer microring optical resonator,” Appl. Phys. Lett.85(22), 5418–5420 (2004).
[CrossRef]

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett.94(14), 141108 (2009).
[CrossRef]

Z. Suo, E. Y. Ma, H. Gleskova, and S. Wagner, “Mechanics of rollable and foldable film-on-foil electronics,” Appl. Phys. Lett.74(8), 1177–1179 (1999).
[CrossRef]

Czech. J. Phys. B (1)

O. Renner and J. Zemek, “Density of amorphous silicon films,” Czech. J. Phys. B23, 1273–1276 (1973).

Electron. Lett. (1)

A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett.41(25), 1377–1379 (2005).
[CrossRef]

IEEE Electron Device Lett. (1)

H. Gleskova and S. Wagner, “Amorphous silicon thin-film transistors on compliant polyimide foil substrates,” IEEE Electron Device Lett.20(9), 473–475 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Y. B. Tang, D. X. Dai, and S. L. He, “Proposal for a Grating Waveguide Serving as Both a Polarization Splitter and an Efficient Coupler for Silicon-on-Insulator Nanophotonic Circuits,” IEEE Photon. Technol. Lett.21(4), 242–244 (2009).
[CrossRef]

U. Plachetka, N. Koo, T. Wahlbrink, J. Bolten, M. Waldow, T. Plotzing, M. Forst, and H. Kurz, “Fabrication of photonic ring resonator device in silicon waveguide technology using soft UV-nanoimprint lithography,” IEEE Photon. Technol. Lett.20(7), 490–492 (2008).
[CrossRef]

B. Bhola, H. C. Song, H. Tazawa, and W. H. Steier, “Polymer microresonator strain sensors,” IEEE Photon. Technol. Lett.17(4), 867–869 (2005).
[CrossRef]

IEEE Sens. J. (1)

B. Bhola and W. H. Steier, “A novel optical microring resonator accelerometer,” IEEE Sens. J.7(12), 1759–1766 (2007).
[CrossRef]

J. Lightwave Technol. (3)

J. Phys. D Appl. Phys. (1)

W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Amemiya, Y. Tanushi, T. Tokunaga, and S. Yokoyama, “Photoelastic effect in silicon ring resonators,” Jpn. J. Appl. Phys.47(4), 2910–2914 (2008).
[CrossRef]

Laser Photon. Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

Nat Commun (1)

J. Yoon, L. F. Li, A. V. Semichaevsky, J. H. Ryu, H. T. Johnson, R. G. Nuzzo, and J. A. Rogers, “Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides,” Nat Commun2, 343 (2011).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol.6(7), 402–407 (2011).
[CrossRef] [PubMed]

Nat. Photonics (1)

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics4(2), 117–122 (2010).
[CrossRef]

Nature (1)

J. A. Rogers, M. G. Lagally, and R. G. Nuzzo, “Synthesis, assembly and applications of semiconductor nanomembranes,” Nature477(7362), 45–53 (2011).
[CrossRef] [PubMed]

NPG Asia Mater. (1)

D.-H. Kim, N. Lu, R. Ghaffari, and J. A. Rogers, “Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics,” NPG Asia Mater.4(4), e15 (2012).
[CrossRef]

Opt. Commun. (1)

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282(9), 1767–1770 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Photon. Nano. Fund. Appl. (1)

W. Bogaerts, P. Dumon, D. Taillaert, V. Wiaux, S. Beckx, B. Luyssaert, J. Van Campenhout, D. Van Thourhout, and R. Baets, “SOI nanophotonic waveguide structures fabricated with deep UV lithography,” Photon. Nano. Fund. Appl.2(2), 81–86 (2004).
[CrossRef]

Proc. SPIE (1)

D. Taillaert, W. V. Paepegem, J. Vlekken, and R. Baets, “A thin foil optical strain gage based on silicon-on-insulator microresonators,” Proc. SPIE6619, 661914, 661914-4 (2007).
[CrossRef]

Science (3)

S. R. Quake and A. Scherer, “From micro- to nanofabrication with soft materials,” Science290(5496), 1536–1540 (2000).
[CrossRef] [PubMed]

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. H. Qi, “An all-silicon passive optical diode,” Science335(6067), 447–450 (2012).
[CrossRef] [PubMed]

D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008).
[CrossRef] [PubMed]

Soft Matter (1)

F. Cavallo and M. G. Lagally, “Semiconductors turn soft: inorganic nanomembranes,” Soft Matter6(3), 439–455 (2010).
[CrossRef]

Other (2)

L. B. Freund and S. Suresh, Thin Film Materials: Stress, Defect Formation, and Surface eEolution (Cambridge University Press, Cambridge, UK; New York, 2003).

D. J. McClure, “Polyester (PET) Film as a Substrate: a Tutorial,” in Proceedings of the 50th Anuual Technical Conference of the Society of Vacuum Coaters(2007), pp. 692–699 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Direct fabrication process flow. (a) A flexible plastic film is thoroughly cleaned. (b) Amorphous silicon is deposited on top surface using PECVD. (c-d) Sample is sandwiched between two rigid holders. One of them is a silicon wafer, and the other is a silicon wafer with a through-the-wafer opening. (e) Resist is spun over the surface of the sandwiched structure. (f-g) Pattern is written with EBL and etched into silicon with reactive-ion etching (RIE). (h) Surface is overcladded with an index-matching layer and the holders are removed. (i) Free-standing devices without the frame outline.

Fig. 2
Fig. 2

Optical images of fabricated devices. (a) The plastic sample is held between two fingers to show its mechanical flexibility. (b) The sample is highly transparent in visible spectrum. (c) Amorphous silicon devices under optical microscope. (d) Zoomed-in view of a 5 µm-radius microring resonator.

Fig. 3
Fig. 3

Measurement setup, strain estimation, and transmission spectrum of a microring device on a flexible substrate. (a) Illustration of the optical measurement setup. Micrometer stages introduce controlled strain onto the sample by bending it upward or downward. (b) Photograph of the real setup. (c) Transmission spectrum of the grating coupler with dips corresponding to the resonance of a 5 µm-radius microring resonator. The inset shows the transmission spectrum (blue) and Lorentzian fitting (red) of the resonance dip near 1550 nm.

Fig. 4
Fig. 4

Resonance wavelength shift under strain. (a) The transmission spectra of a microring resonator at increasing strain are plotted with an offset in y axis. (b) Average and standard deviation of the resonance wavelength shift verses strain. The error bar at each data point is the standard deviation from measuring different samples.

Fig. 5
Fig. 5

Change of quality factor and extinction ratio under strain. (a) The quality factor versus strain. (b) The extinction ratio versus strain. Both (a) and (b) are taken at the FSR near 1550 nm for a typical microring device. Linear fittings are plotted to reflect the trend.

Fig. 6
Fig. 6

Effects of strain direction and bending direction. (a) The wavelength shift vs. strain of the microring when strain is applied in the direction along its coupling. (b) The wavelength shift vs. strain when the strain is applied in the perpendicular direction. The insets in (a) and (b) illustrate the direction of applied strain with regard to the device. Circles are measured data points and lines are linear fittings. Red denotes increasing strain (sample bending up) while blue denotes decreasing strain (sample bending down). (c) Side-view illustrations of the sample undergoing bending up and bending down measurements.

Fig. 7
Fig. 7

COMSOL simulation on the deformation of the microring waveguide under strain. (a) The displacement of the substrate under strain. The plastic substrate bends upward and causes deformation of the ring. (b) The strain distribution for the microring and the surrounding area along the uniaxial strain direction (x-direction) obtained from simulation. The calculation shown in the plot corresponds to a surface strain of ~6000 µε. The four waveguide cross-sections that are parallel to the strain direction (labeled as 1 in the graph) and perpendicular to the strain direction (labeled as 2 in the graph) are of particular interest. The changes in their dimensions (area, height, weight) are examined at different strain values and plotted in (c-f) respectively. (f) Increment of the microring circumference versus strain.

Fig. 8
Fig. 8

Effect of residual strain. (a) Resonance wavelength shift with regard to the maximum strain the sample has experienced. Red line gives the linear fit of the shift caused by residual strain. Data are averaged over all the FSRs and error bars are given. (b) Quality factor versus strain. (c) Extinction ratio versus strain. (b) and (c) are taken for a typical device at the FSR near 1550 nm. Linear fitting of the data are drawn to reflect the trend.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

m λ res = n e l where m=1,2,3...
m λ res S = n e S l+ n e λ res λ res S l+ n e l S
λ res S = n e n g λ 0 l 0 l S + λ 0 n g n e S

Metrics