Abstract

Accurate estimation of the diffuse attenuation coefficient is critical for our understanding and modelling of key physical, chemical, and biological processes in water bodies. For extremely turbid, shallow, Lake Taihu in China, we synchronously monitored the diffuse attenuation coefficient of photosynthetically active radiation (Kd(PAR)) and the remote sensing reflectance at 134 sites. Kd(PAR)) varied greatly among different sites from 1.62 to 14.68 m−1 with a mean value of 5.62 ± 2.99 m−1. A simple optical model from near-infrared remote sensing reflectance of MODIS channels 2 (859 nm) and 15 (748 nm) was calibrated, and validated, to estimate Kd(PAR). With the simple optical model, the root mean square error and mean relative error were 0.95 m−1 and 17.0% respectively at 748 nm, and 0.98 m−1 and 17.6% at 859 nm, based on an independent validation data set. Our results showed a good precision of estimation for Kd(PAR) using the new simple optical model, contrasting with the poor estimations derived from existing empirical and semi-analytical models developed in clear, open ocean waters or slightly turbid coastal waters. Although at 748 nm the model had slightly higher precision than at 859 nm, the spatial resolution at 859 nm was four times that at 748 nm. Therefore, we propose a new model based on the MODIS-derived normalized water-leaving radiances at a wavelength of 859 nm, for accurate retrieval of Kd(PAR) in extremely turbid, shallow lakes with Kd(PAR) larger than 1.5 m−1.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. (Cambridge, Univeristy Press, 1994).
  2. Y. L. Zhang, B. Q. Qin, G. W. Zhu, G. Gao, L. C. Luo, and W. M. Chen, “Effect of sediment resuspension on underwater light field in shallow lakes in the middle and lower reaches of the Yangtze River: A case study in Longgan Lake and Taihu Lake,” Sci. China Ser. Dokl. Earth Sci.49(supp.), 114–125 (2006).
  3. S. A. Loiselle, L. Bracchini, A. Cózar, A. M. Dattilo, A. Tognazzi, and C. Rossi, “Variability in photobleaching yields and their related impacts on optical conditions in subtropical lakes,” J. Photochem. Photobiol. B-Biol.95(2), 129–137 (2009).
  4. N. Bergamino, S. Horion, S. Stenuite, Y. Cornet, S. Loiselle, P. D. Plisnier, and J. P. Descy, “Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series,” Remote Sens. Environ.114(4), 772–780 (2010).
    [CrossRef]
  5. Y. L. Zhang, B. Q. Qin, and M. L. Liu, “Temporal-spatial variations of chlorophyll a and primary production in Meiliang Bay, Lake Taihu, China from 1995 to 2003,” J. Plankton Res.29(8), 707–719 (2007).
    [CrossRef]
  6. Y. L. Zhang, B. Zhang, R. H. Ma, S. Feng, and C. F. Le, “Optically active substances and their contributions to the underwater light climate in Lake Taihu, a large shallow lake in China,” Fund. Appl. Limnol.170(1), 11–19 (2007).
    [CrossRef]
  7. J. L. Mueller and C. Trees, “Revised SeaWIFS prelaunch algorithm for diffuse attenuation coefficient K(490),” Case Studies for SeaWiFS Calibration and Validation41, 18–21 (1997).
  8. J. L. Mueller, “SeaWiFS algorithm for the diffuse attenuation coefficient, K(490), using water-leaving radiances at 490 and 555 nm,” SeaWiFS postlaunch calibration and validation analyses, Part3(11), 24–27 (2000).
  9. P. Chauhan, A. Sahay, A. S. Rajawat, and S. Nayak, “Remote sensing of diffuse attenuation coefficient (K490) using IRS-P4 Ocean Colour Monitor (OCM) sensor,” Indian J. Mar. Sci.32(4), 279–284 (2003).
  10. M. H. Wang, S. Son, and L. W. Harding, “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114, C10011, doi: (2009).
    [CrossRef]
  11. S. Kratzer, C. Brockmann, and G. Moore, “Using MERIS full resolution data to monitor coastal waters — A case study from Himmerfjärden, a fjord-like bay in the northwestern Baltic Sea,” Remote Sens. Environ.112(5), 2284–2300 (2008).
    [CrossRef]
  12. M. Doron, M. Babin, A. Mangin, and O. Hembise, “Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance,” J. Geophys. Res.112(C6), C06003 (2007), doi:.
    [CrossRef]
  13. T. L. Zhang and F. Fell, “An empirical algorithm for determining the diffuse attenuation coefficient Kd in clear and turbid waters from spectral remote sensing reflectance,” Limnol. Oceanogr. Methods5, 457–462 (2007).
    [CrossRef]
  14. A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ.111(1), 69–88 (2007).
    [CrossRef]
  15. Z. P. Lee, M. Darecki, K. Carder, C. Davis, D. Stramski, and W. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res.110(C2), C02017 (2005), doi:.
    [CrossRef]
  16. Z. P. Lee, K. Du, and R. Arnone, “A model for the diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res.110(C2), C02016 (2005), doi:.
    [CrossRef]
  17. M. H. Wang, W. Shi, and J. W. Tang, “Water property monitoring and assessment for China's inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ.115(3), 841–854 (2011).
    [CrossRef]
  18. Y. L. Zhang, L. Q. Feng, J. S. Li, L. C. Luo, Y. Yin, M. L. Liu, and Y. L. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res.32(7), 1023–1037 (2010).
    [CrossRef]
  19. Y. L. Zhang, Y. Yin, E. L. Zhang, G. W. Zhu, M. L. Liu, L. Q. Feng, B. Q. Qin, and X. H. Liu, “Spectral attenuation of ultraviolet and visible radiation in lakes in the Yunnan Plateau, and the middle and lower reaches of the Yangtze River, China,” Photochem. Photobiol. Sci.10(4), 469–482 (2011).
    [CrossRef] [PubMed]
  20. C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Suspended particulate matter in Lake Erie derived from MODIS aquatic colour imagery,” Int. J. Remote Sens.31(19), 5239–5255 (2010).
    [CrossRef]
  21. B. Zhang, J. S. Li, Q. Shen, and D. M. Chen, “A bio-optical model based method of estimating total suspended matter of Lake Taihu from near-infrared remote sensing reflectance,” Environ. Monit. Assess.145(1-3), 339–347 (2008).
    [CrossRef] [PubMed]
  22. H. Arst, T. Nõges, P. Nõges, and B. Paavel, “Relations of phytoplankton in situ primary production, chlorophyll concentration and underwater irradiance in turbid lakes,” Hydrobiologia599(1), 169–176 (2008).
    [CrossRef]
  23. K. V. Balogh, B. Németh, and L. Vörös, “Specific attenuation coefficients of optically active substances and their contribution to the underwater ultraviolet and visible light climate in shallow lakes and ponds,” Hydrobiologia632(1), 91–105 (2009).
    [CrossRef]
  24. L. C. Lund-Hansen, T. J. Andersen, M. H. Nielsen, and M. Pejrup, “Suspended matter, Chl-a, CDOM, grain sizes, and optical properties in the Arctic fjord-type estuary, Kangerlussuaq, West Greenland during summer,” Estuaries Coasts33(6), 1442–1451 (2010).
    [CrossRef]
  25. A. C. Vincent, D. R. Mueller, and W. F. Vincent, “Simulated heat storage in a perennially ice-covered high Arctic lake: Sensitivity to climate change,” J. Geophys. Res.113(C4), C04036 (2008), doi:.
    [CrossRef]
  26. D. M. Ware and R. E. Thomson, “Bottom-up ecosystem trophic dynamics determine fish production in the Northeast Pacific,” Science308(5726), 1280–1284 (2005).
    [CrossRef] [PubMed]
  27. G. Tilahun and G. Ahlgren, “Seasonal variations in phytoplankton biomass and primaryproduction in the Ethiopian Rift Valley lakes Ziway, Awassa and Chamo – The basis for fish production,” Limnologica40(4), 330–342 (2010).
    [CrossRef]

2011

Y. L. Zhang, Y. Yin, E. L. Zhang, G. W. Zhu, M. L. Liu, L. Q. Feng, B. Q. Qin, and X. H. Liu, “Spectral attenuation of ultraviolet and visible radiation in lakes in the Yunnan Plateau, and the middle and lower reaches of the Yangtze River, China,” Photochem. Photobiol. Sci.10(4), 469–482 (2011).
[CrossRef] [PubMed]

M. H. Wang, W. Shi, and J. W. Tang, “Water property monitoring and assessment for China's inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ.115(3), 841–854 (2011).
[CrossRef]

2010

Y. L. Zhang, L. Q. Feng, J. S. Li, L. C. Luo, Y. Yin, M. L. Liu, and Y. L. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res.32(7), 1023–1037 (2010).
[CrossRef]

L. C. Lund-Hansen, T. J. Andersen, M. H. Nielsen, and M. Pejrup, “Suspended matter, Chl-a, CDOM, grain sizes, and optical properties in the Arctic fjord-type estuary, Kangerlussuaq, West Greenland during summer,” Estuaries Coasts33(6), 1442–1451 (2010).
[CrossRef]

G. Tilahun and G. Ahlgren, “Seasonal variations in phytoplankton biomass and primaryproduction in the Ethiopian Rift Valley lakes Ziway, Awassa and Chamo – The basis for fish production,” Limnologica40(4), 330–342 (2010).
[CrossRef]

C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Suspended particulate matter in Lake Erie derived from MODIS aquatic colour imagery,” Int. J. Remote Sens.31(19), 5239–5255 (2010).
[CrossRef]

N. Bergamino, S. Horion, S. Stenuite, Y. Cornet, S. Loiselle, P. D. Plisnier, and J. P. Descy, “Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series,” Remote Sens. Environ.114(4), 772–780 (2010).
[CrossRef]

2009

S. A. Loiselle, L. Bracchini, A. Cózar, A. M. Dattilo, A. Tognazzi, and C. Rossi, “Variability in photobleaching yields and their related impacts on optical conditions in subtropical lakes,” J. Photochem. Photobiol. B-Biol.95(2), 129–137 (2009).

M. H. Wang, S. Son, and L. W. Harding, “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114, C10011, doi: (2009).
[CrossRef]

K. V. Balogh, B. Németh, and L. Vörös, “Specific attenuation coefficients of optically active substances and their contribution to the underwater ultraviolet and visible light climate in shallow lakes and ponds,” Hydrobiologia632(1), 91–105 (2009).
[CrossRef]

2008

A. C. Vincent, D. R. Mueller, and W. F. Vincent, “Simulated heat storage in a perennially ice-covered high Arctic lake: Sensitivity to climate change,” J. Geophys. Res.113(C4), C04036 (2008), doi:.
[CrossRef]

S. Kratzer, C. Brockmann, and G. Moore, “Using MERIS full resolution data to monitor coastal waters — A case study from Himmerfjärden, a fjord-like bay in the northwestern Baltic Sea,” Remote Sens. Environ.112(5), 2284–2300 (2008).
[CrossRef]

B. Zhang, J. S. Li, Q. Shen, and D. M. Chen, “A bio-optical model based method of estimating total suspended matter of Lake Taihu from near-infrared remote sensing reflectance,” Environ. Monit. Assess.145(1-3), 339–347 (2008).
[CrossRef] [PubMed]

H. Arst, T. Nõges, P. Nõges, and B. Paavel, “Relations of phytoplankton in situ primary production, chlorophyll concentration and underwater irradiance in turbid lakes,” Hydrobiologia599(1), 169–176 (2008).
[CrossRef]

2007

M. Doron, M. Babin, A. Mangin, and O. Hembise, “Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance,” J. Geophys. Res.112(C6), C06003 (2007), doi:.
[CrossRef]

T. L. Zhang and F. Fell, “An empirical algorithm for determining the diffuse attenuation coefficient Kd in clear and turbid waters from spectral remote sensing reflectance,” Limnol. Oceanogr. Methods5, 457–462 (2007).
[CrossRef]

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ.111(1), 69–88 (2007).
[CrossRef]

Y. L. Zhang, B. Q. Qin, and M. L. Liu, “Temporal-spatial variations of chlorophyll a and primary production in Meiliang Bay, Lake Taihu, China from 1995 to 2003,” J. Plankton Res.29(8), 707–719 (2007).
[CrossRef]

Y. L. Zhang, B. Zhang, R. H. Ma, S. Feng, and C. F. Le, “Optically active substances and their contributions to the underwater light climate in Lake Taihu, a large shallow lake in China,” Fund. Appl. Limnol.170(1), 11–19 (2007).
[CrossRef]

2006

Y. L. Zhang, B. Q. Qin, G. W. Zhu, G. Gao, L. C. Luo, and W. M. Chen, “Effect of sediment resuspension on underwater light field in shallow lakes in the middle and lower reaches of the Yangtze River: A case study in Longgan Lake and Taihu Lake,” Sci. China Ser. Dokl. Earth Sci.49(supp.), 114–125 (2006).

2005

Z. P. Lee, M. Darecki, K. Carder, C. Davis, D. Stramski, and W. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res.110(C2), C02017 (2005), doi:.
[CrossRef]

Z. P. Lee, K. Du, and R. Arnone, “A model for the diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res.110(C2), C02016 (2005), doi:.
[CrossRef]

D. M. Ware and R. E. Thomson, “Bottom-up ecosystem trophic dynamics determine fish production in the Northeast Pacific,” Science308(5726), 1280–1284 (2005).
[CrossRef] [PubMed]

2003

P. Chauhan, A. Sahay, A. S. Rajawat, and S. Nayak, “Remote sensing of diffuse attenuation coefficient (K490) using IRS-P4 Ocean Colour Monitor (OCM) sensor,” Indian J. Mar. Sci.32(4), 279–284 (2003).

2000

J. L. Mueller, “SeaWiFS algorithm for the diffuse attenuation coefficient, K(490), using water-leaving radiances at 490 and 555 nm,” SeaWiFS postlaunch calibration and validation analyses, Part3(11), 24–27 (2000).

1997

J. L. Mueller and C. Trees, “Revised SeaWIFS prelaunch algorithm for diffuse attenuation coefficient K(490),” Case Studies for SeaWiFS Calibration and Validation41, 18–21 (1997).

Ahlgren, G.

G. Tilahun and G. Ahlgren, “Seasonal variations in phytoplankton biomass and primaryproduction in the Ethiopian Rift Valley lakes Ziway, Awassa and Chamo – The basis for fish production,” Limnologica40(4), 330–342 (2010).
[CrossRef]

Andersen, T. J.

L. C. Lund-Hansen, T. J. Andersen, M. H. Nielsen, and M. Pejrup, “Suspended matter, Chl-a, CDOM, grain sizes, and optical properties in the Arctic fjord-type estuary, Kangerlussuaq, West Greenland during summer,” Estuaries Coasts33(6), 1442–1451 (2010).
[CrossRef]

Arnone, R.

Z. P. Lee, K. Du, and R. Arnone, “A model for the diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res.110(C2), C02016 (2005), doi:.
[CrossRef]

Arst, H.

H. Arst, T. Nõges, P. Nõges, and B. Paavel, “Relations of phytoplankton in situ primary production, chlorophyll concentration and underwater irradiance in turbid lakes,” Hydrobiologia599(1), 169–176 (2008).
[CrossRef]

Babin, M.

M. Doron, M. Babin, A. Mangin, and O. Hembise, “Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance,” J. Geophys. Res.112(C6), C06003 (2007), doi:.
[CrossRef]

Balogh, K. V.

K. V. Balogh, B. Németh, and L. Vörös, “Specific attenuation coefficients of optically active substances and their contribution to the underwater ultraviolet and visible light climate in shallow lakes and ponds,” Hydrobiologia632(1), 91–105 (2009).
[CrossRef]

Bergamino, N.

N. Bergamino, S. Horion, S. Stenuite, Y. Cornet, S. Loiselle, P. D. Plisnier, and J. P. Descy, “Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series,” Remote Sens. Environ.114(4), 772–780 (2010).
[CrossRef]

Binding, C. E.

C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Suspended particulate matter in Lake Erie derived from MODIS aquatic colour imagery,” Int. J. Remote Sens.31(19), 5239–5255 (2010).
[CrossRef]

Booty, W. G.

C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Suspended particulate matter in Lake Erie derived from MODIS aquatic colour imagery,” Int. J. Remote Sens.31(19), 5239–5255 (2010).
[CrossRef]

Bracchini, L.

S. A. Loiselle, L. Bracchini, A. Cózar, A. M. Dattilo, A. Tognazzi, and C. Rossi, “Variability in photobleaching yields and their related impacts on optical conditions in subtropical lakes,” J. Photochem. Photobiol. B-Biol.95(2), 129–137 (2009).

Brockmann, C.

S. Kratzer, C. Brockmann, and G. Moore, “Using MERIS full resolution data to monitor coastal waters — A case study from Himmerfjärden, a fjord-like bay in the northwestern Baltic Sea,” Remote Sens. Environ.112(5), 2284–2300 (2008).
[CrossRef]

Bukata, R. P.

C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Suspended particulate matter in Lake Erie derived from MODIS aquatic colour imagery,” Int. J. Remote Sens.31(19), 5239–5255 (2010).
[CrossRef]

Carder, K.

Z. P. Lee, M. Darecki, K. Carder, C. Davis, D. Stramski, and W. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res.110(C2), C02017 (2005), doi:.
[CrossRef]

Chauhan, P.

P. Chauhan, A. Sahay, A. S. Rajawat, and S. Nayak, “Remote sensing of diffuse attenuation coefficient (K490) using IRS-P4 Ocean Colour Monitor (OCM) sensor,” Indian J. Mar. Sci.32(4), 279–284 (2003).

Chen, D. M.

B. Zhang, J. S. Li, Q. Shen, and D. M. Chen, “A bio-optical model based method of estimating total suspended matter of Lake Taihu from near-infrared remote sensing reflectance,” Environ. Monit. Assess.145(1-3), 339–347 (2008).
[CrossRef] [PubMed]

Chen, W. M.

Y. L. Zhang, B. Q. Qin, G. W. Zhu, G. Gao, L. C. Luo, and W. M. Chen, “Effect of sediment resuspension on underwater light field in shallow lakes in the middle and lower reaches of the Yangtze River: A case study in Longgan Lake and Taihu Lake,” Sci. China Ser. Dokl. Earth Sci.49(supp.), 114–125 (2006).

Cornet, Y.

N. Bergamino, S. Horion, S. Stenuite, Y. Cornet, S. Loiselle, P. D. Plisnier, and J. P. Descy, “Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series,” Remote Sens. Environ.114(4), 772–780 (2010).
[CrossRef]

Cózar, A.

S. A. Loiselle, L. Bracchini, A. Cózar, A. M. Dattilo, A. Tognazzi, and C. Rossi, “Variability in photobleaching yields and their related impacts on optical conditions in subtropical lakes,” J. Photochem. Photobiol. B-Biol.95(2), 129–137 (2009).

Darecki, M.

Z. P. Lee, M. Darecki, K. Carder, C. Davis, D. Stramski, and W. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res.110(C2), C02017 (2005), doi:.
[CrossRef]

Dattilo, A. M.

S. A. Loiselle, L. Bracchini, A. Cózar, A. M. Dattilo, A. Tognazzi, and C. Rossi, “Variability in photobleaching yields and their related impacts on optical conditions in subtropical lakes,” J. Photochem. Photobiol. B-Biol.95(2), 129–137 (2009).

Davis, C.

Z. P. Lee, M. Darecki, K. Carder, C. Davis, D. Stramski, and W. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res.110(C2), C02017 (2005), doi:.
[CrossRef]

Descy, J. P.

N. Bergamino, S. Horion, S. Stenuite, Y. Cornet, S. Loiselle, P. D. Plisnier, and J. P. Descy, “Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series,” Remote Sens. Environ.114(4), 772–780 (2010).
[CrossRef]

Doron, M.

M. Doron, M. Babin, A. Mangin, and O. Hembise, “Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance,” J. Geophys. Res.112(C6), C06003 (2007), doi:.
[CrossRef]

Du, K.

Z. P. Lee, K. Du, and R. Arnone, “A model for the diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res.110(C2), C02016 (2005), doi:.
[CrossRef]

Fell, F.

T. L. Zhang and F. Fell, “An empirical algorithm for determining the diffuse attenuation coefficient Kd in clear and turbid waters from spectral remote sensing reflectance,” Limnol. Oceanogr. Methods5, 457–462 (2007).
[CrossRef]

Feng, L. Q.

Y. L. Zhang, Y. Yin, E. L. Zhang, G. W. Zhu, M. L. Liu, L. Q. Feng, B. Q. Qin, and X. H. Liu, “Spectral attenuation of ultraviolet and visible radiation in lakes in the Yunnan Plateau, and the middle and lower reaches of the Yangtze River, China,” Photochem. Photobiol. Sci.10(4), 469–482 (2011).
[CrossRef] [PubMed]

Y. L. Zhang, L. Q. Feng, J. S. Li, L. C. Luo, Y. Yin, M. L. Liu, and Y. L. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res.32(7), 1023–1037 (2010).
[CrossRef]

Feng, S.

Y. L. Zhang, B. Zhang, R. H. Ma, S. Feng, and C. F. Le, “Optically active substances and their contributions to the underwater light climate in Lake Taihu, a large shallow lake in China,” Fund. Appl. Limnol.170(1), 11–19 (2007).
[CrossRef]

Franz, B. A.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ.111(1), 69–88 (2007).
[CrossRef]

Gao, G.

Y. L. Zhang, B. Q. Qin, G. W. Zhu, G. Gao, L. C. Luo, and W. M. Chen, “Effect of sediment resuspension on underwater light field in shallow lakes in the middle and lower reaches of the Yangtze River: A case study in Longgan Lake and Taihu Lake,” Sci. China Ser. Dokl. Earth Sci.49(supp.), 114–125 (2006).

Gentili, B.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ.111(1), 69–88 (2007).
[CrossRef]

Harding, L. W.

M. H. Wang, S. Son, and L. W. Harding, “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114, C10011, doi: (2009).
[CrossRef]

Hembise, O.

M. Doron, M. Babin, A. Mangin, and O. Hembise, “Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance,” J. Geophys. Res.112(C6), C06003 (2007), doi:.
[CrossRef]

Hooker, S. B.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ.111(1), 69–88 (2007).
[CrossRef]

Horion, S.

N. Bergamino, S. Horion, S. Stenuite, Y. Cornet, S. Loiselle, P. D. Plisnier, and J. P. Descy, “Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series,” Remote Sens. Environ.114(4), 772–780 (2010).
[CrossRef]

Huot, Y.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ.111(1), 69–88 (2007).
[CrossRef]

Jerome, J. H.

C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Suspended particulate matter in Lake Erie derived from MODIS aquatic colour imagery,” Int. J. Remote Sens.31(19), 5239–5255 (2010).
[CrossRef]

Kratzer, S.

S. Kratzer, C. Brockmann, and G. Moore, “Using MERIS full resolution data to monitor coastal waters — A case study from Himmerfjärden, a fjord-like bay in the northwestern Baltic Sea,” Remote Sens. Environ.112(5), 2284–2300 (2008).
[CrossRef]

Le, C. F.

Y. L. Zhang, B. Zhang, R. H. Ma, S. Feng, and C. F. Le, “Optically active substances and their contributions to the underwater light climate in Lake Taihu, a large shallow lake in China,” Fund. Appl. Limnol.170(1), 11–19 (2007).
[CrossRef]

Lee, Z. P.

Z. P. Lee, M. Darecki, K. Carder, C. Davis, D. Stramski, and W. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res.110(C2), C02017 (2005), doi:.
[CrossRef]

Z. P. Lee, K. Du, and R. Arnone, “A model for the diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res.110(C2), C02016 (2005), doi:.
[CrossRef]

Li, J. S.

Y. L. Zhang, L. Q. Feng, J. S. Li, L. C. Luo, Y. Yin, M. L. Liu, and Y. L. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res.32(7), 1023–1037 (2010).
[CrossRef]

B. Zhang, J. S. Li, Q. Shen, and D. M. Chen, “A bio-optical model based method of estimating total suspended matter of Lake Taihu from near-infrared remote sensing reflectance,” Environ. Monit. Assess.145(1-3), 339–347 (2008).
[CrossRef] [PubMed]

Li, Y. L.

Y. L. Zhang, L. Q. Feng, J. S. Li, L. C. Luo, Y. Yin, M. L. Liu, and Y. L. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res.32(7), 1023–1037 (2010).
[CrossRef]

Liu, M. L.

Y. L. Zhang, Y. Yin, E. L. Zhang, G. W. Zhu, M. L. Liu, L. Q. Feng, B. Q. Qin, and X. H. Liu, “Spectral attenuation of ultraviolet and visible radiation in lakes in the Yunnan Plateau, and the middle and lower reaches of the Yangtze River, China,” Photochem. Photobiol. Sci.10(4), 469–482 (2011).
[CrossRef] [PubMed]

Y. L. Zhang, L. Q. Feng, J. S. Li, L. C. Luo, Y. Yin, M. L. Liu, and Y. L. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res.32(7), 1023–1037 (2010).
[CrossRef]

Y. L. Zhang, B. Q. Qin, and M. L. Liu, “Temporal-spatial variations of chlorophyll a and primary production in Meiliang Bay, Lake Taihu, China from 1995 to 2003,” J. Plankton Res.29(8), 707–719 (2007).
[CrossRef]

Liu, X. H.

Y. L. Zhang, Y. Yin, E. L. Zhang, G. W. Zhu, M. L. Liu, L. Q. Feng, B. Q. Qin, and X. H. Liu, “Spectral attenuation of ultraviolet and visible radiation in lakes in the Yunnan Plateau, and the middle and lower reaches of the Yangtze River, China,” Photochem. Photobiol. Sci.10(4), 469–482 (2011).
[CrossRef] [PubMed]

Loiselle, S.

N. Bergamino, S. Horion, S. Stenuite, Y. Cornet, S. Loiselle, P. D. Plisnier, and J. P. Descy, “Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series,” Remote Sens. Environ.114(4), 772–780 (2010).
[CrossRef]

Loiselle, S. A.

S. A. Loiselle, L. Bracchini, A. Cózar, A. M. Dattilo, A. Tognazzi, and C. Rossi, “Variability in photobleaching yields and their related impacts on optical conditions in subtropical lakes,” J. Photochem. Photobiol. B-Biol.95(2), 129–137 (2009).

Lund-Hansen, L. C.

L. C. Lund-Hansen, T. J. Andersen, M. H. Nielsen, and M. Pejrup, “Suspended matter, Chl-a, CDOM, grain sizes, and optical properties in the Arctic fjord-type estuary, Kangerlussuaq, West Greenland during summer,” Estuaries Coasts33(6), 1442–1451 (2010).
[CrossRef]

Luo, L. C.

Y. L. Zhang, L. Q. Feng, J. S. Li, L. C. Luo, Y. Yin, M. L. Liu, and Y. L. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res.32(7), 1023–1037 (2010).
[CrossRef]

Y. L. Zhang, B. Q. Qin, G. W. Zhu, G. Gao, L. C. Luo, and W. M. Chen, “Effect of sediment resuspension on underwater light field in shallow lakes in the middle and lower reaches of the Yangtze River: A case study in Longgan Lake and Taihu Lake,” Sci. China Ser. Dokl. Earth Sci.49(supp.), 114–125 (2006).

Ma, R. H.

Y. L. Zhang, B. Zhang, R. H. Ma, S. Feng, and C. F. Le, “Optically active substances and their contributions to the underwater light climate in Lake Taihu, a large shallow lake in China,” Fund. Appl. Limnol.170(1), 11–19 (2007).
[CrossRef]

Mangin, A.

M. Doron, M. Babin, A. Mangin, and O. Hembise, “Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance,” J. Geophys. Res.112(C6), C06003 (2007), doi:.
[CrossRef]

Moore, G.

S. Kratzer, C. Brockmann, and G. Moore, “Using MERIS full resolution data to monitor coastal waters — A case study from Himmerfjärden, a fjord-like bay in the northwestern Baltic Sea,” Remote Sens. Environ.112(5), 2284–2300 (2008).
[CrossRef]

Morel, A.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ.111(1), 69–88 (2007).
[CrossRef]

Mueller, D. R.

A. C. Vincent, D. R. Mueller, and W. F. Vincent, “Simulated heat storage in a perennially ice-covered high Arctic lake: Sensitivity to climate change,” J. Geophys. Res.113(C4), C04036 (2008), doi:.
[CrossRef]

Mueller, J. L.

J. L. Mueller, “SeaWiFS algorithm for the diffuse attenuation coefficient, K(490), using water-leaving radiances at 490 and 555 nm,” SeaWiFS postlaunch calibration and validation analyses, Part3(11), 24–27 (2000).

J. L. Mueller and C. Trees, “Revised SeaWIFS prelaunch algorithm for diffuse attenuation coefficient K(490),” Case Studies for SeaWiFS Calibration and Validation41, 18–21 (1997).

Nayak, S.

P. Chauhan, A. Sahay, A. S. Rajawat, and S. Nayak, “Remote sensing of diffuse attenuation coefficient (K490) using IRS-P4 Ocean Colour Monitor (OCM) sensor,” Indian J. Mar. Sci.32(4), 279–284 (2003).

Németh, B.

K. V. Balogh, B. Németh, and L. Vörös, “Specific attenuation coefficients of optically active substances and their contribution to the underwater ultraviolet and visible light climate in shallow lakes and ponds,” Hydrobiologia632(1), 91–105 (2009).
[CrossRef]

Nielsen, M. H.

L. C. Lund-Hansen, T. J. Andersen, M. H. Nielsen, and M. Pejrup, “Suspended matter, Chl-a, CDOM, grain sizes, and optical properties in the Arctic fjord-type estuary, Kangerlussuaq, West Greenland during summer,” Estuaries Coasts33(6), 1442–1451 (2010).
[CrossRef]

Nõges, P.

H. Arst, T. Nõges, P. Nõges, and B. Paavel, “Relations of phytoplankton in situ primary production, chlorophyll concentration and underwater irradiance in turbid lakes,” Hydrobiologia599(1), 169–176 (2008).
[CrossRef]

Nõges, T.

H. Arst, T. Nõges, P. Nõges, and B. Paavel, “Relations of phytoplankton in situ primary production, chlorophyll concentration and underwater irradiance in turbid lakes,” Hydrobiologia599(1), 169–176 (2008).
[CrossRef]

Paavel, B.

H. Arst, T. Nõges, P. Nõges, and B. Paavel, “Relations of phytoplankton in situ primary production, chlorophyll concentration and underwater irradiance in turbid lakes,” Hydrobiologia599(1), 169–176 (2008).
[CrossRef]

Pejrup, M.

L. C. Lund-Hansen, T. J. Andersen, M. H. Nielsen, and M. Pejrup, “Suspended matter, Chl-a, CDOM, grain sizes, and optical properties in the Arctic fjord-type estuary, Kangerlussuaq, West Greenland during summer,” Estuaries Coasts33(6), 1442–1451 (2010).
[CrossRef]

Plisnier, P. D.

N. Bergamino, S. Horion, S. Stenuite, Y. Cornet, S. Loiselle, P. D. Plisnier, and J. P. Descy, “Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series,” Remote Sens. Environ.114(4), 772–780 (2010).
[CrossRef]

Qin, B. Q.

Y. L. Zhang, Y. Yin, E. L. Zhang, G. W. Zhu, M. L. Liu, L. Q. Feng, B. Q. Qin, and X. H. Liu, “Spectral attenuation of ultraviolet and visible radiation in lakes in the Yunnan Plateau, and the middle and lower reaches of the Yangtze River, China,” Photochem. Photobiol. Sci.10(4), 469–482 (2011).
[CrossRef] [PubMed]

Y. L. Zhang, B. Q. Qin, and M. L. Liu, “Temporal-spatial variations of chlorophyll a and primary production in Meiliang Bay, Lake Taihu, China from 1995 to 2003,” J. Plankton Res.29(8), 707–719 (2007).
[CrossRef]

Y. L. Zhang, B. Q. Qin, G. W. Zhu, G. Gao, L. C. Luo, and W. M. Chen, “Effect of sediment resuspension on underwater light field in shallow lakes in the middle and lower reaches of the Yangtze River: A case study in Longgan Lake and Taihu Lake,” Sci. China Ser. Dokl. Earth Sci.49(supp.), 114–125 (2006).

Rajawat, A. S.

P. Chauhan, A. Sahay, A. S. Rajawat, and S. Nayak, “Remote sensing of diffuse attenuation coefficient (K490) using IRS-P4 Ocean Colour Monitor (OCM) sensor,” Indian J. Mar. Sci.32(4), 279–284 (2003).

Rhea, W.

Z. P. Lee, M. Darecki, K. Carder, C. Davis, D. Stramski, and W. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res.110(C2), C02017 (2005), doi:.
[CrossRef]

Rossi, C.

S. A. Loiselle, L. Bracchini, A. Cózar, A. M. Dattilo, A. Tognazzi, and C. Rossi, “Variability in photobleaching yields and their related impacts on optical conditions in subtropical lakes,” J. Photochem. Photobiol. B-Biol.95(2), 129–137 (2009).

Sahay, A.

P. Chauhan, A. Sahay, A. S. Rajawat, and S. Nayak, “Remote sensing of diffuse attenuation coefficient (K490) using IRS-P4 Ocean Colour Monitor (OCM) sensor,” Indian J. Mar. Sci.32(4), 279–284 (2003).

Shen, Q.

B. Zhang, J. S. Li, Q. Shen, and D. M. Chen, “A bio-optical model based method of estimating total suspended matter of Lake Taihu from near-infrared remote sensing reflectance,” Environ. Monit. Assess.145(1-3), 339–347 (2008).
[CrossRef] [PubMed]

Shi, W.

M. H. Wang, W. Shi, and J. W. Tang, “Water property monitoring and assessment for China's inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ.115(3), 841–854 (2011).
[CrossRef]

Son, S.

M. H. Wang, S. Son, and L. W. Harding, “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114, C10011, doi: (2009).
[CrossRef]

Stenuite, S.

N. Bergamino, S. Horion, S. Stenuite, Y. Cornet, S. Loiselle, P. D. Plisnier, and J. P. Descy, “Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series,” Remote Sens. Environ.114(4), 772–780 (2010).
[CrossRef]

Stramski, D.

Z. P. Lee, M. Darecki, K. Carder, C. Davis, D. Stramski, and W. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res.110(C2), C02017 (2005), doi:.
[CrossRef]

Tang, J. W.

M. H. Wang, W. Shi, and J. W. Tang, “Water property monitoring and assessment for China's inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ.115(3), 841–854 (2011).
[CrossRef]

Thomson, R. E.

D. M. Ware and R. E. Thomson, “Bottom-up ecosystem trophic dynamics determine fish production in the Northeast Pacific,” Science308(5726), 1280–1284 (2005).
[CrossRef] [PubMed]

Tilahun, G.

G. Tilahun and G. Ahlgren, “Seasonal variations in phytoplankton biomass and primaryproduction in the Ethiopian Rift Valley lakes Ziway, Awassa and Chamo – The basis for fish production,” Limnologica40(4), 330–342 (2010).
[CrossRef]

Tognazzi, A.

S. A. Loiselle, L. Bracchini, A. Cózar, A. M. Dattilo, A. Tognazzi, and C. Rossi, “Variability in photobleaching yields and their related impacts on optical conditions in subtropical lakes,” J. Photochem. Photobiol. B-Biol.95(2), 129–137 (2009).

Trees, C.

J. L. Mueller and C. Trees, “Revised SeaWIFS prelaunch algorithm for diffuse attenuation coefficient K(490),” Case Studies for SeaWiFS Calibration and Validation41, 18–21 (1997).

Vincent, A. C.

A. C. Vincent, D. R. Mueller, and W. F. Vincent, “Simulated heat storage in a perennially ice-covered high Arctic lake: Sensitivity to climate change,” J. Geophys. Res.113(C4), C04036 (2008), doi:.
[CrossRef]

Vincent, W. F.

A. C. Vincent, D. R. Mueller, and W. F. Vincent, “Simulated heat storage in a perennially ice-covered high Arctic lake: Sensitivity to climate change,” J. Geophys. Res.113(C4), C04036 (2008), doi:.
[CrossRef]

Vörös, L.

K. V. Balogh, B. Németh, and L. Vörös, “Specific attenuation coefficients of optically active substances and their contribution to the underwater ultraviolet and visible light climate in shallow lakes and ponds,” Hydrobiologia632(1), 91–105 (2009).
[CrossRef]

Wang, M. H.

M. H. Wang, W. Shi, and J. W. Tang, “Water property monitoring and assessment for China's inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ.115(3), 841–854 (2011).
[CrossRef]

M. H. Wang, S. Son, and L. W. Harding, “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114, C10011, doi: (2009).
[CrossRef]

Ware, D. M.

D. M. Ware and R. E. Thomson, “Bottom-up ecosystem trophic dynamics determine fish production in the Northeast Pacific,” Science308(5726), 1280–1284 (2005).
[CrossRef] [PubMed]

Werdell, P. J.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ.111(1), 69–88 (2007).
[CrossRef]

Yin, Y.

Y. L. Zhang, Y. Yin, E. L. Zhang, G. W. Zhu, M. L. Liu, L. Q. Feng, B. Q. Qin, and X. H. Liu, “Spectral attenuation of ultraviolet and visible radiation in lakes in the Yunnan Plateau, and the middle and lower reaches of the Yangtze River, China,” Photochem. Photobiol. Sci.10(4), 469–482 (2011).
[CrossRef] [PubMed]

Y. L. Zhang, L. Q. Feng, J. S. Li, L. C. Luo, Y. Yin, M. L. Liu, and Y. L. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res.32(7), 1023–1037 (2010).
[CrossRef]

Zhang, B.

B. Zhang, J. S. Li, Q. Shen, and D. M. Chen, “A bio-optical model based method of estimating total suspended matter of Lake Taihu from near-infrared remote sensing reflectance,” Environ. Monit. Assess.145(1-3), 339–347 (2008).
[CrossRef] [PubMed]

Y. L. Zhang, B. Zhang, R. H. Ma, S. Feng, and C. F. Le, “Optically active substances and their contributions to the underwater light climate in Lake Taihu, a large shallow lake in China,” Fund. Appl. Limnol.170(1), 11–19 (2007).
[CrossRef]

Zhang, E. L.

Y. L. Zhang, Y. Yin, E. L. Zhang, G. W. Zhu, M. L. Liu, L. Q. Feng, B. Q. Qin, and X. H. Liu, “Spectral attenuation of ultraviolet and visible radiation in lakes in the Yunnan Plateau, and the middle and lower reaches of the Yangtze River, China,” Photochem. Photobiol. Sci.10(4), 469–482 (2011).
[CrossRef] [PubMed]

Zhang, T. L.

T. L. Zhang and F. Fell, “An empirical algorithm for determining the diffuse attenuation coefficient Kd in clear and turbid waters from spectral remote sensing reflectance,” Limnol. Oceanogr. Methods5, 457–462 (2007).
[CrossRef]

Zhang, Y. L.

Y. L. Zhang, Y. Yin, E. L. Zhang, G. W. Zhu, M. L. Liu, L. Q. Feng, B. Q. Qin, and X. H. Liu, “Spectral attenuation of ultraviolet and visible radiation in lakes in the Yunnan Plateau, and the middle and lower reaches of the Yangtze River, China,” Photochem. Photobiol. Sci.10(4), 469–482 (2011).
[CrossRef] [PubMed]

Y. L. Zhang, L. Q. Feng, J. S. Li, L. C. Luo, Y. Yin, M. L. Liu, and Y. L. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res.32(7), 1023–1037 (2010).
[CrossRef]

Y. L. Zhang, B. Zhang, R. H. Ma, S. Feng, and C. F. Le, “Optically active substances and their contributions to the underwater light climate in Lake Taihu, a large shallow lake in China,” Fund. Appl. Limnol.170(1), 11–19 (2007).
[CrossRef]

Y. L. Zhang, B. Q. Qin, and M. L. Liu, “Temporal-spatial variations of chlorophyll a and primary production in Meiliang Bay, Lake Taihu, China from 1995 to 2003,” J. Plankton Res.29(8), 707–719 (2007).
[CrossRef]

Y. L. Zhang, B. Q. Qin, G. W. Zhu, G. Gao, L. C. Luo, and W. M. Chen, “Effect of sediment resuspension on underwater light field in shallow lakes in the middle and lower reaches of the Yangtze River: A case study in Longgan Lake and Taihu Lake,” Sci. China Ser. Dokl. Earth Sci.49(supp.), 114–125 (2006).

Zhu, G. W.

Y. L. Zhang, Y. Yin, E. L. Zhang, G. W. Zhu, M. L. Liu, L. Q. Feng, B. Q. Qin, and X. H. Liu, “Spectral attenuation of ultraviolet and visible radiation in lakes in the Yunnan Plateau, and the middle and lower reaches of the Yangtze River, China,” Photochem. Photobiol. Sci.10(4), 469–482 (2011).
[CrossRef] [PubMed]

Y. L. Zhang, B. Q. Qin, G. W. Zhu, G. Gao, L. C. Luo, and W. M. Chen, “Effect of sediment resuspension on underwater light field in shallow lakes in the middle and lower reaches of the Yangtze River: A case study in Longgan Lake and Taihu Lake,” Sci. China Ser. Dokl. Earth Sci.49(supp.), 114–125 (2006).

Case Studies for SeaWiFS Calibration and Validation

J. L. Mueller and C. Trees, “Revised SeaWIFS prelaunch algorithm for diffuse attenuation coefficient K(490),” Case Studies for SeaWiFS Calibration and Validation41, 18–21 (1997).

Environ. Monit. Assess.

B. Zhang, J. S. Li, Q. Shen, and D. M. Chen, “A bio-optical model based method of estimating total suspended matter of Lake Taihu from near-infrared remote sensing reflectance,” Environ. Monit. Assess.145(1-3), 339–347 (2008).
[CrossRef] [PubMed]

Estuaries Coasts

L. C. Lund-Hansen, T. J. Andersen, M. H. Nielsen, and M. Pejrup, “Suspended matter, Chl-a, CDOM, grain sizes, and optical properties in the Arctic fjord-type estuary, Kangerlussuaq, West Greenland during summer,” Estuaries Coasts33(6), 1442–1451 (2010).
[CrossRef]

Fund. Appl. Limnol.

Y. L. Zhang, B. Zhang, R. H. Ma, S. Feng, and C. F. Le, “Optically active substances and their contributions to the underwater light climate in Lake Taihu, a large shallow lake in China,” Fund. Appl. Limnol.170(1), 11–19 (2007).
[CrossRef]

Hydrobiologia

H. Arst, T. Nõges, P. Nõges, and B. Paavel, “Relations of phytoplankton in situ primary production, chlorophyll concentration and underwater irradiance in turbid lakes,” Hydrobiologia599(1), 169–176 (2008).
[CrossRef]

K. V. Balogh, B. Németh, and L. Vörös, “Specific attenuation coefficients of optically active substances and their contribution to the underwater ultraviolet and visible light climate in shallow lakes and ponds,” Hydrobiologia632(1), 91–105 (2009).
[CrossRef]

Indian J. Mar. Sci.

P. Chauhan, A. Sahay, A. S. Rajawat, and S. Nayak, “Remote sensing of diffuse attenuation coefficient (K490) using IRS-P4 Ocean Colour Monitor (OCM) sensor,” Indian J. Mar. Sci.32(4), 279–284 (2003).

Int. J. Remote Sens.

C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Suspended particulate matter in Lake Erie derived from MODIS aquatic colour imagery,” Int. J. Remote Sens.31(19), 5239–5255 (2010).
[CrossRef]

J. Geophys. Res

M. H. Wang, S. Son, and L. W. Harding, “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114, C10011, doi: (2009).
[CrossRef]

J. Geophys. Res.

M. Doron, M. Babin, A. Mangin, and O. Hembise, “Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance,” J. Geophys. Res.112(C6), C06003 (2007), doi:.
[CrossRef]

Z. P. Lee, M. Darecki, K. Carder, C. Davis, D. Stramski, and W. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res.110(C2), C02017 (2005), doi:.
[CrossRef]

Z. P. Lee, K. Du, and R. Arnone, “A model for the diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res.110(C2), C02016 (2005), doi:.
[CrossRef]

A. C. Vincent, D. R. Mueller, and W. F. Vincent, “Simulated heat storage in a perennially ice-covered high Arctic lake: Sensitivity to climate change,” J. Geophys. Res.113(C4), C04036 (2008), doi:.
[CrossRef]

J. Photochem. Photobiol. B-Biol.

S. A. Loiselle, L. Bracchini, A. Cózar, A. M. Dattilo, A. Tognazzi, and C. Rossi, “Variability in photobleaching yields and their related impacts on optical conditions in subtropical lakes,” J. Photochem. Photobiol. B-Biol.95(2), 129–137 (2009).

J. Plankton Res.

Y. L. Zhang, B. Q. Qin, and M. L. Liu, “Temporal-spatial variations of chlorophyll a and primary production in Meiliang Bay, Lake Taihu, China from 1995 to 2003,” J. Plankton Res.29(8), 707–719 (2007).
[CrossRef]

Y. L. Zhang, L. Q. Feng, J. S. Li, L. C. Luo, Y. Yin, M. L. Liu, and Y. L. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res.32(7), 1023–1037 (2010).
[CrossRef]

Limnol. Oceanogr. Methods

T. L. Zhang and F. Fell, “An empirical algorithm for determining the diffuse attenuation coefficient Kd in clear and turbid waters from spectral remote sensing reflectance,” Limnol. Oceanogr. Methods5, 457–462 (2007).
[CrossRef]

Limnologica

G. Tilahun and G. Ahlgren, “Seasonal variations in phytoplankton biomass and primaryproduction in the Ethiopian Rift Valley lakes Ziway, Awassa and Chamo – The basis for fish production,” Limnologica40(4), 330–342 (2010).
[CrossRef]

Part

J. L. Mueller, “SeaWiFS algorithm for the diffuse attenuation coefficient, K(490), using water-leaving radiances at 490 and 555 nm,” SeaWiFS postlaunch calibration and validation analyses, Part3(11), 24–27 (2000).

Photochem. Photobiol. Sci.

Y. L. Zhang, Y. Yin, E. L. Zhang, G. W. Zhu, M. L. Liu, L. Q. Feng, B. Q. Qin, and X. H. Liu, “Spectral attenuation of ultraviolet and visible radiation in lakes in the Yunnan Plateau, and the middle and lower reaches of the Yangtze River, China,” Photochem. Photobiol. Sci.10(4), 469–482 (2011).
[CrossRef] [PubMed]

Remote Sens. Environ.

M. H. Wang, W. Shi, and J. W. Tang, “Water property monitoring and assessment for China's inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ.115(3), 841–854 (2011).
[CrossRef]

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ.111(1), 69–88 (2007).
[CrossRef]

S. Kratzer, C. Brockmann, and G. Moore, “Using MERIS full resolution data to monitor coastal waters — A case study from Himmerfjärden, a fjord-like bay in the northwestern Baltic Sea,” Remote Sens. Environ.112(5), 2284–2300 (2008).
[CrossRef]

N. Bergamino, S. Horion, S. Stenuite, Y. Cornet, S. Loiselle, P. D. Plisnier, and J. P. Descy, “Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series,” Remote Sens. Environ.114(4), 772–780 (2010).
[CrossRef]

Sci. China Ser. Dokl. Earth Sci.

Y. L. Zhang, B. Q. Qin, G. W. Zhu, G. Gao, L. C. Luo, and W. M. Chen, “Effect of sediment resuspension on underwater light field in shallow lakes in the middle and lower reaches of the Yangtze River: A case study in Longgan Lake and Taihu Lake,” Sci. China Ser. Dokl. Earth Sci.49(supp.), 114–125 (2006).

Science

D. M. Ware and R. E. Thomson, “Bottom-up ecosystem trophic dynamics determine fish production in the Northeast Pacific,” Science308(5726), 1280–1284 (2005).
[CrossRef] [PubMed]

Other

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. (Cambridge, Univeristy Press, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Sampling sites for bio-optical properties of water in Lake Taihu, China, in 2006 and 2007.

Fig. 2
Fig. 2

Depth profiles of underwater PAR and spectral irradiance intensity in Apil 2007. (a) Underwater PAR intensity at three different sites. (b) The corresponding natural logarithm values of PAR intensity. (c) Underwater spectral irradiance at different depths (0, 0.05, 0.10, 0.20, 0.25, 0.30, 0.40, 0.50, 0.60, 0.70 and 0.80 m) at a site. (d) The corresponding natural logarithm values of spectral irradiance intensity at 440, 490 and 555 nm. The lines in (b) and (d) represent the linear fitting of the natural logarithm values of PAR and spectral irradiance intensity vs depth.

Fig. 3
Fig. 3

Correlation between Kd(490) and Kd(PAR).

Fig. 4
Fig. 4

Comparison of the determination coefficient (a), mean relative error (b) and root mean square error (c) using four different algorithms.

Fig. 5
Fig. 5

Estimation models of Kd(PAR) based on MODIS channels (859 nm and 748 nm) (a, b) using the simple optical model.

Fig. 6
Fig. 6

Comparison of the measured and estimated Kd(PAR) based on an independent data set from Lake Taihu using Rrs(859)/μ0 (a) and Rrs(748)/μ0 (b). The 17.6% and 17.0% in parentheses are the percentage of RMSE accounting for the mean Kd(PAR).

Tables (1)

Tables Icon

Table 1 Summary of the models used to estimate the diffuse attenuation coefficient in clear, open ocean waters, slightly turbid coastal waters and turbid shallow lake waters

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L w (λ, 0 + )= L sw (λ, 0 + )- r sky L sky (λ)
E d (λ, 0 + )=π L p (λ, 0 + )/ ρ P (λ)

Metrics