Abstract

Ultraviolet single-frequency lasing is realized in a coupled optofluidic ring resonator (COFRR) dye laser that consists of a thin-walled capillary microfluidic ring resonator and a cylindrical resonator. The whispering gallery modes (WGMs) in each resonator couple to each other and generate single-frequency laser emission. Single-frequency lasing occurs at 386.75 nm with a pump threshold of 5.9 μJ/mm2. The side-mode-suppression ratio (SMSR) is about 20 dB. Moreover, the laser emits mainly in two directions, and each of them has a divergence of only 10.5°.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
    [CrossRef]
  2. W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, “Detection of chemical species using ultraviolet microdisk lasers,” Appl. Phys. Lett.85(17), 3666–3668 (2004).
    [CrossRef]
  3. A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics1(1), 61–64 (2007).
    [CrossRef]
  4. Y.-G. Wang, C.-C. Chen, C.-H. Chiu, M.-Y. Kuo, M. H. Shih, and H.-C. Kuo, “Lasing in metal-coated GaN nanostripe at room temperature,” Appl. Phys. Lett.98(13), 131110 (2011).
    [CrossRef]
  5. C.-C. Chen, M. H. Shih, Y.-C. Yang, and H.-C. Kuo, “Ultraviolet GaN-based microdisk laser with AlN/AlGaN distributed Bragg reflector,” Appl. Phys. Lett.96(15), 151115 (2010).
    [CrossRef]
  6. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
    [CrossRef] [PubMed]
  7. S. Kalusniak, S. Sadofev, S. Halm, and F. Henneberger, “Vertical cavity surface emitting laser action of an all monolithic ZnO-based microcavity,” Appl. Phys. Lett.98(1), 011101 (2011).
    [CrossRef]
  8. R. Chen, H. D. Sun, T. Wang, K. N. Hui, and H. W. Choi, “Optically pumped ultraviolet lasing from nitride nanopillars at room temperature,” Appl. Phys. Lett.96(24), 241101 (2010).
    [CrossRef]
  9. K. H. Li, Z. Ma, and H. W. Choi, “Single-mode whispering gallery lasing from metal-clad GaN nanopillars,” Opt. Lett.37(3), 374–376 (2012).
    [CrossRef] [PubMed]
  10. K. M. Dzurko, D. F. Welch, D. R. Scifres, and A. Hardy, “1W single-mode edge-emitting DBR ring oscillators,” IEEE Photon. Technol. Lett.5(4), 369–371 (1993).
    [CrossRef]
  11. M. P. Nesnidal, L. J. Mawst, A. Bhattacharya, D. Botez, L. DiMarco, J. C. Connolly, and J. H. Abeles, “Single-frequency, single-spatial-mode ROW-DFB diode laser arrays,” IEEE Photon. Technol. Lett.8(2), 182–184 (1996).
    [CrossRef]
  12. X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, “Ultraviolet photonic crystal laser,” Appl. Phys. Lett.96, 241101 (2010).
  13. L. Shang, L. Liu, and L. Xu, “Single-frequency coupled asymmetric microcavity laser,” Opt. Lett.33(10), 1150–1152 (2008).
    [CrossRef] [PubMed]
  14. X. Wu, Y. Sun, J. D. Suter, and X. Fan, “Single mode coupled optofluidic ring resonator dye lasers,” Appl. Phys. Lett.94(24), 241109 (2009).
    [CrossRef]
  15. W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett.98(6), 061103 (2011).
    [CrossRef]
  16. B. E. Little, J.-P. Laine, and H. A. Haus, “Analytic theory of coupling from tapered fibers and half-blocks in microsphere resonators,” J. Lightwave Technol.17(4), 704–715 (1999).
    [CrossRef]
  17. I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett.89(19), 191106 (2006).
    [CrossRef]
  18. T. Carmon, S. Y. T. Wang, E. P. Ostby, and K. J. Vahala, “Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span,” Opt. Express15(12), 7677–7681 (2007).
    [CrossRef] [PubMed]
  19. S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express15(23), 15523–15530 (2007).
    [CrossRef] [PubMed]

2012 (1)

2011 (3)

S. Kalusniak, S. Sadofev, S. Halm, and F. Henneberger, “Vertical cavity surface emitting laser action of an all monolithic ZnO-based microcavity,” Appl. Phys. Lett.98(1), 011101 (2011).
[CrossRef]

Y.-G. Wang, C.-C. Chen, C.-H. Chiu, M.-Y. Kuo, M. H. Shih, and H.-C. Kuo, “Lasing in metal-coated GaN nanostripe at room temperature,” Appl. Phys. Lett.98(13), 131110 (2011).
[CrossRef]

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett.98(6), 061103 (2011).
[CrossRef]

2010 (3)

X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, “Ultraviolet photonic crystal laser,” Appl. Phys. Lett.96, 241101 (2010).

C.-C. Chen, M. H. Shih, Y.-C. Yang, and H.-C. Kuo, “Ultraviolet GaN-based microdisk laser with AlN/AlGaN distributed Bragg reflector,” Appl. Phys. Lett.96(15), 151115 (2010).
[CrossRef]

R. Chen, H. D. Sun, T. Wang, K. N. Hui, and H. W. Choi, “Optically pumped ultraviolet lasing from nitride nanopillars at room temperature,” Appl. Phys. Lett.96(24), 241101 (2010).
[CrossRef]

2009 (1)

X. Wu, Y. Sun, J. D. Suter, and X. Fan, “Single mode coupled optofluidic ring resonator dye lasers,” Appl. Phys. Lett.94(24), 241109 (2009).
[CrossRef]

2008 (1)

2007 (3)

2006 (1)

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett.89(19), 191106 (2006).
[CrossRef]

2004 (1)

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, “Detection of chemical species using ultraviolet microdisk lasers,” Appl. Phys. Lett.85(17), 3666–3668 (2004).
[CrossRef]

2001 (1)

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
[CrossRef]

1996 (1)

M. P. Nesnidal, L. J. Mawst, A. Bhattacharya, D. Botez, L. DiMarco, J. C. Connolly, and J. H. Abeles, “Single-frequency, single-spatial-mode ROW-DFB diode laser arrays,” IEEE Photon. Technol. Lett.8(2), 182–184 (1996).
[CrossRef]

1993 (1)

K. M. Dzurko, D. F. Welch, D. R. Scifres, and A. Hardy, “1W single-mode edge-emitting DBR ring oscillators,” IEEE Photon. Technol. Lett.5(4), 369–371 (1993).
[CrossRef]

Abeles, J. H.

M. P. Nesnidal, L. J. Mawst, A. Bhattacharya, D. Botez, L. DiMarco, J. C. Connolly, and J. H. Abeles, “Single-frequency, single-spatial-mode ROW-DFB diode laser arrays,” IEEE Photon. Technol. Lett.8(2), 182–184 (1996).
[CrossRef]

Bailey, R. C.

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, “Detection of chemical species using ultraviolet microdisk lasers,” Appl. Phys. Lett.85(17), 3666–3668 (2004).
[CrossRef]

Bhattacharya, A.

M. P. Nesnidal, L. J. Mawst, A. Bhattacharya, D. Botez, L. DiMarco, J. C. Connolly, and J. H. Abeles, “Single-frequency, single-spatial-mode ROW-DFB diode laser arrays,” IEEE Photon. Technol. Lett.8(2), 182–184 (1996).
[CrossRef]

Botez, D.

M. P. Nesnidal, L. J. Mawst, A. Bhattacharya, D. Botez, L. DiMarco, J. C. Connolly, and J. H. Abeles, “Single-frequency, single-spatial-mode ROW-DFB diode laser arrays,” IEEE Photon. Technol. Lett.8(2), 182–184 (1996).
[CrossRef]

Buchholz, D. B.

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, “Detection of chemical species using ultraviolet microdisk lasers,” Appl. Phys. Lett.85(17), 3666–3668 (2004).
[CrossRef]

Cao, H.

X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, “Ultraviolet photonic crystal laser,” Appl. Phys. Lett.96, 241101 (2010).

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, “Detection of chemical species using ultraviolet microdisk lasers,” Appl. Phys. Lett.85(17), 3666–3668 (2004).
[CrossRef]

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
[CrossRef]

Carmon, T.

Chang, R. P. H.

X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, “Ultraviolet photonic crystal laser,” Appl. Phys. Lett.96, 241101 (2010).

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, “Detection of chemical species using ultraviolet microdisk lasers,” Appl. Phys. Lett.85(17), 3666–3668 (2004).
[CrossRef]

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
[CrossRef]

Chen, C.-C.

Y.-G. Wang, C.-C. Chen, C.-H. Chiu, M.-Y. Kuo, M. H. Shih, and H.-C. Kuo, “Lasing in metal-coated GaN nanostripe at room temperature,” Appl. Phys. Lett.98(13), 131110 (2011).
[CrossRef]

C.-C. Chen, M. H. Shih, Y.-C. Yang, and H.-C. Kuo, “Ultraviolet GaN-based microdisk laser with AlN/AlGaN distributed Bragg reflector,” Appl. Phys. Lett.96(15), 151115 (2010).
[CrossRef]

Chen, R.

R. Chen, H. D. Sun, T. Wang, K. N. Hui, and H. W. Choi, “Optically pumped ultraviolet lasing from nitride nanopillars at room temperature,” Appl. Phys. Lett.96(24), 241101 (2010).
[CrossRef]

Chiu, C.-H.

Y.-G. Wang, C.-C. Chen, C.-H. Chiu, M.-Y. Kuo, M. H. Shih, and H.-C. Kuo, “Lasing in metal-coated GaN nanostripe at room temperature,” Appl. Phys. Lett.98(13), 131110 (2011).
[CrossRef]

Choi, H. W.

K. H. Li, Z. Ma, and H. W. Choi, “Single-mode whispering gallery lasing from metal-clad GaN nanopillars,” Opt. Lett.37(3), 374–376 (2012).
[CrossRef] [PubMed]

R. Chen, H. D. Sun, T. Wang, K. N. Hui, and H. W. Choi, “Optically pumped ultraviolet lasing from nitride nanopillars at room temperature,” Appl. Phys. Lett.96(24), 241101 (2010).
[CrossRef]

Connolly, J. C.

M. P. Nesnidal, L. J. Mawst, A. Bhattacharya, D. Botez, L. DiMarco, J. C. Connolly, and J. H. Abeles, “Single-frequency, single-spatial-mode ROW-DFB diode laser arrays,” IEEE Photon. Technol. Lett.8(2), 182–184 (1996).
[CrossRef]

Cupps, J. M.

Dai, J. Y.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
[CrossRef]

DiMarco, L.

M. P. Nesnidal, L. J. Mawst, A. Bhattacharya, D. Botez, L. DiMarco, J. C. Connolly, and J. H. Abeles, “Single-frequency, single-spatial-mode ROW-DFB diode laser arrays,” IEEE Photon. Technol. Lett.8(2), 182–184 (1996).
[CrossRef]

Dravid, V. P.

X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, “Ultraviolet photonic crystal laser,” Appl. Phys. Lett.96, 241101 (2010).

Dzurko, K. M.

K. M. Dzurko, D. F. Welch, D. R. Scifres, and A. Hardy, “1W single-mode edge-emitting DBR ring oscillators,” IEEE Photon. Technol. Lett.5(4), 369–371 (1993).
[CrossRef]

Fan, X.

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett.98(6), 061103 (2011).
[CrossRef]

X. Wu, Y. Sun, J. D. Suter, and X. Fan, “Single mode coupled optofluidic ring resonator dye lasers,” Appl. Phys. Lett.94(24), 241109 (2009).
[CrossRef]

S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express15(23), 15523–15530 (2007).
[CrossRef] [PubMed]

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett.89(19), 191106 (2006).
[CrossRef]

Fang, W.

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, “Detection of chemical species using ultraviolet microdisk lasers,” Appl. Phys. Lett.85(17), 3666–3668 (2004).
[CrossRef]

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Haberer, E. D.

A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics1(1), 61–64 (2007).
[CrossRef]

Halm, S.

S. Kalusniak, S. Sadofev, S. Halm, and F. Henneberger, “Vertical cavity surface emitting laser action of an all monolithic ZnO-based microcavity,” Appl. Phys. Lett.98(1), 011101 (2011).
[CrossRef]

Hardy, A.

K. M. Dzurko, D. F. Welch, D. R. Scifres, and A. Hardy, “1W single-mode edge-emitting DBR ring oscillators,” IEEE Photon. Technol. Lett.5(4), 369–371 (1993).
[CrossRef]

Haus, H. A.

Henneberger, F.

S. Kalusniak, S. Sadofev, S. Halm, and F. Henneberger, “Vertical cavity surface emitting laser action of an all monolithic ZnO-based microcavity,” Appl. Phys. Lett.98(1), 011101 (2011).
[CrossRef]

Ho, S. T.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
[CrossRef]

Hu, E. L.

A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics1(1), 61–64 (2007).
[CrossRef]

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Hui, K. N.

R. Chen, H. D. Sun, T. Wang, K. N. Hui, and H. W. Choi, “Optically pumped ultraviolet lasing from nitride nanopillars at room temperature,” Appl. Phys. Lett.96(24), 241101 (2010).
[CrossRef]

Hupp, J. T.

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, “Detection of chemical species using ultraviolet microdisk lasers,” Appl. Phys. Lett.85(17), 3666–3668 (2004).
[CrossRef]

Kalusniak, S.

S. Kalusniak, S. Sadofev, S. Halm, and F. Henneberger, “Vertical cavity surface emitting laser action of an all monolithic ZnO-based microcavity,” Appl. Phys. Lett.98(1), 011101 (2011).
[CrossRef]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Kuo, H.-C.

Y.-G. Wang, C.-C. Chen, C.-H. Chiu, M.-Y. Kuo, M. H. Shih, and H.-C. Kuo, “Lasing in metal-coated GaN nanostripe at room temperature,” Appl. Phys. Lett.98(13), 131110 (2011).
[CrossRef]

C.-C. Chen, M. H. Shih, Y.-C. Yang, and H.-C. Kuo, “Ultraviolet GaN-based microdisk laser with AlN/AlGaN distributed Bragg reflector,” Appl. Phys. Lett.96(15), 151115 (2010).
[CrossRef]

Kuo, M.-Y.

Y.-G. Wang, C.-C. Chen, C.-H. Chiu, M.-Y. Kuo, M. H. Shih, and H.-C. Kuo, “Lasing in metal-coated GaN nanostripe at room temperature,” Appl. Phys. Lett.98(13), 131110 (2011).
[CrossRef]

Lacey, S.

Laine, J.-P.

Lee, K. H.

A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics1(1), 61–64 (2007).
[CrossRef]

Lee, W.

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett.98(6), 061103 (2011).
[CrossRef]

Li, H.

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett.98(6), 061103 (2011).
[CrossRef]

Li, K. H.

Li, S.

X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, “Ultraviolet photonic crystal laser,” Appl. Phys. Lett.96, 241101 (2010).

Little, B. E.

Liu, L.

Liu, X.

X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, “Ultraviolet photonic crystal laser,” Appl. Phys. Lett.96, 241101 (2010).

Ma, Z.

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Mawst, L. J.

M. P. Nesnidal, L. J. Mawst, A. Bhattacharya, D. Botez, L. DiMarco, J. C. Connolly, and J. H. Abeles, “Single-frequency, single-spatial-mode ROW-DFB diode laser arrays,” IEEE Photon. Technol. Lett.8(2), 182–184 (1996).
[CrossRef]

Nakamura, S.

A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics1(1), 61–64 (2007).
[CrossRef]

Nesnidal, M. P.

M. P. Nesnidal, L. J. Mawst, A. Bhattacharya, D. Botez, L. DiMarco, J. C. Connolly, and J. H. Abeles, “Single-frequency, single-spatial-mode ROW-DFB diode laser arrays,” IEEE Photon. Technol. Lett.8(2), 182–184 (1996).
[CrossRef]

Ong, H. C.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
[CrossRef]

Ostby, E. P.

Oveys, H.

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett.89(19), 191106 (2006).
[CrossRef]

Reddy, K.

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett.98(6), 061103 (2011).
[CrossRef]

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Sadofev, S.

S. Kalusniak, S. Sadofev, S. Halm, and F. Henneberger, “Vertical cavity surface emitting laser action of an all monolithic ZnO-based microcavity,” Appl. Phys. Lett.98(1), 011101 (2011).
[CrossRef]

Scifres, D. R.

K. M. Dzurko, D. F. Welch, D. R. Scifres, and A. Hardy, “1W single-mode edge-emitting DBR ring oscillators,” IEEE Photon. Technol. Lett.5(4), 369–371 (1993).
[CrossRef]

Shang, L.

Sharma, R.

A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics1(1), 61–64 (2007).
[CrossRef]

Shih, M. H.

Y.-G. Wang, C.-C. Chen, C.-H. Chiu, M.-Y. Kuo, M. H. Shih, and H.-C. Kuo, “Lasing in metal-coated GaN nanostripe at room temperature,” Appl. Phys. Lett.98(13), 131110 (2011).
[CrossRef]

C.-C. Chen, M. H. Shih, Y.-C. Yang, and H.-C. Kuo, “Ultraviolet GaN-based microdisk laser with AlN/AlGaN distributed Bragg reflector,” Appl. Phys. Lett.96(15), 151115 (2010).
[CrossRef]

Shopova, S. I.

Smith, T. L.

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett.89(19), 191106 (2006).
[CrossRef]

Sun, H. D.

R. Chen, H. D. Sun, T. Wang, K. N. Hui, and H. W. Choi, “Optically pumped ultraviolet lasing from nitride nanopillars at room temperature,” Appl. Phys. Lett.96(24), 241101 (2010).
[CrossRef]

Sun, Y.

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett.98(6), 061103 (2011).
[CrossRef]

X. Wu, Y. Sun, J. D. Suter, and X. Fan, “Single mode coupled optofluidic ring resonator dye lasers,” Appl. Phys. Lett.94(24), 241109 (2009).
[CrossRef]

S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express15(23), 15523–15530 (2007).
[CrossRef] [PubMed]

Suter, J. D.

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett.98(6), 061103 (2011).
[CrossRef]

X. Wu, Y. Sun, J. D. Suter, and X. Fan, “Single mode coupled optofluidic ring resonator dye lasers,” Appl. Phys. Lett.94(24), 241109 (2009).
[CrossRef]

Tamboli, A. C.

A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics1(1), 61–64 (2007).
[CrossRef]

Vahala, K. J.

Wang, S. Y. T.

Wang, T.

R. Chen, H. D. Sun, T. Wang, K. N. Hui, and H. W. Choi, “Optically pumped ultraviolet lasing from nitride nanopillars at room temperature,” Appl. Phys. Lett.96(24), 241101 (2010).
[CrossRef]

Wang, Y.-G.

Y.-G. Wang, C.-C. Chen, C.-H. Chiu, M.-Y. Kuo, M. H. Shih, and H.-C. Kuo, “Lasing in metal-coated GaN nanostripe at room temperature,” Appl. Phys. Lett.98(13), 131110 (2011).
[CrossRef]

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Welch, D. F.

K. M. Dzurko, D. F. Welch, D. R. Scifres, and A. Hardy, “1W single-mode edge-emitting DBR ring oscillators,” IEEE Photon. Technol. Lett.5(4), 369–371 (1993).
[CrossRef]

White, I. M.

S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express15(23), 15523–15530 (2007).
[CrossRef] [PubMed]

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett.89(19), 191106 (2006).
[CrossRef]

Wu, J. Y.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
[CrossRef]

Wu, X.

X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, “Ultraviolet photonic crystal laser,” Appl. Phys. Lett.96, 241101 (2010).

X. Wu, Y. Sun, J. D. Suter, and X. Fan, “Single mode coupled optofluidic ring resonator dye lasers,” Appl. Phys. Lett.94(24), 241109 (2009).
[CrossRef]

Wu, Y.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Xu, L.

Yamilov, A.

X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, “Ultraviolet photonic crystal laser,” Appl. Phys. Lett.96, 241101 (2010).

Yan, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Yang, P.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Yang, Y.-C.

C.-C. Chen, M. H. Shih, Y.-C. Yang, and H.-C. Kuo, “Ultraviolet GaN-based microdisk laser with AlN/AlGaN distributed Bragg reflector,” Appl. Phys. Lett.96(15), 151115 (2010).
[CrossRef]

Zhang, J.

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett.89(19), 191106 (2006).
[CrossRef]

Zhang, P.

Zhao, Y. G.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
[CrossRef]

Appl. Phys. Lett. (10)

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
[CrossRef]

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, “Detection of chemical species using ultraviolet microdisk lasers,” Appl. Phys. Lett.85(17), 3666–3668 (2004).
[CrossRef]

Y.-G. Wang, C.-C. Chen, C.-H. Chiu, M.-Y. Kuo, M. H. Shih, and H.-C. Kuo, “Lasing in metal-coated GaN nanostripe at room temperature,” Appl. Phys. Lett.98(13), 131110 (2011).
[CrossRef]

C.-C. Chen, M. H. Shih, Y.-C. Yang, and H.-C. Kuo, “Ultraviolet GaN-based microdisk laser with AlN/AlGaN distributed Bragg reflector,” Appl. Phys. Lett.96(15), 151115 (2010).
[CrossRef]

S. Kalusniak, S. Sadofev, S. Halm, and F. Henneberger, “Vertical cavity surface emitting laser action of an all monolithic ZnO-based microcavity,” Appl. Phys. Lett.98(1), 011101 (2011).
[CrossRef]

R. Chen, H. D. Sun, T. Wang, K. N. Hui, and H. W. Choi, “Optically pumped ultraviolet lasing from nitride nanopillars at room temperature,” Appl. Phys. Lett.96(24), 241101 (2010).
[CrossRef]

X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, “Ultraviolet photonic crystal laser,” Appl. Phys. Lett.96, 241101 (2010).

X. Wu, Y. Sun, J. D. Suter, and X. Fan, “Single mode coupled optofluidic ring resonator dye lasers,” Appl. Phys. Lett.94(24), 241109 (2009).
[CrossRef]

W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett.98(6), 061103 (2011).
[CrossRef]

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett.89(19), 191106 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. M. Dzurko, D. F. Welch, D. R. Scifres, and A. Hardy, “1W single-mode edge-emitting DBR ring oscillators,” IEEE Photon. Technol. Lett.5(4), 369–371 (1993).
[CrossRef]

M. P. Nesnidal, L. J. Mawst, A. Bhattacharya, D. Botez, L. DiMarco, J. C. Connolly, and J. H. Abeles, “Single-frequency, single-spatial-mode ROW-DFB diode laser arrays,” IEEE Photon. Technol. Lett.8(2), 182–184 (1996).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (1)

A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics1(1), 61–64 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Science (1)

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the COFRR laser. (b) Cross-sectional views of the COFRR laser, the pump, and the measurement. A multimode fiber bundle is placed around the COFRR to couple the laser emission into a spectrometer through free space.

Fig. 2
Fig. 2

(a) Q-factor measured at 1550nm. Lorentzian fit (red line) shows a linewidth of 0.6 pm. Inset: schematic of the experiment setup. (b) Emission spectrum of the UV OFRR laser. Inset: schematic of the experiment setup. (c) Radial distribution for 8th order WGM. Wall thickness = 2 μm, nDMSO = 1.501, nwall = 1.472, nair = 1.0. Red dashed lines are the OFRR inner and outer surface. (d) Plot of the relation between output light intensity and pump energy density.

Fig. 3
Fig. 3

(a) Schematic of the coupled WGMs in a COFRR laser. Emission spectra of the UV COFRR laser at (b) high pump energy density P = 19.1 μJ/mm2 and (c) low pump energy density P = 8.8 μJ/mm2. Inset in (c): logarithmic scale shows SMSR = 19.6 dB. (d) Plot of the relation between the output light intensity and pump energy density. Inset: Single-frequency laser emission spectrum (below, green dot) and multi-frequency emission spectrum (above, blue dot).

Fig. 4
Fig. 4

(a) Far-field and (b) Near-field emission distribution of the single-frequency UV COFRR laser. The cavity is pumped at 2.2 μJ with the pulsed excitation. The near-field image of the lasing mode is viewed at the angle of 7°. (c) Schematic of the focused light rays from the cylinder.

Fig. 5
Fig. 5

(a) Single-frequency laser emission spectrum of the UV COFRR laser at the pump energy density P = 17.7μJ/mm2. (b) Plot of the relation between the output light intensity and pump energy density.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δλ= λ 2 π( n 1 eff D 1 n 2eff D 2 ) =3.2nm

Metrics