Abstract

We demonstrate a regrowth-free material platform to create monolithic InGaAsP/InP photonic integrated circuits (PICs) with high-gain active and low-loss passive sections via a PL detuning of >135 nm. We show 2.5 µm wide by 400 µm long semiconductor optical amplifiers with >40 dB/mm gain at 1570 nm, and passive waveguide losses <2.3 dB/mm. The bandgap in the passive section is detuned using low-energy 190 keV channelized phosphorous implantation and subsequent rapid thermal annealing to achieve impurity-induced quantum well intermixing (QWI). The PL wavelengths in the active and passive sections are 1553 and 1417 nm, respectively. Lasing wavelengths for 500 µm Fabry-Perot lasers are 1567 and 1453 nm, respectively.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Cheng, J. Pan, S. Liang, W. Feng, Z. Liao, F. Zhou, B. Wang, L. Zhao, H. Zhu, and W. Wang, “Butt-coupled MOVPE growth for high-performance electro-absorption modulator integrated with a DFB laser,” J. Cryst. Growth308(2), 297–301 (2007).
    [CrossRef]
  2. M. Aoki, M. Suzuki, H. Sano, T. Kawano, T. Ido, T. Taniwatari, K. Uomi, and A. Takai, “InGaAs/InGaAsP MQW electroabsorption modulator integrated with a DFB laser fabricated by band-gap energy control selective-area MOCVD,” J. Quantum Electron.29(6), 2088–2096 (1993).
    [CrossRef]
  3. T. K. Ong, Y. C. Chan, Y. L. Lam, and B. S. Ooi, “Wavelength tuning in InGaAs/InGaAsP quantum well lasers using pulsed-photoabsorption-induced disordering,” Appl. Phys. Lett.78(18), 2637–2639 (2001).
    [CrossRef]
  4. T. K. Ong, O. Gunawan, B. S. Ooi, Y. L. Lam, Y. C. Chan, Y. Zhou, A. S. Helmy, and J. H. Marsh, “High-spatial-resolution quantum-well intermixing process in GaInAs/GaInAsP laser structure using pulsed-photoabsorption-induced disordering,” J. Appl. Phys.87(6), 2775–2779 (2000).
    [CrossRef]
  5. B. C. Qiu, A. C. Bryce, R. M. de la Rue, and J. H. Marsh, “Monolithic integration in InGaAs-InGaAsP multiquantum-well structure using laser processing,” IEEE Photon. Technol. Lett.10(6), 769–771 (1998).
    [CrossRef]
  6. H. S. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. F. Yu, L. K. Ang, and X. H. Tang, “Experimental and theoretical analysis of argon plasma-enhanced quantum-well intermixing,” J. Quantum Electron.40(2), 166–174 (2004).
    [CrossRef]
  7. H. S. Djie, C. Sookdhis, T. Mei, and J. Arokiaraj, “Photonic integration using inductively coupled argon plasma enhanced quantum well intermixing,” Electron. Lett.38(25), 1672–1673 (2002).
    [CrossRef]
  8. K.-H. Lee, J. O'Callaghan, B. Roycroft, C. L. Daunt, H. Yang, J. H. Song, F. H. Peters, and B. Corbett, “Quantum well intermixing in AlInGaAs MQW structures through impurity-free vacancy method,” Proc. SPIE7604, 76040J, 76040J-7 (2010).
    [CrossRef]
  9. S. K. Si, D. H. Yeo, H. H. Yoon, and S. J. Kim, “Area selectivity of InGaAsP-InP multiquantum-well intermixing by impurity-free vacancy diffusion,” IEEE J. Sel. Top. Quantum Electron.4(4), 619–623 (1998).
    [CrossRef]
  10. J. Zhao, Z. C. Feng, Y. C. Wang, J. C. Deng, and G. Xu, “Luminescent characteristics of InGaAsP/InP multiple quantum well structures by impurity-free vacancy disordering,” Surf. Coat. Tech.200(10), 3245–3249 (2006).
    [CrossRef]
  11. S. Charbonneau, E. S. Koteles, P. J. Poole, J. J. He, G. C. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron.4(4), 772–793 (1998).
    [CrossRef]
  12. P. J. Poole, S. Charbonneau, G. C. Aers, T. E. Jackman, M. Buchanan, M. Dion, R. D. Goldberg, and I. V. Mitchell, “Defect diffusion in ion implanted AlGaAs and InP: Consequences for quantum well intermixing,” J. Appl. Phys.78(4), 2367–2371 (1995).
    [CrossRef]
  13. M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, “Fast tuneable InGaAsP DBR laser using quantum-confined stark-effect-induced refractive index change,” IEEE J. Sel. Top. Quantum Electron.13(5), 1112–1121 (2007).
    [CrossRef]
  14. M. Paquette, V. Aimez, J. Beauvais, J. Beerens, P. J. Poole, S. Charbonneau, and A. P. Roth, “Blueshifting of InGaAsP-InP laser diodes using a low-energy ion-implantation technique: comparison between strained and lattice-matched quantum-well structures,” IEEE J. Sel. Top. Quantum Electron.4(4), 741–745 (1998).
    [CrossRef]
  15. V. Aimez, J. Beauvais, J. Beerens, D. Morris, H. S. Lim, and B. S. Ooi, “Low-energy ion-implantation-induced quantum-well intermixing,” IEEE J. Sel. Top. Quantum Electron.8(4), 870–879 (2002).
    [CrossRef]
  16. M. Chicoine, A. Francois, C. Tavares, S. Chevobbe, F. Schiettekatte, V. Aimez, J. Beauvais, and J. Beerens, “Effects of damage accumulation on quantum well intermixing by low-energy ion implantation in photonic devices,” Proc. SPIE5260, 423–431 (2003).
    [CrossRef]
  17. D. Barba, B. Salem, D. Morris, V. Aimez, J. Beauvais, M. Chicoine, and F. Schiettekatte, “Ion channeling effects on quantum well intermixing in phosphorus-implanted InGaAsP/InGaAs/InP,” J. Appl. Phys.98(5), 054904–054908 (2005).
    [CrossRef]
  18. E. J. Skogen, J. W. Raring, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Postgrowth control of the quantum-well band edge for the monolithic integration of widely tunable lasers and electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron.9(5), 1183–1190 (2003).
    [CrossRef]
  19. J. W. Raring and L. A. Coldren, “40-Gb/s Widely Tunable Transceivers,” IEEE J. Sel. Top. Quantum Electron.13(1), 3–14 (2007).
    [CrossRef]
  20. W. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, J. O'Callaghan, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable Slotted Single-Mode Lasers,” IEEE Photon. Technol. Lett.24(8), 634–636 (2012).
    [CrossRef]
  21. M. Silver and E. P. O'Reilly, “Optimization of long wavelength InGaAsP strained quantum-well lasers,” J. Quantum Electron.31(7), 1193–1200 (1995).
    [CrossRef]
  22. T. Takeda, S. Tazawa, and A. Yoshii, “Precise ion-implantation analysis including channeling effects,” IEEE Trans. Electron Devices33(9), 1278–1285 (1986).
    [CrossRef]
  23. J. Bausells, G. Badenes, and E. Lora-Tamayo, “Calculation of channeling effects in ion implantation,” Nucl. Instrum. Meth. B55(1-4), 666–670 (1991).
    [CrossRef]
  24. Y.-F. Lao, H. Wu, and Z.-C. Huang, “Luminescent properties of annealed and directly wafer-bonded InAsP/InGaAsP multiple quantum wells,” Semicond. Sci. Technol.20(6), 615–620 (2005).
    [CrossRef]
  25. C. Blaauw, B. Emmerstorfer, D. Kreller, L. Hobbs, and A. J. Springthorpe, “Effects of S, Si, or Fe dopants on the diffusion of Zn in InP during MOCVD,” J. Electron. Mater.21(2), 173–179 (1992).
    [CrossRef]
  26. E. F. Schubert, C. J. Pinzone, and M. Geva, “Phenomenology of Zn diffusion and incorporation in InP grown by organometallic vapor‐phase epitaxy (OMVPE),” Appl. Phys. Lett.67(5), 700–702 (1995).
    [CrossRef]
  27. N. Yoshimoto, Y. Shibata, S. Oku, S. Kondo, and Y. Noguchi, “Design and demonstration of polarization insensitive Mach-Zehnder switch using a lattice-matched ingaalas/inalas mqw and deep-etched high-mesa waveguide structure,” J. Lightwave Technol.17(9), 1662–1668 (1999).
    [CrossRef]

2012

W. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, J. O'Callaghan, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable Slotted Single-Mode Lasers,” IEEE Photon. Technol. Lett.24(8), 634–636 (2012).
[CrossRef]

2010

K.-H. Lee, J. O'Callaghan, B. Roycroft, C. L. Daunt, H. Yang, J. H. Song, F. H. Peters, and B. Corbett, “Quantum well intermixing in AlInGaAs MQW structures through impurity-free vacancy method,” Proc. SPIE7604, 76040J, 76040J-7 (2010).
[CrossRef]

2007

Y. Cheng, J. Pan, S. Liang, W. Feng, Z. Liao, F. Zhou, B. Wang, L. Zhao, H. Zhu, and W. Wang, “Butt-coupled MOVPE growth for high-performance electro-absorption modulator integrated with a DFB laser,” J. Cryst. Growth308(2), 297–301 (2007).
[CrossRef]

M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, “Fast tuneable InGaAsP DBR laser using quantum-confined stark-effect-induced refractive index change,” IEEE J. Sel. Top. Quantum Electron.13(5), 1112–1121 (2007).
[CrossRef]

J. W. Raring and L. A. Coldren, “40-Gb/s Widely Tunable Transceivers,” IEEE J. Sel. Top. Quantum Electron.13(1), 3–14 (2007).
[CrossRef]

2006

J. Zhao, Z. C. Feng, Y. C. Wang, J. C. Deng, and G. Xu, “Luminescent characteristics of InGaAsP/InP multiple quantum well structures by impurity-free vacancy disordering,” Surf. Coat. Tech.200(10), 3245–3249 (2006).
[CrossRef]

2005

D. Barba, B. Salem, D. Morris, V. Aimez, J. Beauvais, M. Chicoine, and F. Schiettekatte, “Ion channeling effects on quantum well intermixing in phosphorus-implanted InGaAsP/InGaAs/InP,” J. Appl. Phys.98(5), 054904–054908 (2005).
[CrossRef]

Y.-F. Lao, H. Wu, and Z.-C. Huang, “Luminescent properties of annealed and directly wafer-bonded InAsP/InGaAsP multiple quantum wells,” Semicond. Sci. Technol.20(6), 615–620 (2005).
[CrossRef]

2004

H. S. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. F. Yu, L. K. Ang, and X. H. Tang, “Experimental and theoretical analysis of argon plasma-enhanced quantum-well intermixing,” J. Quantum Electron.40(2), 166–174 (2004).
[CrossRef]

2003

E. J. Skogen, J. W. Raring, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Postgrowth control of the quantum-well band edge for the monolithic integration of widely tunable lasers and electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron.9(5), 1183–1190 (2003).
[CrossRef]

M. Chicoine, A. Francois, C. Tavares, S. Chevobbe, F. Schiettekatte, V. Aimez, J. Beauvais, and J. Beerens, “Effects of damage accumulation on quantum well intermixing by low-energy ion implantation in photonic devices,” Proc. SPIE5260, 423–431 (2003).
[CrossRef]

2002

V. Aimez, J. Beauvais, J. Beerens, D. Morris, H. S. Lim, and B. S. Ooi, “Low-energy ion-implantation-induced quantum-well intermixing,” IEEE J. Sel. Top. Quantum Electron.8(4), 870–879 (2002).
[CrossRef]

H. S. Djie, C. Sookdhis, T. Mei, and J. Arokiaraj, “Photonic integration using inductively coupled argon plasma enhanced quantum well intermixing,” Electron. Lett.38(25), 1672–1673 (2002).
[CrossRef]

2001

T. K. Ong, Y. C. Chan, Y. L. Lam, and B. S. Ooi, “Wavelength tuning in InGaAs/InGaAsP quantum well lasers using pulsed-photoabsorption-induced disordering,” Appl. Phys. Lett.78(18), 2637–2639 (2001).
[CrossRef]

2000

T. K. Ong, O. Gunawan, B. S. Ooi, Y. L. Lam, Y. C. Chan, Y. Zhou, A. S. Helmy, and J. H. Marsh, “High-spatial-resolution quantum-well intermixing process in GaInAs/GaInAsP laser structure using pulsed-photoabsorption-induced disordering,” J. Appl. Phys.87(6), 2775–2779 (2000).
[CrossRef]

1999

1998

B. C. Qiu, A. C. Bryce, R. M. de la Rue, and J. H. Marsh, “Monolithic integration in InGaAs-InGaAsP multiquantum-well structure using laser processing,” IEEE Photon. Technol. Lett.10(6), 769–771 (1998).
[CrossRef]

S. K. Si, D. H. Yeo, H. H. Yoon, and S. J. Kim, “Area selectivity of InGaAsP-InP multiquantum-well intermixing by impurity-free vacancy diffusion,” IEEE J. Sel. Top. Quantum Electron.4(4), 619–623 (1998).
[CrossRef]

S. Charbonneau, E. S. Koteles, P. J. Poole, J. J. He, G. C. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron.4(4), 772–793 (1998).
[CrossRef]

M. Paquette, V. Aimez, J. Beauvais, J. Beerens, P. J. Poole, S. Charbonneau, and A. P. Roth, “Blueshifting of InGaAsP-InP laser diodes using a low-energy ion-implantation technique: comparison between strained and lattice-matched quantum-well structures,” IEEE J. Sel. Top. Quantum Electron.4(4), 741–745 (1998).
[CrossRef]

1995

P. J. Poole, S. Charbonneau, G. C. Aers, T. E. Jackman, M. Buchanan, M. Dion, R. D. Goldberg, and I. V. Mitchell, “Defect diffusion in ion implanted AlGaAs and InP: Consequences for quantum well intermixing,” J. Appl. Phys.78(4), 2367–2371 (1995).
[CrossRef]

E. F. Schubert, C. J. Pinzone, and M. Geva, “Phenomenology of Zn diffusion and incorporation in InP grown by organometallic vapor‐phase epitaxy (OMVPE),” Appl. Phys. Lett.67(5), 700–702 (1995).
[CrossRef]

M. Silver and E. P. O'Reilly, “Optimization of long wavelength InGaAsP strained quantum-well lasers,” J. Quantum Electron.31(7), 1193–1200 (1995).
[CrossRef]

1993

M. Aoki, M. Suzuki, H. Sano, T. Kawano, T. Ido, T. Taniwatari, K. Uomi, and A. Takai, “InGaAs/InGaAsP MQW electroabsorption modulator integrated with a DFB laser fabricated by band-gap energy control selective-area MOCVD,” J. Quantum Electron.29(6), 2088–2096 (1993).
[CrossRef]

1992

C. Blaauw, B. Emmerstorfer, D. Kreller, L. Hobbs, and A. J. Springthorpe, “Effects of S, Si, or Fe dopants on the diffusion of Zn in InP during MOCVD,” J. Electron. Mater.21(2), 173–179 (1992).
[CrossRef]

1991

J. Bausells, G. Badenes, and E. Lora-Tamayo, “Calculation of channeling effects in ion implantation,” Nucl. Instrum. Meth. B55(1-4), 666–670 (1991).
[CrossRef]

1986

T. Takeda, S. Tazawa, and A. Yoshii, “Precise ion-implantation analysis including channeling effects,” IEEE Trans. Electron Devices33(9), 1278–1285 (1986).
[CrossRef]

Abdullaev, A.

W. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, J. O'Callaghan, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable Slotted Single-Mode Lasers,” IEEE Photon. Technol. Lett.24(8), 634–636 (2012).
[CrossRef]

Aers, G. C.

S. Charbonneau, E. S. Koteles, P. J. Poole, J. J. He, G. C. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron.4(4), 772–793 (1998).
[CrossRef]

P. J. Poole, S. Charbonneau, G. C. Aers, T. E. Jackman, M. Buchanan, M. Dion, R. D. Goldberg, and I. V. Mitchell, “Defect diffusion in ion implanted AlGaAs and InP: Consequences for quantum well intermixing,” J. Appl. Phys.78(4), 2367–2371 (1995).
[CrossRef]

Aimez, V.

D. Barba, B. Salem, D. Morris, V. Aimez, J. Beauvais, M. Chicoine, and F. Schiettekatte, “Ion channeling effects on quantum well intermixing in phosphorus-implanted InGaAsP/InGaAs/InP,” J. Appl. Phys.98(5), 054904–054908 (2005).
[CrossRef]

M. Chicoine, A. Francois, C. Tavares, S. Chevobbe, F. Schiettekatte, V. Aimez, J. Beauvais, and J. Beerens, “Effects of damage accumulation on quantum well intermixing by low-energy ion implantation in photonic devices,” Proc. SPIE5260, 423–431 (2003).
[CrossRef]

V. Aimez, J. Beauvais, J. Beerens, D. Morris, H. S. Lim, and B. S. Ooi, “Low-energy ion-implantation-induced quantum-well intermixing,” IEEE J. Sel. Top. Quantum Electron.8(4), 870–879 (2002).
[CrossRef]

M. Paquette, V. Aimez, J. Beauvais, J. Beerens, P. J. Poole, S. Charbonneau, and A. P. Roth, “Blueshifting of InGaAsP-InP laser diodes using a low-energy ion-implantation technique: comparison between strained and lattice-matched quantum-well structures,” IEEE J. Sel. Top. Quantum Electron.4(4), 741–745 (1998).
[CrossRef]

Ang, L. K.

H. S. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. F. Yu, L. K. Ang, and X. H. Tang, “Experimental and theoretical analysis of argon plasma-enhanced quantum-well intermixing,” J. Quantum Electron.40(2), 166–174 (2004).
[CrossRef]

Aoki, M.

M. Aoki, M. Suzuki, H. Sano, T. Kawano, T. Ido, T. Taniwatari, K. Uomi, and A. Takai, “InGaAs/InGaAsP MQW electroabsorption modulator integrated with a DFB laser fabricated by band-gap energy control selective-area MOCVD,” J. Quantum Electron.29(6), 2088–2096 (1993).
[CrossRef]

Arokiaraj, J.

H. S. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. F. Yu, L. K. Ang, and X. H. Tang, “Experimental and theoretical analysis of argon plasma-enhanced quantum-well intermixing,” J. Quantum Electron.40(2), 166–174 (2004).
[CrossRef]

H. S. Djie, C. Sookdhis, T. Mei, and J. Arokiaraj, “Photonic integration using inductively coupled argon plasma enhanced quantum well intermixing,” Electron. Lett.38(25), 1672–1673 (2002).
[CrossRef]

Badenes, G.

J. Bausells, G. Badenes, and E. Lora-Tamayo, “Calculation of channeling effects in ion implantation,” Nucl. Instrum. Meth. B55(1-4), 666–670 (1991).
[CrossRef]

Barba, D.

D. Barba, B. Salem, D. Morris, V. Aimez, J. Beauvais, M. Chicoine, and F. Schiettekatte, “Ion channeling effects on quantum well intermixing in phosphorus-implanted InGaAsP/InGaAs/InP,” J. Appl. Phys.98(5), 054904–054908 (2005).
[CrossRef]

Barton, J. S.

E. J. Skogen, J. W. Raring, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Postgrowth control of the quantum-well band edge for the monolithic integration of widely tunable lasers and electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron.9(5), 1183–1190 (2003).
[CrossRef]

Bausells, J.

J. Bausells, G. Badenes, and E. Lora-Tamayo, “Calculation of channeling effects in ion implantation,” Nucl. Instrum. Meth. B55(1-4), 666–670 (1991).
[CrossRef]

Beauvais, J.

D. Barba, B. Salem, D. Morris, V. Aimez, J. Beauvais, M. Chicoine, and F. Schiettekatte, “Ion channeling effects on quantum well intermixing in phosphorus-implanted InGaAsP/InGaAs/InP,” J. Appl. Phys.98(5), 054904–054908 (2005).
[CrossRef]

M. Chicoine, A. Francois, C. Tavares, S. Chevobbe, F. Schiettekatte, V. Aimez, J. Beauvais, and J. Beerens, “Effects of damage accumulation on quantum well intermixing by low-energy ion implantation in photonic devices,” Proc. SPIE5260, 423–431 (2003).
[CrossRef]

V. Aimez, J. Beauvais, J. Beerens, D. Morris, H. S. Lim, and B. S. Ooi, “Low-energy ion-implantation-induced quantum-well intermixing,” IEEE J. Sel. Top. Quantum Electron.8(4), 870–879 (2002).
[CrossRef]

M. Paquette, V. Aimez, J. Beauvais, J. Beerens, P. J. Poole, S. Charbonneau, and A. P. Roth, “Blueshifting of InGaAsP-InP laser diodes using a low-energy ion-implantation technique: comparison between strained and lattice-matched quantum-well structures,” IEEE J. Sel. Top. Quantum Electron.4(4), 741–745 (1998).
[CrossRef]

Beerens, J.

M. Chicoine, A. Francois, C. Tavares, S. Chevobbe, F. Schiettekatte, V. Aimez, J. Beauvais, and J. Beerens, “Effects of damage accumulation on quantum well intermixing by low-energy ion implantation in photonic devices,” Proc. SPIE5260, 423–431 (2003).
[CrossRef]

V. Aimez, J. Beauvais, J. Beerens, D. Morris, H. S. Lim, and B. S. Ooi, “Low-energy ion-implantation-induced quantum-well intermixing,” IEEE J. Sel. Top. Quantum Electron.8(4), 870–879 (2002).
[CrossRef]

M. Paquette, V. Aimez, J. Beauvais, J. Beerens, P. J. Poole, S. Charbonneau, and A. P. Roth, “Blueshifting of InGaAsP-InP laser diodes using a low-energy ion-implantation technique: comparison between strained and lattice-matched quantum-well structures,” IEEE J. Sel. Top. Quantum Electron.4(4), 741–745 (1998).
[CrossRef]

Blaauw, C.

C. Blaauw, B. Emmerstorfer, D. Kreller, L. Hobbs, and A. J. Springthorpe, “Effects of S, Si, or Fe dopants on the diffusion of Zn in InP during MOCVD,” J. Electron. Mater.21(2), 173–179 (1992).
[CrossRef]

Bryce, A. C.

B. C. Qiu, A. C. Bryce, R. M. de la Rue, and J. H. Marsh, “Monolithic integration in InGaAs-InGaAsP multiquantum-well structure using laser processing,” IEEE Photon. Technol. Lett.10(6), 769–771 (1998).
[CrossRef]

Buchanan, M.

S. Charbonneau, E. S. Koteles, P. J. Poole, J. J. He, G. C. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron.4(4), 772–793 (1998).
[CrossRef]

P. J. Poole, S. Charbonneau, G. C. Aers, T. E. Jackman, M. Buchanan, M. Dion, R. D. Goldberg, and I. V. Mitchell, “Defect diffusion in ion implanted AlGaAs and InP: Consequences for quantum well intermixing,” J. Appl. Phys.78(4), 2367–2371 (1995).
[CrossRef]

Cannard, P.

M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, “Fast tuneable InGaAsP DBR laser using quantum-confined stark-effect-induced refractive index change,” IEEE J. Sel. Top. Quantum Electron.13(5), 1112–1121 (2007).
[CrossRef]

Chan, Y. C.

T. K. Ong, Y. C. Chan, Y. L. Lam, and B. S. Ooi, “Wavelength tuning in InGaAs/InGaAsP quantum well lasers using pulsed-photoabsorption-induced disordering,” Appl. Phys. Lett.78(18), 2637–2639 (2001).
[CrossRef]

T. K. Ong, O. Gunawan, B. S. Ooi, Y. L. Lam, Y. C. Chan, Y. Zhou, A. S. Helmy, and J. H. Marsh, “High-spatial-resolution quantum-well intermixing process in GaInAs/GaInAsP laser structure using pulsed-photoabsorption-induced disordering,” J. Appl. Phys.87(6), 2775–2779 (2000).
[CrossRef]

Charbonneau, S.

S. Charbonneau, E. S. Koteles, P. J. Poole, J. J. He, G. C. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron.4(4), 772–793 (1998).
[CrossRef]

M. Paquette, V. Aimez, J. Beauvais, J. Beerens, P. J. Poole, S. Charbonneau, and A. P. Roth, “Blueshifting of InGaAsP-InP laser diodes using a low-energy ion-implantation technique: comparison between strained and lattice-matched quantum-well structures,” IEEE J. Sel. Top. Quantum Electron.4(4), 741–745 (1998).
[CrossRef]

P. J. Poole, S. Charbonneau, G. C. Aers, T. E. Jackman, M. Buchanan, M. Dion, R. D. Goldberg, and I. V. Mitchell, “Defect diffusion in ion implanted AlGaAs and InP: Consequences for quantum well intermixing,” J. Appl. Phys.78(4), 2367–2371 (1995).
[CrossRef]

Cheng, Y.

Y. Cheng, J. Pan, S. Liang, W. Feng, Z. Liao, F. Zhou, B. Wang, L. Zhao, H. Zhu, and W. Wang, “Butt-coupled MOVPE growth for high-performance electro-absorption modulator integrated with a DFB laser,” J. Cryst. Growth308(2), 297–301 (2007).
[CrossRef]

Chevobbe, S.

M. Chicoine, A. Francois, C. Tavares, S. Chevobbe, F. Schiettekatte, V. Aimez, J. Beauvais, and J. Beerens, “Effects of damage accumulation on quantum well intermixing by low-energy ion implantation in photonic devices,” Proc. SPIE5260, 423–431 (2003).
[CrossRef]

Chicoine, M.

D. Barba, B. Salem, D. Morris, V. Aimez, J. Beauvais, M. Chicoine, and F. Schiettekatte, “Ion channeling effects on quantum well intermixing in phosphorus-implanted InGaAsP/InGaAs/InP,” J. Appl. Phys.98(5), 054904–054908 (2005).
[CrossRef]

M. Chicoine, A. Francois, C. Tavares, S. Chevobbe, F. Schiettekatte, V. Aimez, J. Beauvais, and J. Beerens, “Effects of damage accumulation on quantum well intermixing by low-energy ion implantation in photonic devices,” Proc. SPIE5260, 423–431 (2003).
[CrossRef]

Coldren, L. A.

J. W. Raring and L. A. Coldren, “40-Gb/s Widely Tunable Transceivers,” IEEE J. Sel. Top. Quantum Electron.13(1), 3–14 (2007).
[CrossRef]

E. J. Skogen, J. W. Raring, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Postgrowth control of the quantum-well band edge for the monolithic integration of widely tunable lasers and electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron.9(5), 1183–1190 (2003).
[CrossRef]

Corbett, B.

K.-H. Lee, J. O'Callaghan, B. Roycroft, C. L. Daunt, H. Yang, J. H. Song, F. H. Peters, and B. Corbett, “Quantum well intermixing in AlInGaAs MQW structures through impurity-free vacancy method,” Proc. SPIE7604, 76040J, 76040J-7 (2010).
[CrossRef]

Daunt, C. L.

K.-H. Lee, J. O'Callaghan, B. Roycroft, C. L. Daunt, H. Yang, J. H. Song, F. H. Peters, and B. Corbett, “Quantum well intermixing in AlInGaAs MQW structures through impurity-free vacancy method,” Proc. SPIE7604, 76040J, 76040J-7 (2010).
[CrossRef]

Davies, M.

S. Charbonneau, E. S. Koteles, P. J. Poole, J. J. He, G. C. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron.4(4), 772–793 (1998).
[CrossRef]

de la Rue, R. M.

B. C. Qiu, A. C. Bryce, R. M. de la Rue, and J. H. Marsh, “Monolithic integration in InGaAs-InGaAsP multiquantum-well structure using laser processing,” IEEE Photon. Technol. Lett.10(6), 769–771 (1998).
[CrossRef]

Delage, A.

S. Charbonneau, E. S. Koteles, P. J. Poole, J. J. He, G. C. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron.4(4), 772–793 (1998).
[CrossRef]

DenBaars, S. P.

E. J. Skogen, J. W. Raring, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Postgrowth control of the quantum-well band edge for the monolithic integration of widely tunable lasers and electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron.9(5), 1183–1190 (2003).
[CrossRef]

Deng, J. C.

J. Zhao, Z. C. Feng, Y. C. Wang, J. C. Deng, and G. Xu, “Luminescent characteristics of InGaAsP/InP multiple quantum well structures by impurity-free vacancy disordering,” Surf. Coat. Tech.200(10), 3245–3249 (2006).
[CrossRef]

Dion, M.

P. J. Poole, S. Charbonneau, G. C. Aers, T. E. Jackman, M. Buchanan, M. Dion, R. D. Goldberg, and I. V. Mitchell, “Defect diffusion in ion implanted AlGaAs and InP: Consequences for quantum well intermixing,” J. Appl. Phys.78(4), 2367–2371 (1995).
[CrossRef]

Djie, H. S.

H. S. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. F. Yu, L. K. Ang, and X. H. Tang, “Experimental and theoretical analysis of argon plasma-enhanced quantum-well intermixing,” J. Quantum Electron.40(2), 166–174 (2004).
[CrossRef]

H. S. Djie, C. Sookdhis, T. Mei, and J. Arokiaraj, “Photonic integration using inductively coupled argon plasma enhanced quantum well intermixing,” Electron. Lett.38(25), 1672–1673 (2002).
[CrossRef]

Donegan, J. F.

W. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, J. O'Callaghan, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable Slotted Single-Mode Lasers,” IEEE Photon. Technol. Lett.24(8), 634–636 (2012).
[CrossRef]

Emmerstorfer, B.

C. Blaauw, B. Emmerstorfer, D. Kreller, L. Hobbs, and A. J. Springthorpe, “Effects of S, Si, or Fe dopants on the diffusion of Zn in InP during MOCVD,” J. Electron. Mater.21(2), 173–179 (1992).
[CrossRef]

Feng, W.

Y. Cheng, J. Pan, S. Liang, W. Feng, Z. Liao, F. Zhou, B. Wang, L. Zhao, H. Zhu, and W. Wang, “Butt-coupled MOVPE growth for high-performance electro-absorption modulator integrated with a DFB laser,” J. Cryst. Growth308(2), 297–301 (2007).
[CrossRef]

Feng, Y.

S. Charbonneau, E. S. Koteles, P. J. Poole, J. J. He, G. C. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron.4(4), 772–793 (1998).
[CrossRef]

Feng, Z. C.

J. Zhao, Z. C. Feng, Y. C. Wang, J. C. Deng, and G. Xu, “Luminescent characteristics of InGaAsP/InP multiple quantum well structures by impurity-free vacancy disordering,” Surf. Coat. Tech.200(10), 3245–3249 (2006).
[CrossRef]

Francois, A.

M. Chicoine, A. Francois, C. Tavares, S. Chevobbe, F. Schiettekatte, V. Aimez, J. Beauvais, and J. Beerens, “Effects of damage accumulation on quantum well intermixing by low-energy ion implantation in photonic devices,” Proc. SPIE5260, 423–431 (2003).
[CrossRef]

Geva, M.

E. F. Schubert, C. J. Pinzone, and M. Geva, “Phenomenology of Zn diffusion and incorporation in InP grown by organometallic vapor‐phase epitaxy (OMVPE),” Appl. Phys. Lett.67(5), 700–702 (1995).
[CrossRef]

Goldberg, R. D.

S. Charbonneau, E. S. Koteles, P. J. Poole, J. J. He, G. C. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron.4(4), 772–793 (1998).
[CrossRef]

P. J. Poole, S. Charbonneau, G. C. Aers, T. E. Jackman, M. Buchanan, M. Dion, R. D. Goldberg, and I. V. Mitchell, “Defect diffusion in ion implanted AlGaAs and InP: Consequences for quantum well intermixing,” J. Appl. Phys.78(4), 2367–2371 (1995).
[CrossRef]

Gunawan, O.

T. K. Ong, O. Gunawan, B. S. Ooi, Y. L. Lam, Y. C. Chan, Y. Zhou, A. S. Helmy, and J. H. Marsh, “High-spatial-resolution quantum-well intermixing process in GaInAs/GaInAsP laser structure using pulsed-photoabsorption-induced disordering,” J. Appl. Phys.87(6), 2775–2779 (2000).
[CrossRef]

Guo, W.

W. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, J. O'Callaghan, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable Slotted Single-Mode Lasers,” IEEE Photon. Technol. Lett.24(8), 634–636 (2012).
[CrossRef]

Gwilliam, R.

M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, “Fast tuneable InGaAsP DBR laser using quantum-confined stark-effect-induced refractive index change,” IEEE J. Sel. Top. Quantum Electron.13(5), 1112–1121 (2007).
[CrossRef]

Haysom, J.

S. Charbonneau, E. S. Koteles, P. J. Poole, J. J. He, G. C. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron.4(4), 772–793 (1998).
[CrossRef]

He, J. J.

S. Charbonneau, E. S. Koteles, P. J. Poole, J. J. He, G. C. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron.4(4), 772–793 (1998).
[CrossRef]

Helmy, A. S.

T. K. Ong, O. Gunawan, B. S. Ooi, Y. L. Lam, Y. C. Chan, Y. Zhou, A. S. Helmy, and J. H. Marsh, “High-spatial-resolution quantum-well intermixing process in GaInAs/GaInAsP laser structure using pulsed-photoabsorption-induced disordering,” J. Appl. Phys.87(6), 2775–2779 (2000).
[CrossRef]

Hobbs, L.

C. Blaauw, B. Emmerstorfer, D. Kreller, L. Hobbs, and A. J. Springthorpe, “Effects of S, Si, or Fe dopants on the diffusion of Zn in InP during MOCVD,” J. Electron. Mater.21(2), 173–179 (1992).
[CrossRef]

Huang, Z.-C.

Y.-F. Lao, H. Wu, and Z.-C. Huang, “Luminescent properties of annealed and directly wafer-bonded InAsP/InGaAsP multiple quantum wells,” Semicond. Sci. Technol.20(6), 615–620 (2005).
[CrossRef]

Ido, T.

M. Aoki, M. Suzuki, H. Sano, T. Kawano, T. Ido, T. Taniwatari, K. Uomi, and A. Takai, “InGaAs/InGaAsP MQW electroabsorption modulator integrated with a DFB laser fabricated by band-gap energy control selective-area MOCVD,” J. Quantum Electron.29(6), 2088–2096 (1993).
[CrossRef]

Jackman, T. E.

P. J. Poole, S. Charbonneau, G. C. Aers, T. E. Jackman, M. Buchanan, M. Dion, R. D. Goldberg, and I. V. Mitchell, “Defect diffusion in ion implanted AlGaAs and InP: Consequences for quantum well intermixing,” J. Appl. Phys.78(4), 2367–2371 (1995).
[CrossRef]

Kawano, T.

M. Aoki, M. Suzuki, H. Sano, T. Kawano, T. Ido, T. Taniwatari, K. Uomi, and A. Takai, “InGaAs/InGaAsP MQW electroabsorption modulator integrated with a DFB laser fabricated by band-gap energy control selective-area MOCVD,” J. Quantum Electron.29(6), 2088–2096 (1993).
[CrossRef]

Kim, S. J.

S. K. Si, D. H. Yeo, H. H. Yoon, and S. J. Kim, “Area selectivity of InGaAsP-InP multiquantum-well intermixing by impurity-free vacancy diffusion,” IEEE J. Sel. Top. Quantum Electron.4(4), 619–623 (1998).
[CrossRef]

Kondo, S.

Koteles, E. S.

S. Charbonneau, E. S. Koteles, P. J. Poole, J. J. He, G. C. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron.4(4), 772–793 (1998).
[CrossRef]

Kreller, D.

C. Blaauw, B. Emmerstorfer, D. Kreller, L. Hobbs, and A. J. Springthorpe, “Effects of S, Si, or Fe dopants on the diffusion of Zn in InP during MOCVD,” J. Electron. Mater.21(2), 173–179 (1992).
[CrossRef]

Lam, Y. L.

T. K. Ong, Y. C. Chan, Y. L. Lam, and B. S. Ooi, “Wavelength tuning in InGaAs/InGaAsP quantum well lasers using pulsed-photoabsorption-induced disordering,” Appl. Phys. Lett.78(18), 2637–2639 (2001).
[CrossRef]

T. K. Ong, O. Gunawan, B. S. Ooi, Y. L. Lam, Y. C. Chan, Y. Zhou, A. S. Helmy, and J. H. Marsh, “High-spatial-resolution quantum-well intermixing process in GaInAs/GaInAsP laser structure using pulsed-photoabsorption-induced disordering,” J. Appl. Phys.87(6), 2775–2779 (2000).
[CrossRef]

Lao, Y.-F.

Y.-F. Lao, H. Wu, and Z.-C. Huang, “Luminescent properties of annealed and directly wafer-bonded InAsP/InGaAsP multiple quantum wells,” Semicond. Sci. Technol.20(6), 615–620 (2005).
[CrossRef]

Lee, K.-H.

K.-H. Lee, J. O'Callaghan, B. Roycroft, C. L. Daunt, H. Yang, J. H. Song, F. H. Peters, and B. Corbett, “Quantum well intermixing in AlInGaAs MQW structures through impurity-free vacancy method,” Proc. SPIE7604, 76040J, 76040J-7 (2010).
[CrossRef]

Liang, S.

Y. Cheng, J. Pan, S. Liang, W. Feng, Z. Liao, F. Zhou, B. Wang, L. Zhao, H. Zhu, and W. Wang, “Butt-coupled MOVPE growth for high-performance electro-absorption modulator integrated with a DFB laser,” J. Cryst. Growth308(2), 297–301 (2007).
[CrossRef]

Liao, Z.

Y. Cheng, J. Pan, S. Liang, W. Feng, Z. Liao, F. Zhou, B. Wang, L. Zhao, H. Zhu, and W. Wang, “Butt-coupled MOVPE growth for high-performance electro-absorption modulator integrated with a DFB laser,” J. Cryst. Growth308(2), 297–301 (2007).
[CrossRef]

Lim, H. S.

V. Aimez, J. Beauvais, J. Beerens, D. Morris, H. S. Lim, and B. S. Ooi, “Low-energy ion-implantation-induced quantum-well intermixing,” IEEE J. Sel. Top. Quantum Electron.8(4), 870–879 (2002).
[CrossRef]

Lora-Tamayo, E.

J. Bausells, G. Badenes, and E. Lora-Tamayo, “Calculation of channeling effects in ion implantation,” Nucl. Instrum. Meth. B55(1-4), 666–670 (1991).
[CrossRef]

Lu, Q.

W. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, J. O'Callaghan, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable Slotted Single-Mode Lasers,” IEEE Photon. Technol. Lett.24(8), 634–636 (2012).
[CrossRef]

Lynch, M.

W. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, J. O'Callaghan, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable Slotted Single-Mode Lasers,” IEEE Photon. Technol. Lett.24(8), 634–636 (2012).
[CrossRef]

Marsh, J. H.

T. K. Ong, O. Gunawan, B. S. Ooi, Y. L. Lam, Y. C. Chan, Y. Zhou, A. S. Helmy, and J. H. Marsh, “High-spatial-resolution quantum-well intermixing process in GaInAs/GaInAsP laser structure using pulsed-photoabsorption-induced disordering,” J. Appl. Phys.87(6), 2775–2779 (2000).
[CrossRef]

B. C. Qiu, A. C. Bryce, R. M. de la Rue, and J. H. Marsh, “Monolithic integration in InGaAs-InGaAsP multiquantum-well structure using laser processing,” IEEE Photon. Technol. Lett.10(6), 769–771 (1998).
[CrossRef]

Mei, T.

H. S. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. F. Yu, L. K. Ang, and X. H. Tang, “Experimental and theoretical analysis of argon plasma-enhanced quantum-well intermixing,” J. Quantum Electron.40(2), 166–174 (2004).
[CrossRef]

H. S. Djie, C. Sookdhis, T. Mei, and J. Arokiaraj, “Photonic integration using inductively coupled argon plasma enhanced quantum well intermixing,” Electron. Lett.38(25), 1672–1673 (2002).
[CrossRef]

Mitchell, I. V.

S. Charbonneau, E. S. Koteles, P. J. Poole, J. J. He, G. C. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron.4(4), 772–793 (1998).
[CrossRef]

P. J. Poole, S. Charbonneau, G. C. Aers, T. E. Jackman, M. Buchanan, M. Dion, R. D. Goldberg, and I. V. Mitchell, “Defect diffusion in ion implanted AlGaAs and InP: Consequences for quantum well intermixing,” J. Appl. Phys.78(4), 2367–2371 (1995).
[CrossRef]

Morris, D.

D. Barba, B. Salem, D. Morris, V. Aimez, J. Beauvais, M. Chicoine, and F. Schiettekatte, “Ion channeling effects on quantum well intermixing in phosphorus-implanted InGaAsP/InGaAs/InP,” J. Appl. Phys.98(5), 054904–054908 (2005).
[CrossRef]

V. Aimez, J. Beauvais, J. Beerens, D. Morris, H. S. Lim, and B. S. Ooi, “Low-energy ion-implantation-induced quantum-well intermixing,” IEEE J. Sel. Top. Quantum Electron.8(4), 870–879 (2002).
[CrossRef]

Nawrocka, M.

W. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, J. O'Callaghan, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable Slotted Single-Mode Lasers,” IEEE Photon. Technol. Lett.24(8), 634–636 (2012).
[CrossRef]

Noguchi, Y.

O'Callaghan, J.

W. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, J. O'Callaghan, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable Slotted Single-Mode Lasers,” IEEE Photon. Technol. Lett.24(8), 634–636 (2012).
[CrossRef]

K.-H. Lee, J. O'Callaghan, B. Roycroft, C. L. Daunt, H. Yang, J. H. Song, F. H. Peters, and B. Corbett, “Quantum well intermixing in AlInGaAs MQW structures through impurity-free vacancy method,” Proc. SPIE7604, 76040J, 76040J-7 (2010).
[CrossRef]

Oku, S.

Ong, T. K.

T. K. Ong, Y. C. Chan, Y. L. Lam, and B. S. Ooi, “Wavelength tuning in InGaAs/InGaAsP quantum well lasers using pulsed-photoabsorption-induced disordering,” Appl. Phys. Lett.78(18), 2637–2639 (2001).
[CrossRef]

T. K. Ong, O. Gunawan, B. S. Ooi, Y. L. Lam, Y. C. Chan, Y. Zhou, A. S. Helmy, and J. H. Marsh, “High-spatial-resolution quantum-well intermixing process in GaInAs/GaInAsP laser structure using pulsed-photoabsorption-induced disordering,” J. Appl. Phys.87(6), 2775–2779 (2000).
[CrossRef]

Ooi, B. S.

V. Aimez, J. Beauvais, J. Beerens, D. Morris, H. S. Lim, and B. S. Ooi, “Low-energy ion-implantation-induced quantum-well intermixing,” IEEE J. Sel. Top. Quantum Electron.8(4), 870–879 (2002).
[CrossRef]

T. K. Ong, Y. C. Chan, Y. L. Lam, and B. S. Ooi, “Wavelength tuning in InGaAs/InGaAsP quantum well lasers using pulsed-photoabsorption-induced disordering,” Appl. Phys. Lett.78(18), 2637–2639 (2001).
[CrossRef]

T. K. Ong, O. Gunawan, B. S. Ooi, Y. L. Lam, Y. C. Chan, Y. Zhou, A. S. Helmy, and J. H. Marsh, “High-spatial-resolution quantum-well intermixing process in GaInAs/GaInAsP laser structure using pulsed-photoabsorption-induced disordering,” J. Appl. Phys.87(6), 2775–2779 (2000).
[CrossRef]

O'Reilly, E. P.

M. Silver and E. P. O'Reilly, “Optimization of long wavelength InGaAsP strained quantum-well lasers,” J. Quantum Electron.31(7), 1193–1200 (1995).
[CrossRef]

Pan, J.

Y. Cheng, J. Pan, S. Liang, W. Feng, Z. Liao, F. Zhou, B. Wang, L. Zhao, H. Zhu, and W. Wang, “Butt-coupled MOVPE growth for high-performance electro-absorption modulator integrated with a DFB laser,” J. Cryst. Growth308(2), 297–301 (2007).
[CrossRef]

Pantouvaki, M.

M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, “Fast tuneable InGaAsP DBR laser using quantum-confined stark-effect-induced refractive index change,” IEEE J. Sel. Top. Quantum Electron.13(5), 1112–1121 (2007).
[CrossRef]

Paquette, M.

M. Paquette, V. Aimez, J. Beauvais, J. Beerens, P. J. Poole, S. Charbonneau, and A. P. Roth, “Blueshifting of InGaAsP-InP laser diodes using a low-energy ion-implantation technique: comparison between strained and lattice-matched quantum-well structures,” IEEE J. Sel. Top. Quantum Electron.4(4), 741–745 (1998).
[CrossRef]

Peters, F. H.

K.-H. Lee, J. O'Callaghan, B. Roycroft, C. L. Daunt, H. Yang, J. H. Song, F. H. Peters, and B. Corbett, “Quantum well intermixing in AlInGaAs MQW structures through impurity-free vacancy method,” Proc. SPIE7604, 76040J, 76040J-7 (2010).
[CrossRef]

Pinzone, C. J.

E. F. Schubert, C. J. Pinzone, and M. Geva, “Phenomenology of Zn diffusion and incorporation in InP grown by organometallic vapor‐phase epitaxy (OMVPE),” Appl. Phys. Lett.67(5), 700–702 (1995).
[CrossRef]

Piva, P. G.

S. Charbonneau, E. S. Koteles, P. J. Poole, J. J. He, G. C. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron.4(4), 772–793 (1998).
[CrossRef]

Poole, P. J.

S. Charbonneau, E. S. Koteles, P. J. Poole, J. J. He, G. C. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron.4(4), 772–793 (1998).
[CrossRef]

M. Paquette, V. Aimez, J. Beauvais, J. Beerens, P. J. Poole, S. Charbonneau, and A. P. Roth, “Blueshifting of InGaAsP-InP laser diodes using a low-energy ion-implantation technique: comparison between strained and lattice-matched quantum-well structures,” IEEE J. Sel. Top. Quantum Electron.4(4), 741–745 (1998).
[CrossRef]

P. J. Poole, S. Charbonneau, G. C. Aers, T. E. Jackman, M. Buchanan, M. Dion, R. D. Goldberg, and I. V. Mitchell, “Defect diffusion in ion implanted AlGaAs and InP: Consequences for quantum well intermixing,” J. Appl. Phys.78(4), 2367–2371 (1995).
[CrossRef]

Qiu, B. C.

B. C. Qiu, A. C. Bryce, R. M. de la Rue, and J. H. Marsh, “Monolithic integration in InGaAs-InGaAsP multiquantum-well structure using laser processing,” IEEE Photon. Technol. Lett.10(6), 769–771 (1998).
[CrossRef]

Raring, J. W.

J. W. Raring and L. A. Coldren, “40-Gb/s Widely Tunable Transceivers,” IEEE J. Sel. Top. Quantum Electron.13(1), 3–14 (2007).
[CrossRef]

E. J. Skogen, J. W. Raring, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Postgrowth control of the quantum-well band edge for the monolithic integration of widely tunable lasers and electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron.9(5), 1183–1190 (2003).
[CrossRef]

Renaud, C. C.

M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, “Fast tuneable InGaAsP DBR laser using quantum-confined stark-effect-induced refractive index change,” IEEE J. Sel. Top. Quantum Electron.13(5), 1112–1121 (2007).
[CrossRef]

Robertson, M. J.

M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, “Fast tuneable InGaAsP DBR laser using quantum-confined stark-effect-induced refractive index change,” IEEE J. Sel. Top. Quantum Electron.13(5), 1112–1121 (2007).
[CrossRef]

Roth, A. P.

M. Paquette, V. Aimez, J. Beauvais, J. Beerens, P. J. Poole, S. Charbonneau, and A. P. Roth, “Blueshifting of InGaAsP-InP laser diodes using a low-energy ion-implantation technique: comparison between strained and lattice-matched quantum-well structures,” IEEE J. Sel. Top. Quantum Electron.4(4), 741–745 (1998).
[CrossRef]

Roycroft, B.

K.-H. Lee, J. O'Callaghan, B. Roycroft, C. L. Daunt, H. Yang, J. H. Song, F. H. Peters, and B. Corbett, “Quantum well intermixing in AlInGaAs MQW structures through impurity-free vacancy method,” Proc. SPIE7604, 76040J, 76040J-7 (2010).
[CrossRef]

Salem, B.

D. Barba, B. Salem, D. Morris, V. Aimez, J. Beauvais, M. Chicoine, and F. Schiettekatte, “Ion channeling effects on quantum well intermixing in phosphorus-implanted InGaAsP/InGaAs/InP,” J. Appl. Phys.98(5), 054904–054908 (2005).
[CrossRef]

Sano, H.

M. Aoki, M. Suzuki, H. Sano, T. Kawano, T. Ido, T. Taniwatari, K. Uomi, and A. Takai, “InGaAs/InGaAsP MQW electroabsorption modulator integrated with a DFB laser fabricated by band-gap energy control selective-area MOCVD,” J. Quantum Electron.29(6), 2088–2096 (1993).
[CrossRef]

Schiettekatte, F.

D. Barba, B. Salem, D. Morris, V. Aimez, J. Beauvais, M. Chicoine, and F. Schiettekatte, “Ion channeling effects on quantum well intermixing in phosphorus-implanted InGaAsP/InGaAs/InP,” J. Appl. Phys.98(5), 054904–054908 (2005).
[CrossRef]

M. Chicoine, A. Francois, C. Tavares, S. Chevobbe, F. Schiettekatte, V. Aimez, J. Beauvais, and J. Beerens, “Effects of damage accumulation on quantum well intermixing by low-energy ion implantation in photonic devices,” Proc. SPIE5260, 423–431 (2003).
[CrossRef]

Schubert, E. F.

E. F. Schubert, C. J. Pinzone, and M. Geva, “Phenomenology of Zn diffusion and incorporation in InP grown by organometallic vapor‐phase epitaxy (OMVPE),” Appl. Phys. Lett.67(5), 700–702 (1995).
[CrossRef]

Seeds, A. J.

M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, “Fast tuneable InGaAsP DBR laser using quantum-confined stark-effect-induced refractive index change,” IEEE J. Sel. Top. Quantum Electron.13(5), 1112–1121 (2007).
[CrossRef]

Shibata, Y.

Si, S. K.

S. K. Si, D. H. Yeo, H. H. Yoon, and S. J. Kim, “Area selectivity of InGaAsP-InP multiquantum-well intermixing by impurity-free vacancy diffusion,” IEEE J. Sel. Top. Quantum Electron.4(4), 619–623 (1998).
[CrossRef]

Silver, M.

M. Silver and E. P. O'Reilly, “Optimization of long wavelength InGaAsP strained quantum-well lasers,” J. Quantum Electron.31(7), 1193–1200 (1995).
[CrossRef]

Skogen, E. J.

E. J. Skogen, J. W. Raring, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Postgrowth control of the quantum-well band edge for the monolithic integration of widely tunable lasers and electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron.9(5), 1183–1190 (2003).
[CrossRef]

Song, J. H.

K.-H. Lee, J. O'Callaghan, B. Roycroft, C. L. Daunt, H. Yang, J. H. Song, F. H. Peters, and B. Corbett, “Quantum well intermixing in AlInGaAs MQW structures through impurity-free vacancy method,” Proc. SPIE7604, 76040J, 76040J-7 (2010).
[CrossRef]

Sookdhis, C.

H. S. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. F. Yu, L. K. Ang, and X. H. Tang, “Experimental and theoretical analysis of argon plasma-enhanced quantum-well intermixing,” J. Quantum Electron.40(2), 166–174 (2004).
[CrossRef]

H. S. Djie, C. Sookdhis, T. Mei, and J. Arokiaraj, “Photonic integration using inductively coupled argon plasma enhanced quantum well intermixing,” Electron. Lett.38(25), 1672–1673 (2002).
[CrossRef]

Springthorpe, A. J.

C. Blaauw, B. Emmerstorfer, D. Kreller, L. Hobbs, and A. J. Springthorpe, “Effects of S, Si, or Fe dopants on the diffusion of Zn in InP during MOCVD,” J. Electron. Mater.21(2), 173–179 (1992).
[CrossRef]

Suzuki, M.

M. Aoki, M. Suzuki, H. Sano, T. Kawano, T. Ido, T. Taniwatari, K. Uomi, and A. Takai, “InGaAs/InGaAsP MQW electroabsorption modulator integrated with a DFB laser fabricated by band-gap energy control selective-area MOCVD,” J. Quantum Electron.29(6), 2088–2096 (1993).
[CrossRef]

Takai, A.

M. Aoki, M. Suzuki, H. Sano, T. Kawano, T. Ido, T. Taniwatari, K. Uomi, and A. Takai, “InGaAs/InGaAsP MQW electroabsorption modulator integrated with a DFB laser fabricated by band-gap energy control selective-area MOCVD,” J. Quantum Electron.29(6), 2088–2096 (1993).
[CrossRef]

Takeda, T.

T. Takeda, S. Tazawa, and A. Yoshii, “Precise ion-implantation analysis including channeling effects,” IEEE Trans. Electron Devices33(9), 1278–1285 (1986).
[CrossRef]

Tang, X. H.

H. S. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. F. Yu, L. K. Ang, and X. H. Tang, “Experimental and theoretical analysis of argon plasma-enhanced quantum-well intermixing,” J. Quantum Electron.40(2), 166–174 (2004).
[CrossRef]

Taniwatari, T.

M. Aoki, M. Suzuki, H. Sano, T. Kawano, T. Ido, T. Taniwatari, K. Uomi, and A. Takai, “InGaAs/InGaAsP MQW electroabsorption modulator integrated with a DFB laser fabricated by band-gap energy control selective-area MOCVD,” J. Quantum Electron.29(6), 2088–2096 (1993).
[CrossRef]

Tavares, C.

M. Chicoine, A. Francois, C. Tavares, S. Chevobbe, F. Schiettekatte, V. Aimez, J. Beauvais, and J. Beerens, “Effects of damage accumulation on quantum well intermixing by low-energy ion implantation in photonic devices,” Proc. SPIE5260, 423–431 (2003).
[CrossRef]

Tazawa, S.

T. Takeda, S. Tazawa, and A. Yoshii, “Precise ion-implantation analysis including channeling effects,” IEEE Trans. Electron Devices33(9), 1278–1285 (1986).
[CrossRef]

Uomi, K.

M. Aoki, M. Suzuki, H. Sano, T. Kawano, T. Ido, T. Taniwatari, K. Uomi, and A. Takai, “InGaAs/InGaAsP MQW electroabsorption modulator integrated with a DFB laser fabricated by band-gap energy control selective-area MOCVD,” J. Quantum Electron.29(6), 2088–2096 (1993).
[CrossRef]

Wang, B.

Y. Cheng, J. Pan, S. Liang, W. Feng, Z. Liao, F. Zhou, B. Wang, L. Zhao, H. Zhu, and W. Wang, “Butt-coupled MOVPE growth for high-performance electro-absorption modulator integrated with a DFB laser,” J. Cryst. Growth308(2), 297–301 (2007).
[CrossRef]

Wang, W.

Y. Cheng, J. Pan, S. Liang, W. Feng, Z. Liao, F. Zhou, B. Wang, L. Zhao, H. Zhu, and W. Wang, “Butt-coupled MOVPE growth for high-performance electro-absorption modulator integrated with a DFB laser,” J. Cryst. Growth308(2), 297–301 (2007).
[CrossRef]

Wang, Y. C.

J. Zhao, Z. C. Feng, Y. C. Wang, J. C. Deng, and G. Xu, “Luminescent characteristics of InGaAsP/InP multiple quantum well structures by impurity-free vacancy disordering,” Surf. Coat. Tech.200(10), 3245–3249 (2006).
[CrossRef]

Weldon, V.

W. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, J. O'Callaghan, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable Slotted Single-Mode Lasers,” IEEE Photon. Technol. Lett.24(8), 634–636 (2012).
[CrossRef]

Wu, H.

Y.-F. Lao, H. Wu, and Z.-C. Huang, “Luminescent properties of annealed and directly wafer-bonded InAsP/InGaAsP multiple quantum wells,” Semicond. Sci. Technol.20(6), 615–620 (2005).
[CrossRef]

Xu, G.

J. Zhao, Z. C. Feng, Y. C. Wang, J. C. Deng, and G. Xu, “Luminescent characteristics of InGaAsP/InP multiple quantum well structures by impurity-free vacancy disordering,” Surf. Coat. Tech.200(10), 3245–3249 (2006).
[CrossRef]

Yang, F.

S. Charbonneau, E. S. Koteles, P. J. Poole, J. J. He, G. C. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron.4(4), 772–793 (1998).
[CrossRef]

Yang, H.

K.-H. Lee, J. O'Callaghan, B. Roycroft, C. L. Daunt, H. Yang, J. H. Song, F. H. Peters, and B. Corbett, “Quantum well intermixing in AlInGaAs MQW structures through impurity-free vacancy method,” Proc. SPIE7604, 76040J, 76040J-7 (2010).
[CrossRef]

Yeo, D. H.

S. K. Si, D. H. Yeo, H. H. Yoon, and S. J. Kim, “Area selectivity of InGaAsP-InP multiquantum-well intermixing by impurity-free vacancy diffusion,” IEEE J. Sel. Top. Quantum Electron.4(4), 619–623 (1998).
[CrossRef]

Yoon, H. H.

S. K. Si, D. H. Yeo, H. H. Yoon, and S. J. Kim, “Area selectivity of InGaAsP-InP multiquantum-well intermixing by impurity-free vacancy diffusion,” IEEE J. Sel. Top. Quantum Electron.4(4), 619–623 (1998).
[CrossRef]

Yoshii, A.

T. Takeda, S. Tazawa, and A. Yoshii, “Precise ion-implantation analysis including channeling effects,” IEEE Trans. Electron Devices33(9), 1278–1285 (1986).
[CrossRef]

Yoshimoto, N.

Yu, S. F.

H. S. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. F. Yu, L. K. Ang, and X. H. Tang, “Experimental and theoretical analysis of argon plasma-enhanced quantum-well intermixing,” J. Quantum Electron.40(2), 166–174 (2004).
[CrossRef]

Zhao, J.

J. Zhao, Z. C. Feng, Y. C. Wang, J. C. Deng, and G. Xu, “Luminescent characteristics of InGaAsP/InP multiple quantum well structures by impurity-free vacancy disordering,” Surf. Coat. Tech.200(10), 3245–3249 (2006).
[CrossRef]

Zhao, L.

Y. Cheng, J. Pan, S. Liang, W. Feng, Z. Liao, F. Zhou, B. Wang, L. Zhao, H. Zhu, and W. Wang, “Butt-coupled MOVPE growth for high-performance electro-absorption modulator integrated with a DFB laser,” J. Cryst. Growth308(2), 297–301 (2007).
[CrossRef]

Zhou, F.

Y. Cheng, J. Pan, S. Liang, W. Feng, Z. Liao, F. Zhou, B. Wang, L. Zhao, H. Zhu, and W. Wang, “Butt-coupled MOVPE growth for high-performance electro-absorption modulator integrated with a DFB laser,” J. Cryst. Growth308(2), 297–301 (2007).
[CrossRef]

Zhou, Y.

T. K. Ong, O. Gunawan, B. S. Ooi, Y. L. Lam, Y. C. Chan, Y. Zhou, A. S. Helmy, and J. H. Marsh, “High-spatial-resolution quantum-well intermixing process in GaInAs/GaInAsP laser structure using pulsed-photoabsorption-induced disordering,” J. Appl. Phys.87(6), 2775–2779 (2000).
[CrossRef]

Zhu, H.

Y. Cheng, J. Pan, S. Liang, W. Feng, Z. Liao, F. Zhou, B. Wang, L. Zhao, H. Zhu, and W. Wang, “Butt-coupled MOVPE growth for high-performance electro-absorption modulator integrated with a DFB laser,” J. Cryst. Growth308(2), 297–301 (2007).
[CrossRef]

Appl. Phys. Lett.

T. K. Ong, Y. C. Chan, Y. L. Lam, and B. S. Ooi, “Wavelength tuning in InGaAs/InGaAsP quantum well lasers using pulsed-photoabsorption-induced disordering,” Appl. Phys. Lett.78(18), 2637–2639 (2001).
[CrossRef]

E. F. Schubert, C. J. Pinzone, and M. Geva, “Phenomenology of Zn diffusion and incorporation in InP grown by organometallic vapor‐phase epitaxy (OMVPE),” Appl. Phys. Lett.67(5), 700–702 (1995).
[CrossRef]

Electron. Lett.

H. S. Djie, C. Sookdhis, T. Mei, and J. Arokiaraj, “Photonic integration using inductively coupled argon plasma enhanced quantum well intermixing,” Electron. Lett.38(25), 1672–1673 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. K. Si, D. H. Yeo, H. H. Yoon, and S. J. Kim, “Area selectivity of InGaAsP-InP multiquantum-well intermixing by impurity-free vacancy diffusion,” IEEE J. Sel. Top. Quantum Electron.4(4), 619–623 (1998).
[CrossRef]

S. Charbonneau, E. S. Koteles, P. J. Poole, J. J. He, G. C. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron.4(4), 772–793 (1998).
[CrossRef]

M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, “Fast tuneable InGaAsP DBR laser using quantum-confined stark-effect-induced refractive index change,” IEEE J. Sel. Top. Quantum Electron.13(5), 1112–1121 (2007).
[CrossRef]

M. Paquette, V. Aimez, J. Beauvais, J. Beerens, P. J. Poole, S. Charbonneau, and A. P. Roth, “Blueshifting of InGaAsP-InP laser diodes using a low-energy ion-implantation technique: comparison between strained and lattice-matched quantum-well structures,” IEEE J. Sel. Top. Quantum Electron.4(4), 741–745 (1998).
[CrossRef]

V. Aimez, J. Beauvais, J. Beerens, D. Morris, H. S. Lim, and B. S. Ooi, “Low-energy ion-implantation-induced quantum-well intermixing,” IEEE J. Sel. Top. Quantum Electron.8(4), 870–879 (2002).
[CrossRef]

E. J. Skogen, J. W. Raring, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Postgrowth control of the quantum-well band edge for the monolithic integration of widely tunable lasers and electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron.9(5), 1183–1190 (2003).
[CrossRef]

J. W. Raring and L. A. Coldren, “40-Gb/s Widely Tunable Transceivers,” IEEE J. Sel. Top. Quantum Electron.13(1), 3–14 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

W. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, J. O'Callaghan, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable Slotted Single-Mode Lasers,” IEEE Photon. Technol. Lett.24(8), 634–636 (2012).
[CrossRef]

B. C. Qiu, A. C. Bryce, R. M. de la Rue, and J. H. Marsh, “Monolithic integration in InGaAs-InGaAsP multiquantum-well structure using laser processing,” IEEE Photon. Technol. Lett.10(6), 769–771 (1998).
[CrossRef]

IEEE Trans. Electron Devices

T. Takeda, S. Tazawa, and A. Yoshii, “Precise ion-implantation analysis including channeling effects,” IEEE Trans. Electron Devices33(9), 1278–1285 (1986).
[CrossRef]

J. Appl. Phys.

D. Barba, B. Salem, D. Morris, V. Aimez, J. Beauvais, M. Chicoine, and F. Schiettekatte, “Ion channeling effects on quantum well intermixing in phosphorus-implanted InGaAsP/InGaAs/InP,” J. Appl. Phys.98(5), 054904–054908 (2005).
[CrossRef]

T. K. Ong, O. Gunawan, B. S. Ooi, Y. L. Lam, Y. C. Chan, Y. Zhou, A. S. Helmy, and J. H. Marsh, “High-spatial-resolution quantum-well intermixing process in GaInAs/GaInAsP laser structure using pulsed-photoabsorption-induced disordering,” J. Appl. Phys.87(6), 2775–2779 (2000).
[CrossRef]

P. J. Poole, S. Charbonneau, G. C. Aers, T. E. Jackman, M. Buchanan, M. Dion, R. D. Goldberg, and I. V. Mitchell, “Defect diffusion in ion implanted AlGaAs and InP: Consequences for quantum well intermixing,” J. Appl. Phys.78(4), 2367–2371 (1995).
[CrossRef]

J. Cryst. Growth

Y. Cheng, J. Pan, S. Liang, W. Feng, Z. Liao, F. Zhou, B. Wang, L. Zhao, H. Zhu, and W. Wang, “Butt-coupled MOVPE growth for high-performance electro-absorption modulator integrated with a DFB laser,” J. Cryst. Growth308(2), 297–301 (2007).
[CrossRef]

J. Electron. Mater.

C. Blaauw, B. Emmerstorfer, D. Kreller, L. Hobbs, and A. J. Springthorpe, “Effects of S, Si, or Fe dopants on the diffusion of Zn in InP during MOCVD,” J. Electron. Mater.21(2), 173–179 (1992).
[CrossRef]

J. Lightwave Technol.

J. Quantum Electron.

M. Silver and E. P. O'Reilly, “Optimization of long wavelength InGaAsP strained quantum-well lasers,” J. Quantum Electron.31(7), 1193–1200 (1995).
[CrossRef]

M. Aoki, M. Suzuki, H. Sano, T. Kawano, T. Ido, T. Taniwatari, K. Uomi, and A. Takai, “InGaAs/InGaAsP MQW electroabsorption modulator integrated with a DFB laser fabricated by band-gap energy control selective-area MOCVD,” J. Quantum Electron.29(6), 2088–2096 (1993).
[CrossRef]

H. S. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. F. Yu, L. K. Ang, and X. H. Tang, “Experimental and theoretical analysis of argon plasma-enhanced quantum-well intermixing,” J. Quantum Electron.40(2), 166–174 (2004).
[CrossRef]

Nucl. Instrum. Meth. B

J. Bausells, G. Badenes, and E. Lora-Tamayo, “Calculation of channeling effects in ion implantation,” Nucl. Instrum. Meth. B55(1-4), 666–670 (1991).
[CrossRef]

Proc. SPIE

K.-H. Lee, J. O'Callaghan, B. Roycroft, C. L. Daunt, H. Yang, J. H. Song, F. H. Peters, and B. Corbett, “Quantum well intermixing in AlInGaAs MQW structures through impurity-free vacancy method,” Proc. SPIE7604, 76040J, 76040J-7 (2010).
[CrossRef]

M. Chicoine, A. Francois, C. Tavares, S. Chevobbe, F. Schiettekatte, V. Aimez, J. Beauvais, and J. Beerens, “Effects of damage accumulation on quantum well intermixing by low-energy ion implantation in photonic devices,” Proc. SPIE5260, 423–431 (2003).
[CrossRef]

Semicond. Sci. Technol.

Y.-F. Lao, H. Wu, and Z.-C. Huang, “Luminescent properties of annealed and directly wafer-bonded InAsP/InGaAsP multiple quantum wells,” Semicond. Sci. Technol.20(6), 615–620 (2005).
[CrossRef]

Surf. Coat. Tech.

J. Zhao, Z. C. Feng, Y. C. Wang, J. C. Deng, and G. Xu, “Luminescent characteristics of InGaAsP/InP multiple quantum well structures by impurity-free vacancy disordering,” Surf. Coat. Tech.200(10), 3245–3249 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Cross-sections of the two material platforms investigated for impurity-induced disordering. SiNx acts as a mask to prevent phosphorous implantation into the active regions. (a) The regrowth-free material platform that requires no additional growth steps to fabricate active-passive laser structures. Ions are implanted into the passive (nonmasked) regions and channel through the InP lattice to reach the QWs. (b) The material platform that requires additional regrowth steps for the p-type cladding and contact layers.

Fig. 2
Fig. 2

(Regrowth-free sample) PL shift due to impurity-induced disordering during rapid thermal anneal (RTA) at 670 °C for InGaAsP/InGaAsP QWs and barriers with 1.8 µm InP:Zn cladding, 0.1 µm InGaAs:Zn contact, and 0.4 µm InP:Zn cap layers.

Fig. 3
Fig. 3

(Sample requiring regrowth) PL shift due to impurity-induced disordering during rapid thermal anneal (RTA) at 670 ºC for InGaAsP/InGaAsP QWs and barriers with 450 nm InP:UID buffer layer, see layer structure in Fig. 1(b).

Fig. 4
Fig. 4

Secondary Mass Ions spectroscopy of (a) the as-grown regrowth-free InGaAsP/InP material, and (b) passive areas of the regrowth-free material after 190 keV P+ implant and subsequent 120 s anneal at 670 °C. The material structure is shown in Fig. 1(a).

Fig. 5
Fig. 5

Test set-up for measurement of TE polarized optical losses of passive Fabry-Perot resonators. Amplified spontaneous emission (ASE). Polarization beam splitter (PBS).

Fig. 6
Fig. 6

(Regrowth-free sample) Measured |S21|2 response of 1775 µm long Fabry-Perot resonators with ASE input. Lower losses correspond to higher extinction values in the response. Curve fit is 5.5 cm−1 propagation loss.

Fig. 7
Fig. 7

(Regrowth-free sample) Measured large signal gain vs. current density for a 400 µm active semiconductor optical amplifier at 25 °C. Injection efficiency of 75% assumed.

Fig. 8
Fig. 8

Regrowth-free sample (a) optical spectra of Fabry-Perot laser made from active material with PL 1553 nm at 1.1Ith, and (b) made from passive material with PL 1417 nm at 1.1Ith.

Tables (3)

Tables Icon

Table 1 PL during 670 °C RTA on regrowth-free sample

Tables Icon

Table 2 PL during 670 °C RTA on sample requiring regrowth

Tables Icon

Table 3 Fabry-Perot pulsed and cw threshold currents on regrowth-free sample

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Φ c = Z 1 Z 2 q 2 2π ε o Ed .
Φ c ' = Φ c 1.5 a d .

Metrics