Abstract

Prolonged read-out process of a hologram recorded at near infrared with simultaneous green light exposure is measured in Ru-doped Bi12SiO20 crystal. The experimental results are confirmed by numerical simulations, suggesting two different traps involved in the space-charge transport mechanism. In addition, quasi-permanent holographic recording of image with fast updating speed by using two-wavelength recording is demonstrated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Amodei and D. L. Steabler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. B18, 540–542 (1971).
  2. F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett.20(2), 79–81 (1972).
    [CrossRef]
  3. K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature393(6686), 665–668 (1998).
    [CrossRef]
  4. J. Frejlich, Photorefractive Materials (Wiley Interscience, 2007).
  5. M. P. Georges, V. S. Scauflaire, and P. C. Lemare, “Compact and portable holographic camera using photorefractive crystals. Application in various metrological problems,” Appl. Phys. B72(6), 761–765 (2001).
    [CrossRef]
  6. E. A. Barbosa, A. O. Preto, D. M. Silva, J. F. Carvalho, and N. I. Morimoto, “Denisiuk-type reflection holography display with sillenite crystals for imaging and interferometry of small objects,” Opt. Commun.281(3), 408–414 (2008).
    [CrossRef]
  7. G. Caroena, M. Mori, M. R. R. Gesualdi, E. A. Liberti, E. Ferrara, and M. Muramatsu, “Mastication effort study using photorefractive holographic interferometry technique,” J. Biomech.43(4), 680–686 (2010).
    [CrossRef] [PubMed]
  8. S. G. Odoulov, K. V. Shcherbin, and A. N. Shumeljuk, “Photorefractive recording in BTO in the near infrared,” J. Opt. Soc. Am. B11(9), 1780–1785 (1994).
    [CrossRef]
  9. P. V. dos Santos, J. Frejlich, and J. F. Carvalho, “Direct near infrared photorefractive recording and pre-exposure controlled hole-electron cometition with enhanced recording in undoped Bi12TiO20,” Appl. Phys. B81(5), 651–655 (2005).
    [CrossRef]
  10. E. Raita, O. Kobozev, A. A. Kamshilin, and V. V. Prokofiev, “Fast photorefractive response in B12SiO20 in the near infrared,” Opt. Lett.25(17), 1261–1263 (2000).
    [CrossRef] [PubMed]
  11. V. Marinova, M. L. Hsieh, S. H. Lin, and K. Y. Hsu, “Effect of ruthenium doping on the optical and photorefractive properties of Bi12TiO20 single crystals,” Opt. Commun.203(3-6), 377–384 (2002).
    [CrossRef]
  12. V. Marinova, S. H. Lin, V. Sainov, M. Gospodinov, and K. Y. Hsu, “Light-induced properties of Ru-doped Bi12TiO20 crystals,” J. Opt. A, Pure Appl. Opt.5(6), S500–S506 (2003).
    [CrossRef]
  13. F. Ramaz, L. Rakitina, M. Gospodinov, and B. Briat, “Photorefrcative and photochromic properties of ruthenium –doped Bi12SiO20,” Opt. Mater.27(10), 1547–1559 (2005).
    [CrossRef]
  14. V. Marinova, R. C. Liu, S. H. Lin, and K. Y. Hsu, “Real-time holography in ruthenium-doped bismuth sillenite crystals at 1064 nm,” Opt. Lett.36(11), 1981–1983 (2011).
    [CrossRef] [PubMed]
  15. P. Sveshtarov and M. Gospodinov, “The effect of the interface shape on authomatic Czochralski weight diameter control system performance,” J. Cryst. Growth113(1-2), 186–208 (1991).
    [CrossRef]
  16. R. Oberschmid, “Absorption Centers of Bi12GeO20 and Bi12SiO20 crystals,” Phys. Stat. Solidi A89(1), 263–270 (1985).
    [CrossRef]
  17. I. Ahmad, V. Marinova, and E. Goovaerts, “High-frequency electron paramagnetic resonance of the hole trapped anti-site bismuth centre in the photorefractive bismuth sillenite crystals,” Phys. Rev. B79(3), 033107 (2009).
    [CrossRef]
  18. V. Marinova, I. Ahmad, and E. Goovaerts, “Dynamics of charge carriers in Ru-doped Bi12SiO20 crystals after ns laser pulse excitation,” J. Appl. Phys.107, 113106 (2010).
    [CrossRef]
  19. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals I. Steady state,” Ferroelectrics22(1), 949–960 (1978).
    [CrossRef]
  20. J. Imbrock, D. Kip, and E. Krätzig, “Nonvolatile holographic storage in iron-doped lithium tantalate with continuous-wave laser light,” Opt. Lett.24(18), 1302–1304 (1999).
    [CrossRef] [PubMed]
  21. A. Adibi, K. Buse, and D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B18(5), 584–601 (2001).
    [CrossRef]

2011

2010

V. Marinova, I. Ahmad, and E. Goovaerts, “Dynamics of charge carriers in Ru-doped Bi12SiO20 crystals after ns laser pulse excitation,” J. Appl. Phys.107, 113106 (2010).
[CrossRef]

G. Caroena, M. Mori, M. R. R. Gesualdi, E. A. Liberti, E. Ferrara, and M. Muramatsu, “Mastication effort study using photorefractive holographic interferometry technique,” J. Biomech.43(4), 680–686 (2010).
[CrossRef] [PubMed]

2009

I. Ahmad, V. Marinova, and E. Goovaerts, “High-frequency electron paramagnetic resonance of the hole trapped anti-site bismuth centre in the photorefractive bismuth sillenite crystals,” Phys. Rev. B79(3), 033107 (2009).
[CrossRef]

2008

E. A. Barbosa, A. O. Preto, D. M. Silva, J. F. Carvalho, and N. I. Morimoto, “Denisiuk-type reflection holography display with sillenite crystals for imaging and interferometry of small objects,” Opt. Commun.281(3), 408–414 (2008).
[CrossRef]

2005

F. Ramaz, L. Rakitina, M. Gospodinov, and B. Briat, “Photorefrcative and photochromic properties of ruthenium –doped Bi12SiO20,” Opt. Mater.27(10), 1547–1559 (2005).
[CrossRef]

P. V. dos Santos, J. Frejlich, and J. F. Carvalho, “Direct near infrared photorefractive recording and pre-exposure controlled hole-electron cometition with enhanced recording in undoped Bi12TiO20,” Appl. Phys. B81(5), 651–655 (2005).
[CrossRef]

2003

V. Marinova, S. H. Lin, V. Sainov, M. Gospodinov, and K. Y. Hsu, “Light-induced properties of Ru-doped Bi12TiO20 crystals,” J. Opt. A, Pure Appl. Opt.5(6), S500–S506 (2003).
[CrossRef]

2002

V. Marinova, M. L. Hsieh, S. H. Lin, and K. Y. Hsu, “Effect of ruthenium doping on the optical and photorefractive properties of Bi12TiO20 single crystals,” Opt. Commun.203(3-6), 377–384 (2002).
[CrossRef]

2001

M. P. Georges, V. S. Scauflaire, and P. C. Lemare, “Compact and portable holographic camera using photorefractive crystals. Application in various metrological problems,” Appl. Phys. B72(6), 761–765 (2001).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B18(5), 584–601 (2001).
[CrossRef]

2000

1999

1998

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature393(6686), 665–668 (1998).
[CrossRef]

1994

1991

P. Sveshtarov and M. Gospodinov, “The effect of the interface shape on authomatic Czochralski weight diameter control system performance,” J. Cryst. Growth113(1-2), 186–208 (1991).
[CrossRef]

1985

R. Oberschmid, “Absorption Centers of Bi12GeO20 and Bi12SiO20 crystals,” Phys. Stat. Solidi A89(1), 263–270 (1985).
[CrossRef]

1978

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals I. Steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

1972

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett.20(2), 79–81 (1972).
[CrossRef]

1971

J. J. Amodei and D. L. Steabler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. B18, 540–542 (1971).

Adibi, A.

A. Adibi, K. Buse, and D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B18(5), 584–601 (2001).
[CrossRef]

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature393(6686), 665–668 (1998).
[CrossRef]

Ahmad, I.

V. Marinova, I. Ahmad, and E. Goovaerts, “Dynamics of charge carriers in Ru-doped Bi12SiO20 crystals after ns laser pulse excitation,” J. Appl. Phys.107, 113106 (2010).
[CrossRef]

I. Ahmad, V. Marinova, and E. Goovaerts, “High-frequency electron paramagnetic resonance of the hole trapped anti-site bismuth centre in the photorefractive bismuth sillenite crystals,” Phys. Rev. B79(3), 033107 (2009).
[CrossRef]

Amodei, J. J.

J. J. Amodei and D. L. Steabler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. B18, 540–542 (1971).

Barbosa, E. A.

E. A. Barbosa, A. O. Preto, D. M. Silva, J. F. Carvalho, and N. I. Morimoto, “Denisiuk-type reflection holography display with sillenite crystals for imaging and interferometry of small objects,” Opt. Commun.281(3), 408–414 (2008).
[CrossRef]

Bismuth, G.

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett.20(2), 79–81 (1972).
[CrossRef]

Briat, B.

F. Ramaz, L. Rakitina, M. Gospodinov, and B. Briat, “Photorefrcative and photochromic properties of ruthenium –doped Bi12SiO20,” Opt. Mater.27(10), 1547–1559 (2005).
[CrossRef]

Buse, K.

A. Adibi, K. Buse, and D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B18(5), 584–601 (2001).
[CrossRef]

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature393(6686), 665–668 (1998).
[CrossRef]

Caroena, G.

G. Caroena, M. Mori, M. R. R. Gesualdi, E. A. Liberti, E. Ferrara, and M. Muramatsu, “Mastication effort study using photorefractive holographic interferometry technique,” J. Biomech.43(4), 680–686 (2010).
[CrossRef] [PubMed]

Carvalho, J. F.

E. A. Barbosa, A. O. Preto, D. M. Silva, J. F. Carvalho, and N. I. Morimoto, “Denisiuk-type reflection holography display with sillenite crystals for imaging and interferometry of small objects,” Opt. Commun.281(3), 408–414 (2008).
[CrossRef]

P. V. dos Santos, J. Frejlich, and J. F. Carvalho, “Direct near infrared photorefractive recording and pre-exposure controlled hole-electron cometition with enhanced recording in undoped Bi12TiO20,” Appl. Phys. B81(5), 651–655 (2005).
[CrossRef]

dos Santos, P. V.

P. V. dos Santos, J. Frejlich, and J. F. Carvalho, “Direct near infrared photorefractive recording and pre-exposure controlled hole-electron cometition with enhanced recording in undoped Bi12TiO20,” Appl. Phys. B81(5), 651–655 (2005).
[CrossRef]

Ferrara, E.

G. Caroena, M. Mori, M. R. R. Gesualdi, E. A. Liberti, E. Ferrara, and M. Muramatsu, “Mastication effort study using photorefractive holographic interferometry technique,” J. Biomech.43(4), 680–686 (2010).
[CrossRef] [PubMed]

Frejlich, J.

P. V. dos Santos, J. Frejlich, and J. F. Carvalho, “Direct near infrared photorefractive recording and pre-exposure controlled hole-electron cometition with enhanced recording in undoped Bi12TiO20,” Appl. Phys. B81(5), 651–655 (2005).
[CrossRef]

Georges, M. P.

M. P. Georges, V. S. Scauflaire, and P. C. Lemare, “Compact and portable holographic camera using photorefractive crystals. Application in various metrological problems,” Appl. Phys. B72(6), 761–765 (2001).
[CrossRef]

Gesualdi, M. R. R.

G. Caroena, M. Mori, M. R. R. Gesualdi, E. A. Liberti, E. Ferrara, and M. Muramatsu, “Mastication effort study using photorefractive holographic interferometry technique,” J. Biomech.43(4), 680–686 (2010).
[CrossRef] [PubMed]

Goovaerts, E.

V. Marinova, I. Ahmad, and E. Goovaerts, “Dynamics of charge carriers in Ru-doped Bi12SiO20 crystals after ns laser pulse excitation,” J. Appl. Phys.107, 113106 (2010).
[CrossRef]

I. Ahmad, V. Marinova, and E. Goovaerts, “High-frequency electron paramagnetic resonance of the hole trapped anti-site bismuth centre in the photorefractive bismuth sillenite crystals,” Phys. Rev. B79(3), 033107 (2009).
[CrossRef]

Gospodinov, M.

F. Ramaz, L. Rakitina, M. Gospodinov, and B. Briat, “Photorefrcative and photochromic properties of ruthenium –doped Bi12SiO20,” Opt. Mater.27(10), 1547–1559 (2005).
[CrossRef]

V. Marinova, S. H. Lin, V. Sainov, M. Gospodinov, and K. Y. Hsu, “Light-induced properties of Ru-doped Bi12TiO20 crystals,” J. Opt. A, Pure Appl. Opt.5(6), S500–S506 (2003).
[CrossRef]

P. Sveshtarov and M. Gospodinov, “The effect of the interface shape on authomatic Czochralski weight diameter control system performance,” J. Cryst. Growth113(1-2), 186–208 (1991).
[CrossRef]

Hsieh, M. L.

V. Marinova, M. L. Hsieh, S. H. Lin, and K. Y. Hsu, “Effect of ruthenium doping on the optical and photorefractive properties of Bi12TiO20 single crystals,” Opt. Commun.203(3-6), 377–384 (2002).
[CrossRef]

Hsu, K. Y.

V. Marinova, R. C. Liu, S. H. Lin, and K. Y. Hsu, “Real-time holography in ruthenium-doped bismuth sillenite crystals at 1064 nm,” Opt. Lett.36(11), 1981–1983 (2011).
[CrossRef] [PubMed]

V. Marinova, S. H. Lin, V. Sainov, M. Gospodinov, and K. Y. Hsu, “Light-induced properties of Ru-doped Bi12TiO20 crystals,” J. Opt. A, Pure Appl. Opt.5(6), S500–S506 (2003).
[CrossRef]

V. Marinova, M. L. Hsieh, S. H. Lin, and K. Y. Hsu, “Effect of ruthenium doping on the optical and photorefractive properties of Bi12TiO20 single crystals,” Opt. Commun.203(3-6), 377–384 (2002).
[CrossRef]

Imbrock, J.

Kamshilin, A. A.

Kip, D.

Kobozev, O.

Krätzig, E.

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals I. Steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

Lemare, P. C.

M. P. Georges, V. S. Scauflaire, and P. C. Lemare, “Compact and portable holographic camera using photorefractive crystals. Application in various metrological problems,” Appl. Phys. B72(6), 761–765 (2001).
[CrossRef]

Liberti, E. A.

G. Caroena, M. Mori, M. R. R. Gesualdi, E. A. Liberti, E. Ferrara, and M. Muramatsu, “Mastication effort study using photorefractive holographic interferometry technique,” J. Biomech.43(4), 680–686 (2010).
[CrossRef] [PubMed]

Lin, S. H.

V. Marinova, R. C. Liu, S. H. Lin, and K. Y. Hsu, “Real-time holography in ruthenium-doped bismuth sillenite crystals at 1064 nm,” Opt. Lett.36(11), 1981–1983 (2011).
[CrossRef] [PubMed]

V. Marinova, S. H. Lin, V. Sainov, M. Gospodinov, and K. Y. Hsu, “Light-induced properties of Ru-doped Bi12TiO20 crystals,” J. Opt. A, Pure Appl. Opt.5(6), S500–S506 (2003).
[CrossRef]

V. Marinova, M. L. Hsieh, S. H. Lin, and K. Y. Hsu, “Effect of ruthenium doping on the optical and photorefractive properties of Bi12TiO20 single crystals,” Opt. Commun.203(3-6), 377–384 (2002).
[CrossRef]

Liu, R. C.

Marinova, V.

V. Marinova, R. C. Liu, S. H. Lin, and K. Y. Hsu, “Real-time holography in ruthenium-doped bismuth sillenite crystals at 1064 nm,” Opt. Lett.36(11), 1981–1983 (2011).
[CrossRef] [PubMed]

V. Marinova, I. Ahmad, and E. Goovaerts, “Dynamics of charge carriers in Ru-doped Bi12SiO20 crystals after ns laser pulse excitation,” J. Appl. Phys.107, 113106 (2010).
[CrossRef]

I. Ahmad, V. Marinova, and E. Goovaerts, “High-frequency electron paramagnetic resonance of the hole trapped anti-site bismuth centre in the photorefractive bismuth sillenite crystals,” Phys. Rev. B79(3), 033107 (2009).
[CrossRef]

V. Marinova, S. H. Lin, V. Sainov, M. Gospodinov, and K. Y. Hsu, “Light-induced properties of Ru-doped Bi12TiO20 crystals,” J. Opt. A, Pure Appl. Opt.5(6), S500–S506 (2003).
[CrossRef]

V. Marinova, M. L. Hsieh, S. H. Lin, and K. Y. Hsu, “Effect of ruthenium doping on the optical and photorefractive properties of Bi12TiO20 single crystals,” Opt. Commun.203(3-6), 377–384 (2002).
[CrossRef]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals I. Steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

Micheron, F.

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett.20(2), 79–81 (1972).
[CrossRef]

Mori, M.

G. Caroena, M. Mori, M. R. R. Gesualdi, E. A. Liberti, E. Ferrara, and M. Muramatsu, “Mastication effort study using photorefractive holographic interferometry technique,” J. Biomech.43(4), 680–686 (2010).
[CrossRef] [PubMed]

Morimoto, N. I.

E. A. Barbosa, A. O. Preto, D. M. Silva, J. F. Carvalho, and N. I. Morimoto, “Denisiuk-type reflection holography display with sillenite crystals for imaging and interferometry of small objects,” Opt. Commun.281(3), 408–414 (2008).
[CrossRef]

Muramatsu, M.

G. Caroena, M. Mori, M. R. R. Gesualdi, E. A. Liberti, E. Ferrara, and M. Muramatsu, “Mastication effort study using photorefractive holographic interferometry technique,” J. Biomech.43(4), 680–686 (2010).
[CrossRef] [PubMed]

Oberschmid, R.

R. Oberschmid, “Absorption Centers of Bi12GeO20 and Bi12SiO20 crystals,” Phys. Stat. Solidi A89(1), 263–270 (1985).
[CrossRef]

Odoulov, S. G.

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals I. Steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

Preto, A. O.

E. A. Barbosa, A. O. Preto, D. M. Silva, J. F. Carvalho, and N. I. Morimoto, “Denisiuk-type reflection holography display with sillenite crystals for imaging and interferometry of small objects,” Opt. Commun.281(3), 408–414 (2008).
[CrossRef]

Prokofiev, V. V.

Psaltis, D.

A. Adibi, K. Buse, and D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B18(5), 584–601 (2001).
[CrossRef]

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature393(6686), 665–668 (1998).
[CrossRef]

Raita, E.

Rakitina, L.

F. Ramaz, L. Rakitina, M. Gospodinov, and B. Briat, “Photorefrcative and photochromic properties of ruthenium –doped Bi12SiO20,” Opt. Mater.27(10), 1547–1559 (2005).
[CrossRef]

Ramaz, F.

F. Ramaz, L. Rakitina, M. Gospodinov, and B. Briat, “Photorefrcative and photochromic properties of ruthenium –doped Bi12SiO20,” Opt. Mater.27(10), 1547–1559 (2005).
[CrossRef]

Sainov, V.

V. Marinova, S. H. Lin, V. Sainov, M. Gospodinov, and K. Y. Hsu, “Light-induced properties of Ru-doped Bi12TiO20 crystals,” J. Opt. A, Pure Appl. Opt.5(6), S500–S506 (2003).
[CrossRef]

Scauflaire, V. S.

M. P. Georges, V. S. Scauflaire, and P. C. Lemare, “Compact and portable holographic camera using photorefractive crystals. Application in various metrological problems,” Appl. Phys. B72(6), 761–765 (2001).
[CrossRef]

Shcherbin, K. V.

Shumeljuk, A. N.

Silva, D. M.

E. A. Barbosa, A. O. Preto, D. M. Silva, J. F. Carvalho, and N. I. Morimoto, “Denisiuk-type reflection holography display with sillenite crystals for imaging and interferometry of small objects,” Opt. Commun.281(3), 408–414 (2008).
[CrossRef]

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals I. Steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

Steabler, D. L.

J. J. Amodei and D. L. Steabler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. B18, 540–542 (1971).

Sveshtarov, P.

P. Sveshtarov and M. Gospodinov, “The effect of the interface shape on authomatic Czochralski weight diameter control system performance,” J. Cryst. Growth113(1-2), 186–208 (1991).
[CrossRef]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals I. Steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

Appl. Phys. B

J. J. Amodei and D. L. Steabler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. B18, 540–542 (1971).

M. P. Georges, V. S. Scauflaire, and P. C. Lemare, “Compact and portable holographic camera using photorefractive crystals. Application in various metrological problems,” Appl. Phys. B72(6), 761–765 (2001).
[CrossRef]

P. V. dos Santos, J. Frejlich, and J. F. Carvalho, “Direct near infrared photorefractive recording and pre-exposure controlled hole-electron cometition with enhanced recording in undoped Bi12TiO20,” Appl. Phys. B81(5), 651–655 (2005).
[CrossRef]

Appl. Phys. Lett.

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett.20(2), 79–81 (1972).
[CrossRef]

Ferroelectrics

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals I. Steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

J. Appl. Phys.

V. Marinova, I. Ahmad, and E. Goovaerts, “Dynamics of charge carriers in Ru-doped Bi12SiO20 crystals after ns laser pulse excitation,” J. Appl. Phys.107, 113106 (2010).
[CrossRef]

J. Biomech.

G. Caroena, M. Mori, M. R. R. Gesualdi, E. A. Liberti, E. Ferrara, and M. Muramatsu, “Mastication effort study using photorefractive holographic interferometry technique,” J. Biomech.43(4), 680–686 (2010).
[CrossRef] [PubMed]

J. Cryst. Growth

P. Sveshtarov and M. Gospodinov, “The effect of the interface shape on authomatic Czochralski weight diameter control system performance,” J. Cryst. Growth113(1-2), 186–208 (1991).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

V. Marinova, S. H. Lin, V. Sainov, M. Gospodinov, and K. Y. Hsu, “Light-induced properties of Ru-doped Bi12TiO20 crystals,” J. Opt. A, Pure Appl. Opt.5(6), S500–S506 (2003).
[CrossRef]

J. Opt. Soc. Am. B

Nature

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature393(6686), 665–668 (1998).
[CrossRef]

Opt. Commun.

E. A. Barbosa, A. O. Preto, D. M. Silva, J. F. Carvalho, and N. I. Morimoto, “Denisiuk-type reflection holography display with sillenite crystals for imaging and interferometry of small objects,” Opt. Commun.281(3), 408–414 (2008).
[CrossRef]

V. Marinova, M. L. Hsieh, S. H. Lin, and K. Y. Hsu, “Effect of ruthenium doping on the optical and photorefractive properties of Bi12TiO20 single crystals,” Opt. Commun.203(3-6), 377–384 (2002).
[CrossRef]

Opt. Lett.

Opt. Mater.

F. Ramaz, L. Rakitina, M. Gospodinov, and B. Briat, “Photorefrcative and photochromic properties of ruthenium –doped Bi12SiO20,” Opt. Mater.27(10), 1547–1559 (2005).
[CrossRef]

Phys. Rev. B

I. Ahmad, V. Marinova, and E. Goovaerts, “High-frequency electron paramagnetic resonance of the hole trapped anti-site bismuth centre in the photorefractive bismuth sillenite crystals,” Phys. Rev. B79(3), 033107 (2009).
[CrossRef]

Phys. Stat. Solidi A

R. Oberschmid, “Absorption Centers of Bi12GeO20 and Bi12SiO20 crystals,” Phys. Stat. Solidi A89(1), 263–270 (1985).
[CrossRef]

Other

J. Frejlich, Photorefractive Materials (Wiley Interscience, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Holographic dynamics of the recording and read-out processes of BSO:Ru crystal using 1064 nm for recording (IR only) and simultaneously 1064 nm + 532 nm (different pump intensity during the recording). The read-out process is performed at 1064 nm.

Fig. 2
Fig. 2

.(a) Theoretical simulation results and some parameter values: ε-dielectric constant; μ-carrier mobility 2.5x10−6 (m2/Vs); e-electron charge 1.6x10−19 (C); K-grating vector 6.11 (μm−1); NA-density of acceptor 1.0 x1024 (m−3); N1- density of deep traps 2.0x1024 (m−3); N2 -density of shallow traps 1.0x1024 (m−3); N+1-density of ionized deep traps (m−3); N+2 -density of ionized shallow traps (m−3); N-charge carrier density in the conduction band (m−3); S11- photo-ionization cross section of deep trap 1.2x10−4 (m3/J) at shorter wavelength; S21- photo-ionization cross section of shallow trap 3.56x10−4 (m3/J) at shorter wavelength; S22- photo-ionization cross section of shallow trap 0.3x10−4 (m3/J) at longer wavelength; J-current density (A/m2); γ1(m3/s)- recombination rate constant of deep trap 5.0x10−18; γ2(m3/s)-recombination rate constant of shallow trap 3.0x10−16; β1-thermal generation rate constant of deep trap (up to 0.002 (s−1)); β 2 -thermal generation rate constant of shallow trap 0.2 (s−1); r- electro-optic coefficient 2.25x10−12 (m/V); Esc-space charge field; (b) Temporal evolution of diffracted signal at both recording and read-out processes at different thermal generation rates β1 [s−1] the intensity of gating light is 80 mW/cm2.

Fig. 3
Fig. 3

Time evolution of reconstructed image recorded with: (a-c) IR light only; (d-f) 1064nm + 532nm. Last two rows: (g-i) “NCTU” recorded with 1064nm + 532nm, replaced by “中山” recorded with IR only and (j-l) “中山” recorded with 1064nm + 532 nm in the same crystal location after complete erasure of the previous image.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

d N 1 + dt =( N 1 N 1 + )( s 11 I 1 + β 1 ) γ 1 N N 1 +
d N 2 + dt =( N 2 N 2 + )( s 21 I 1 + s 22 I 2 + β 2 ) γ 2 N N 2 +
dN dt = d N 1 + dt + d N 2 + dt + 1 e dJ dz
J=eμNE+μ k B T dN dz
ε dE dz =e( N 1 + + N 2 + N N A )
N 1 + = N 10 + + N 11 + cos(Kz)
N 2 + = N 20 + + N 21 + cos(Kz)
N= N 0 + N 1 cos(Kz)
J= J 0 + J 1 cos(Kz)
E= E 0 + E SC cos(Kz)
d N 10 + dt =( N 1 N 10 + ) g 1 γ 1 N 0 N 10 +
d N 20 + dt =( N 2 N 20 + ) g 2 γ 2 N 0 N 20 +
d N 11 + dt =( g 1 + γ 1 N 0 ) N 11 + γ 1 N 10 + N 1
d N 21 + dt =( g 2 + γ 2 N 0 ) N 21 + γ 2 N 20 + N 1 +m S 22 I 20 ( N 2 N 20 + )
d N 1 dt =( K 2 μ k B T e eμ N 0 ε γ 1 N 10 + γ 2 N 20 + ) N 1 + +( eμ N 0 ε g 1 γ 1 N 0 ) N 11 + +( eμ N 0 ε g 2 γ 2 N 0 ) N 21 + +m S 22 I 20 ( N 2 N 20 + )
E SC =i e εK ( N 11 + + N 21 + N 1 )
I 1 ={ I 10 , at recording stage 0, at read-out stage and I 2 ={ I 20 (1+mcosKz), at recording stage I 20 , at read-out stage

Metrics