Abstract

We demonstrate a two-channel, upconversion detector for counting 1300-nm-wavelength photons. By using two pumps near 1550 nm, photons near 1300 nm are converted to two spectrally distinct channels near 710 nm using sum-frequency generation (SFG) in a periodically poled LiNbO3 (PPLN) waveguide. We used spectral-conversion engineering to design the phase-modulated PPLN waveguide for simultaneous quasi-phasematching of two SFG processes. The two channels exhibit 31% and 25% full-system photon detection efficiency, and very low dark count rates (650 and 550 counts per second at a peak external conversion efficiency of 70%) through filtering using a volume Bragg grating. We investigate applications of the dual-channel upconversion detector as a frequency-shifting beamsplitter, and as a time-to-frequency converter to enable higher-data-rate quantum communications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt.51(9–10), 1433–1445 (2004).
  2. M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 microm by means of frequency upconversion,” Opt. Lett.29(13), 1449–1451 (2004).
    [CrossRef] [PubMed]
  3. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett.30(13), 1725–1727 (2005).
    [CrossRef] [PubMed]
  4. L. Ma, O. Slattery, and X. Tang, “Experimental study of high sensitivity infrared spectrometer with waveguide-based up-conversion detector(1),” Opt. Express17(16), 14395–14404 (2009).
    [CrossRef] [PubMed]
  5. J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express19(22), 21445–21456 (2011).
    [CrossRef] [PubMed]
  6. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3(12), 696–705 (2009).
    [CrossRef]
  7. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited Review Article: Single-photon sources and detectors,” Rev. Sci. Instrum.82(7), 071101 (2011).
    [CrossRef] [PubMed]
  8. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express16(5), 3032–3040 (2008).
    [CrossRef] [PubMed]
  9. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
    [CrossRef]
  10. H. Xu, L. Ma, A. Mink, B. Hershman, and X. Tang, “1310-nm quantum key distribution system with up-conversion pump wavelength at 1550 nm,” Opt. Express15(12), 7247–7260 (2007).
    [CrossRef] [PubMed]
  11. L. Ma, J. C. Bienfang, O. Slattery, and X. Tang, “Up-conversion single-photon detector using multi-wavelength sampling techniques,” Opt. Express19(6), 5470–5479 (2011).
    [CrossRef] [PubMed]
  12. A. P. VanDevender and P. G. Kwiat, “Quantum transduction via frequency upconversion,” J. Opt. Soc. Am. B24(2), 295–299 (2007).
    [CrossRef]
  13. L. Ma, M. T. Rakher, M. J. Stevens, O. Slattery, K. Srinivasan, and X. Tang, “Temporal correlation of photons following frequency up-conversion,” Opt. Express19(11), 10501–10510 (2011).
    [CrossRef] [PubMed]
  14. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature437(7055), 116–120 (2005).
    [CrossRef] [PubMed]
  15. H. Takesue, “Erasing distinguishability using quantum frequency up-conversion,” Phys. Rev. Lett.101(17), 173901 (2008).
    [CrossRef] [PubMed]
  16. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics4(11), 786–791 (2010).
    [CrossRef]
  17. M. T. Rakher, L. Ma, M. Davanço, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous Wavelength Translation and Amplitude Modulation of Single Photons from a Quantum Dot,” Phys. Rev. Lett.107(8), 083602 (2011).
    [CrossRef] [PubMed]
  18. M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure,” Opt. Lett.28(7), 558–560 (2003).
    [CrossRef] [PubMed]
  19. P. Kumar, “Quantum frequency conversion,” Opt. Lett.15(24), 1476–1478 (1990).
    [CrossRef] [PubMed]
  20. M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides,” Opt. Lett.24(16), 1157–1159 (1999).
    [CrossRef] [PubMed]
  21. Y. W. Lee, F. C. Fan, Y. C. Huang, B. Y. Gu, B. Z. Dong, and M. H. Chou, “Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate,” Opt. Lett.27(24), 2191–2193 (2002).
    [CrossRef] [PubMed]
  22. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett.27(3), 179–181 (2002).
    [CrossRef] [PubMed]
  23. Excelitas Technologies, “SPCM-AQRH: Single Photon Counting Module,” http://www.excelitas.com/downloads/DTS_SPCM_AQRH.pdf
  24. K. J. Gordon, V. Fernandez, G. S. Buller, I. Rech, S. D. Cova, and P. D. Townsend, “Quantum key distribution system clocked at 2 GHz,” Opt. Express13(8), 3015–3020 (2005).
    [CrossRef] [PubMed]
  25. J. C. Bienfang, A. Restelli, and A. Migdall, “SPAD electronics for high-speed quantum communications,” Proc. SPIE7945, 79452N, 79452N-5 (2011).
    [CrossRef]
  26. P. A. Andrekson and M. Westlund, “Nonlinear optical fiber based high resolution all-optical waveform sampling,” Laser Photon. Rev.1(3), 231–248 (2007).
    [CrossRef]
  27. O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Time-resolved single-photon detection by femtosecond upconversion,” Opt. Lett.33(19), 2257–2259 (2008).
    [CrossRef] [PubMed]
  28. J. Huang, C. Langrock, X. P. Xie, and M. M. Fejer, “Monolithic 160 Gbit/s optical time-division multiplexer,” Opt. Lett.32(16), 2420–2422 (2007).
    [CrossRef] [PubMed]
  29. W. Robert, Boyd, Nonlinear Optics, 2nd ed. (Academic Press, 2003).
  30. J. R. Kurz, J. Huang, X. Xie, T. Saida, and M. M. Fejer, “Mode multiplexing in optical frequency mixers,” Opt. Lett.29(6), 551–553 (2004).
    [CrossRef] [PubMed]
  31. B. H. Kolner and M. Nazarathy, “Temporal imaging with a time lens,” Opt. Lett.14(12), 630–632 (1989).
    [CrossRef] [PubMed]
  32. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron.30(8), 1951–1963 (1994).
    [CrossRef]
  33. C. V. Bennett and B. H. Kolner, “Principles of Parametric Temporal Imaging —Part I: System Configurations,” IEEE J. Quantum Electron.36(4), 430–437 (2000).
    [CrossRef]
  34. C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 Single-Photon Image Sensor with Column-Level 10-Bit Time-to-Digital Converter Array,” IEEE J. Solid-state Circuits43(12), 2977–2989 (2008).
    [CrossRef]

2011

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited Review Article: Single-photon sources and detectors,” Rev. Sci. Instrum.82(7), 071101 (2011).
[CrossRef] [PubMed]

M. T. Rakher, L. Ma, M. Davanço, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous Wavelength Translation and Amplitude Modulation of Single Photons from a Quantum Dot,” Phys. Rev. Lett.107(8), 083602 (2011).
[CrossRef] [PubMed]

J. C. Bienfang, A. Restelli, and A. Migdall, “SPAD electronics for high-speed quantum communications,” Proc. SPIE7945, 79452N, 79452N-5 (2011).
[CrossRef]

L. Ma, J. C. Bienfang, O. Slattery, and X. Tang, “Up-conversion single-photon detector using multi-wavelength sampling techniques,” Opt. Express19(6), 5470–5479 (2011).
[CrossRef] [PubMed]

L. Ma, M. T. Rakher, M. J. Stevens, O. Slattery, K. Srinivasan, and X. Tang, “Temporal correlation of photons following frequency up-conversion,” Opt. Express19(11), 10501–10510 (2011).
[CrossRef] [PubMed]

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express19(22), 21445–21456 (2011).
[CrossRef] [PubMed]

2010

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics4(11), 786–791 (2010).
[CrossRef]

2009

2008

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express16(5), 3032–3040 (2008).
[CrossRef] [PubMed]

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Time-resolved single-photon detection by femtosecond upconversion,” Opt. Lett.33(19), 2257–2259 (2008).
[CrossRef] [PubMed]

H. Takesue, “Erasing distinguishability using quantum frequency up-conversion,” Phys. Rev. Lett.101(17), 173901 (2008).
[CrossRef] [PubMed]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 Single-Photon Image Sensor with Column-Level 10-Bit Time-to-Digital Converter Array,” IEEE J. Solid-state Circuits43(12), 2977–2989 (2008).
[CrossRef]

2007

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
[CrossRef]

P. A. Andrekson and M. Westlund, “Nonlinear optical fiber based high resolution all-optical waveform sampling,” Laser Photon. Rev.1(3), 231–248 (2007).
[CrossRef]

A. P. VanDevender and P. G. Kwiat, “Quantum transduction via frequency upconversion,” J. Opt. Soc. Am. B24(2), 295–299 (2007).
[CrossRef]

H. Xu, L. Ma, A. Mink, B. Hershman, and X. Tang, “1310-nm quantum key distribution system with up-conversion pump wavelength at 1550 nm,” Opt. Express15(12), 7247–7260 (2007).
[CrossRef] [PubMed]

J. Huang, C. Langrock, X. P. Xie, and M. M. Fejer, “Monolithic 160 Gbit/s optical time-division multiplexer,” Opt. Lett.32(16), 2420–2422 (2007).
[CrossRef] [PubMed]

2005

2004

2003

2002

2000

C. V. Bennett and B. H. Kolner, “Principles of Parametric Temporal Imaging —Part I: System Configurations,” IEEE J. Quantum Electron.36(4), 430–437 (2000).
[CrossRef]

1999

1994

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron.30(8), 1951–1963 (1994).
[CrossRef]

1990

1989

Albota, M. A.

Alibart, O.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature437(7055), 116–120 (2005).
[CrossRef] [PubMed]

Andrekson, P. A.

P. A. Andrekson and M. Westlund, “Nonlinear optical fiber based high resolution all-optical waveform sampling,” Laser Photon. Rev.1(3), 231–248 (2007).
[CrossRef]

Asobe, M.

Baldi, P.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature437(7055), 116–120 (2005).
[CrossRef] [PubMed]

Bennett, C. V.

C. V. Bennett and B. H. Kolner, “Principles of Parametric Temporal Imaging —Part I: System Configurations,” IEEE J. Quantum Electron.36(4), 430–437 (2000).
[CrossRef]

Bienfang, J. C.

L. Ma, J. C. Bienfang, O. Slattery, and X. Tang, “Up-conversion single-photon detector using multi-wavelength sampling techniques,” Opt. Express19(6), 5470–5479 (2011).
[CrossRef] [PubMed]

J. C. Bienfang, A. Restelli, and A. Migdall, “SPAD electronics for high-speed quantum communications,” Proc. SPIE7945, 79452N, 79452N-5 (2011).
[CrossRef]

Brener, I.

Buller, G. S.

Charbon, E.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 Single-Photon Image Sensor with Column-Level 10-Bit Time-to-Digital Converter Array,” IEEE J. Solid-state Circuits43(12), 2977–2989 (2008).
[CrossRef]

Chou, M. H.

Cova, S. D.

Davanço, M.

M. T. Rakher, L. Ma, M. Davanço, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous Wavelength Translation and Amplitude Modulation of Single Photons from a Quantum Dot,” Phys. Rev. Lett.107(8), 083602 (2011).
[CrossRef] [PubMed]

Diamanti, E.

Dong, B. Z.

Eisaman, M. D.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited Review Article: Single-photon sources and detectors,” Rev. Sci. Instrum.82(7), 071101 (2011).
[CrossRef] [PubMed]

Fan, F. C.

Fan, J.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited Review Article: Single-photon sources and detectors,” Rev. Sci. Instrum.82(7), 071101 (2011).
[CrossRef] [PubMed]

Favi, C.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 Single-Photon Image Sensor with Column-Level 10-Bit Time-to-Digital Converter Array,” IEEE J. Solid-state Circuits43(12), 2977–2989 (2008).
[CrossRef]

Fejer, M. M.

Fernandez, V.

Fujimura, M.

Gersbach, M.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 Single-Photon Image Sensor with Column-Level 10-Bit Time-to-Digital Converter Array,” IEEE J. Solid-state Circuits43(12), 2977–2989 (2008).
[CrossRef]

Gisin, N.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature437(7055), 116–120 (2005).
[CrossRef] [PubMed]

Gordon, K. J.

Gu, B. Y.

Hadfield, R. H.

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3(12), 696–705 (2009).
[CrossRef]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
[CrossRef]

Halder, M.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature437(7055), 116–120 (2005).
[CrossRef] [PubMed]

Hershman, B.

Honjo, T.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
[CrossRef]

Huang, J.

Huang, Y. C.

Kluter, T.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 Single-Photon Image Sensor with Column-Level 10-Bit Time-to-Digital Converter Array,” IEEE J. Solid-state Circuits43(12), 2977–2989 (2008).
[CrossRef]

Kolner, B. H.

C. V. Bennett and B. H. Kolner, “Principles of Parametric Temporal Imaging —Part I: System Configurations,” IEEE J. Quantum Electron.36(4), 430–437 (2000).
[CrossRef]

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron.30(8), 1951–1963 (1994).
[CrossRef]

B. H. Kolner and M. Nazarathy, “Temporal imaging with a time lens,” Opt. Lett.14(12), 630–632 (1989).
[CrossRef] [PubMed]

Kumar, P.

Kurimura, S.

Kurz, J. R.

Kuzucu, O.

Kwiat, P. G.

A. P. VanDevender and P. G. Kwiat, “Quantum transduction via frequency upconversion,” J. Opt. Soc. Am. B24(2), 295–299 (2007).
[CrossRef]

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt.51(9–10), 1433–1445 (2004).

Langrock, C.

Lee, Y. W.

Lita, A. E.

Ma, L.

L. Ma, M. T. Rakher, M. J. Stevens, O. Slattery, K. Srinivasan, and X. Tang, “Temporal correlation of photons following frequency up-conversion,” Opt. Express19(11), 10501–10510 (2011).
[CrossRef] [PubMed]

M. T. Rakher, L. Ma, M. Davanço, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous Wavelength Translation and Amplitude Modulation of Single Photons from a Quantum Dot,” Phys. Rev. Lett.107(8), 083602 (2011).
[CrossRef] [PubMed]

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express19(22), 21445–21456 (2011).
[CrossRef] [PubMed]

L. Ma, J. C. Bienfang, O. Slattery, and X. Tang, “Up-conversion single-photon detector using multi-wavelength sampling techniques,” Opt. Express19(6), 5470–5479 (2011).
[CrossRef] [PubMed]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics4(11), 786–791 (2010).
[CrossRef]

L. Ma, O. Slattery, and X. Tang, “Experimental study of high sensitivity infrared spectrometer with waveguide-based up-conversion detector(1),” Opt. Express17(16), 14395–14404 (2009).
[CrossRef] [PubMed]

H. Xu, L. Ma, A. Mink, B. Hershman, and X. Tang, “1310-nm quantum key distribution system with up-conversion pump wavelength at 1550 nm,” Opt. Express15(12), 7247–7260 (2007).
[CrossRef] [PubMed]

Migdall, A.

J. C. Bienfang, A. Restelli, and A. Migdall, “SPAD electronics for high-speed quantum communications,” Proc. SPIE7945, 79452N, 79452N-5 (2011).
[CrossRef]

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited Review Article: Single-photon sources and detectors,” Rev. Sci. Instrum.82(7), 071101 (2011).
[CrossRef] [PubMed]

Miller, A. J.

Mink, A.

Miyazawa, H.

Nam, S. W.

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express16(5), 3032–3040 (2008).
[CrossRef] [PubMed]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
[CrossRef]

Nazarathy, M.

Niclass, C.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 Single-Photon Image Sensor with Column-Level 10-Bit Time-to-Digital Converter Array,” IEEE J. Solid-state Circuits43(12), 2977–2989 (2008).
[CrossRef]

Nishida, Y.

Parameswaran, K. R.

Pelc, J. S.

Phillips, C. R.

Polyakov, S. V.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited Review Article: Single-photon sources and detectors,” Rev. Sci. Instrum.82(7), 071101 (2011).
[CrossRef] [PubMed]

Rakher, M. T.

L. Ma, M. T. Rakher, M. J. Stevens, O. Slattery, K. Srinivasan, and X. Tang, “Temporal correlation of photons following frequency up-conversion,” Opt. Express19(11), 10501–10510 (2011).
[CrossRef] [PubMed]

M. T. Rakher, L. Ma, M. Davanço, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous Wavelength Translation and Amplitude Modulation of Single Photons from a Quantum Dot,” Phys. Rev. Lett.107(8), 083602 (2011).
[CrossRef] [PubMed]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics4(11), 786–791 (2010).
[CrossRef]

Rech, I.

Restelli, A.

J. C. Bienfang, A. Restelli, and A. Migdall, “SPAD electronics for high-speed quantum communications,” Proc. SPIE7945, 79452N, 79452N-5 (2011).
[CrossRef]

Roussev, R. V.

Route, R. K.

Saida, T.

Slattery, O.

Srinivasan, K.

M. T. Rakher, L. Ma, M. Davanço, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous Wavelength Translation and Amplitude Modulation of Single Photons from a Quantum Dot,” Phys. Rev. Lett.107(8), 083602 (2011).
[CrossRef] [PubMed]

L. Ma, M. T. Rakher, M. J. Stevens, O. Slattery, K. Srinivasan, and X. Tang, “Temporal correlation of photons following frequency up-conversion,” Opt. Express19(11), 10501–10510 (2011).
[CrossRef] [PubMed]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics4(11), 786–791 (2010).
[CrossRef]

Stevens, M. J.

Suzuki, H.

Tadanaga, O.

Takesue, H.

H. Takesue, “Erasing distinguishability using quantum frequency up-conversion,” Phys. Rev. Lett.101(17), 173901 (2008).
[CrossRef] [PubMed]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
[CrossRef]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett.30(13), 1725–1727 (2005).
[CrossRef] [PubMed]

Tamaki, K.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
[CrossRef]

Tang, X.

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express19(22), 21445–21456 (2011).
[CrossRef] [PubMed]

L. Ma, J. C. Bienfang, O. Slattery, and X. Tang, “Up-conversion single-photon detector using multi-wavelength sampling techniques,” Opt. Express19(6), 5470–5479 (2011).
[CrossRef] [PubMed]

L. Ma, M. T. Rakher, M. J. Stevens, O. Slattery, K. Srinivasan, and X. Tang, “Temporal correlation of photons following frequency up-conversion,” Opt. Express19(11), 10501–10510 (2011).
[CrossRef] [PubMed]

M. T. Rakher, L. Ma, M. Davanço, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous Wavelength Translation and Amplitude Modulation of Single Photons from a Quantum Dot,” Phys. Rev. Lett.107(8), 083602 (2011).
[CrossRef] [PubMed]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics4(11), 786–791 (2010).
[CrossRef]

L. Ma, O. Slattery, and X. Tang, “Experimental study of high sensitivity infrared spectrometer with waveguide-based up-conversion detector(1),” Opt. Express17(16), 14395–14404 (2009).
[CrossRef] [PubMed]

H. Xu, L. Ma, A. Mink, B. Hershman, and X. Tang, “1310-nm quantum key distribution system with up-conversion pump wavelength at 1550 nm,” Opt. Express15(12), 7247–7260 (2007).
[CrossRef] [PubMed]

Tanzilli, S.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature437(7055), 116–120 (2005).
[CrossRef] [PubMed]

Tittel, W.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature437(7055), 116–120 (2005).
[CrossRef] [PubMed]

Tovstonog, S.

Townsend, P. D.

VanDevender, A. P.

A. P. VanDevender and P. G. Kwiat, “Quantum transduction via frequency upconversion,” J. Opt. Soc. Am. B24(2), 295–299 (2007).
[CrossRef]

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt.51(9–10), 1433–1445 (2004).

Westlund, M.

P. A. Andrekson and M. Westlund, “Nonlinear optical fiber based high resolution all-optical waveform sampling,” Laser Photon. Rev.1(3), 231–248 (2007).
[CrossRef]

Wong, F. N. C.

Xie, X.

Xie, X. P.

Xu, H.

Yamamoto, Y.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
[CrossRef]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett.30(13), 1725–1727 (2005).
[CrossRef] [PubMed]

Zbinden, H.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature437(7055), 116–120 (2005).
[CrossRef] [PubMed]

Zhang, Q.

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express19(22), 21445–21456 (2011).
[CrossRef] [PubMed]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
[CrossRef]

IEEE J. Quantum Electron.

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron.30(8), 1951–1963 (1994).
[CrossRef]

C. V. Bennett and B. H. Kolner, “Principles of Parametric Temporal Imaging —Part I: System Configurations,” IEEE J. Quantum Electron.36(4), 430–437 (2000).
[CrossRef]

IEEE J. Solid-state Circuits

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 Single-Photon Image Sensor with Column-Level 10-Bit Time-to-Digital Converter Array,” IEEE J. Solid-state Circuits43(12), 2977–2989 (2008).
[CrossRef]

J. Mod. Opt.

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt.51(9–10), 1433–1445 (2004).

J. Opt. Soc. Am. B

Laser Photon. Rev.

P. A. Andrekson and M. Westlund, “Nonlinear optical fiber based high resolution all-optical waveform sampling,” Laser Photon. Rev.1(3), 231–248 (2007).
[CrossRef]

Nat. Photonics

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics4(11), 786–791 (2010).
[CrossRef]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3(12), 696–705 (2009).
[CrossRef]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
[CrossRef]

Nature

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature437(7055), 116–120 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Time-resolved single-photon detection by femtosecond upconversion,” Opt. Lett.33(19), 2257–2259 (2008).
[CrossRef] [PubMed]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett.30(13), 1725–1727 (2005).
[CrossRef] [PubMed]

J. Huang, C. Langrock, X. P. Xie, and M. M. Fejer, “Monolithic 160 Gbit/s optical time-division multiplexer,” Opt. Lett.32(16), 2420–2422 (2007).
[CrossRef] [PubMed]

B. H. Kolner and M. Nazarathy, “Temporal imaging with a time lens,” Opt. Lett.14(12), 630–632 (1989).
[CrossRef] [PubMed]

P. Kumar, “Quantum frequency conversion,” Opt. Lett.15(24), 1476–1478 (1990).
[CrossRef] [PubMed]

M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides,” Opt. Lett.24(16), 1157–1159 (1999).
[CrossRef] [PubMed]

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett.27(3), 179–181 (2002).
[CrossRef] [PubMed]

Y. W. Lee, F. C. Fan, Y. C. Huang, B. Y. Gu, B. Z. Dong, and M. H. Chou, “Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate,” Opt. Lett.27(24), 2191–2193 (2002).
[CrossRef] [PubMed]

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure,” Opt. Lett.28(7), 558–560 (2003).
[CrossRef] [PubMed]

J. R. Kurz, J. Huang, X. Xie, T. Saida, and M. M. Fejer, “Mode multiplexing in optical frequency mixers,” Opt. Lett.29(6), 551–553 (2004).
[CrossRef] [PubMed]

M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 microm by means of frequency upconversion,” Opt. Lett.29(13), 1449–1451 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett.

H. Takesue, “Erasing distinguishability using quantum frequency up-conversion,” Phys. Rev. Lett.101(17), 173901 (2008).
[CrossRef] [PubMed]

M. T. Rakher, L. Ma, M. Davanço, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous Wavelength Translation and Amplitude Modulation of Single Photons from a Quantum Dot,” Phys. Rev. Lett.107(8), 083602 (2011).
[CrossRef] [PubMed]

Proc. SPIE

J. C. Bienfang, A. Restelli, and A. Migdall, “SPAD electronics for high-speed quantum communications,” Proc. SPIE7945, 79452N, 79452N-5 (2011).
[CrossRef]

Rev. Sci. Instrum.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited Review Article: Single-photon sources and detectors,” Rev. Sci. Instrum.82(7), 071101 (2011).
[CrossRef] [PubMed]

Other

Excelitas Technologies, “SPCM-AQRH: Single Photon Counting Module,” http://www.excelitas.com/downloads/DTS_SPCM_AQRH.pdf

W. Robert, Boyd, Nonlinear Optics, 2nd ed. (Academic Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Theoretical and (b) measured SFG conversion efficiency for the two-channel, phase-modulated PPLN waveguide with signal wavelength fixed at λ0 = 1319 nm.

Fig. 2
Fig. 2

General experimental setup. The strong, two-color pump near 1.5 μm is combined with the signal near 1310 nm in the PPLN waveguide with phase-modulated QPM grating. The output is separated by a volume Bragg grating (VBG) and sent to two silicon avalanche photodiodes (Si APD). PC, polarization controller; WDM, wavelength-division multiplexer; EDFA, erbium-doped fiber amplifier; VATT, variable attenuator; AL, aspheric lens; BPF, 20-nm band-pass filter.

Fig. 3
Fig. 3

Measured (a) photon detection efficiencies and (b) dark count rates for channel 1 (1302 nm + 1556 nm → 709 nm) and channel 2 (1302 nm + 1571 nm → 712 nm). The intrinsic dark count rates of the Si APDs are about 100 s−1.

Fig. 4
Fig. 4

Measured count rates for a single detector (blue dots) and a combined, dual-channel detector (green squares) as a function of input signal rate Rinc. The maximum, saturated count rate for the dual-channel system is twice that of the single detector, but the dark count rate is also doubled. The solid curves are simulated counting statistics for coherent light.

Fig. 5
Fig. 5

Experimental setup for the dual-wavelength demultiplexing experiment. A fast train of signal pulses interacts in the PPLN waveguide with a two-color pump pulse train consisting of alternating pulses at λp1 and λp2 to produce SFG pulses that can be spectrally separated with the VBG. The pulses arrive at each Si APD at half the rate of the original signal pulse train. A data generator drives the electro-optic intensity modulators (IM) and also triggers the time-correlated single-photon counting (TCSPC) system. A 1% tap coupler is placed after the EDFA and used to monitor the power, optical spectrum and temporal characteristics of the pump pulses. The resulting dual-channel SFG pulses are separated and filtered by the VBG and routed to two Si APDs.

Fig. 6
Fig. 6

Pulse timing diagram for detection of high-clock-rate signals via multi-wavelength sampling. The signal pulses have 625 ps period (1.6 GHz rate), while the two pump pulse trains each have 1.25-ns period (800 MHz rate). The pump pulse trains are staggered such that signal pulses overlap with alternating pump pulses.

Fig. 7
Fig. 7

(a). Single-channel, up-conversion detector response to a 1.6 GHz clock-rate pulse train showing significant inter-symbol interference (black), and response to a single pulse (green) showing FW1%M of 1.05 ns. (b) By using the dual-channel, upconversion detector and alternating channel 1 and 2 pumping, the data rate in each channel is halved and the data can be resolved.

Fig. 8
Fig. 8

Timing histogram of dual-wavelength upconversion detector for (a) Channel 1 and (c) Channel 2 to test sequence (b) encoded in the signal at λ0. (d) Response of Channel 1 to the signal code sequence with a continuous-wave pump showing significant ISI.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ω 0 + ω p1 = ω 1 ω 0 + ω p2 = ω 2 . ω 0 + ω pN = ω N
d a 0 dz = γ 1 a 1 γ 2 a 2 d a 1 dz = γ 1 a 0 , d a 2 dz = γ 2 a 0
d 2 a 0 d z 2 =( γ 1 2 + γ 2 2 ) a 0 .
a 0 (z)=AcosΓz+BsinΓz .
a 0 (L)= a 0 (0)cosΓL[ γ ¯ 1 a 1 (0)+ γ ¯ 2 a 2 (0)]sinΓL, a 1 (L)= γ ¯ 1 a 0 (0)sinΓL+[ γ ¯ 1 2 a 1 (0)+ γ ¯ 1 γ ¯ 2 a 2 (0)]cosΓL+ γ ¯ 2 2 a 1 (0) γ ¯ 1 γ ¯ 2 a 2 (0) , a 2 (L)= γ ¯ 2 a 0 (0)sinΓL+[ γ ¯ 1 γ ¯ 2 a 1 (0)+ γ ¯ 2 2 a 2 (0)]cosΓL γ ¯ 1 γ ¯ 2 a 1 (0)+ γ ¯ 1 2 a 2 (0)
Δk= k j k 0 k pj =2π( 1 Λ G + m Λ ph )

Metrics