Abstract

We report on the observation of slow light induced by transient spectral hole-burning in a solid, that is based on excited-state population storage. Experiments were conducted in the R1-line (2E←4A2 transition) of a 2.3 mm thick pink ruby (Al2O3:Cr(III) 130 ppm). Importantly, the pulse delay can be controlled by the application of a low external magnetic field B||c≤9 mT and delays of up to 11 ns with minimal pulse distortion are observed for ~55 ns Gaussian pulses. The delay corresponds to a group velocity value of ~c/1400. The experiment is very well modelled by linear spectral filter theory and the results indicate the possibility of using transient hole-burning based slow light experiments as a spectroscopic technique.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. F. Krauss, “Why do we need slow light?” Nat. Photonics2(8), 448–450 (2008).
    [CrossRef]
  2. R. W. Boyd, “Material slow light and structural slow light: similarities and differences for nonlinear optics,” J. Opt. Soc. Am. B28(12), A38–A44 (2011).
    [CrossRef]
  3. R. W. Boyd, “Slow and fast light: fundamentals and applications,” J. Mod. Opt.56(18-19), 1908–1915 (2009).
    [CrossRef]
  4. J. B. Khurgin, “Slow light in various media: a tutorial,” Adv. Opt. Photon.2(3), 287 (2010).
    [CrossRef]
  5. R. Boyd, “Slow Light, Fast Light, and their Applications,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThR1.)
  6. J. B. Khurgin and R. S. Tucker, eds., Slow Light: Science and Applications (CRC Press, 2008).
  7. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999).
    [CrossRef]
  8. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88(2), 023602 (2001).
    [CrossRef] [PubMed]
  9. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett.95(6), 063601 (2005).
    [CrossRef] [PubMed]
  10. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.90(11), 113903 (2003).
    [CrossRef] [PubMed]
  11. E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett.95(14), 143601 (2005).
    [CrossRef] [PubMed]
  12. V. S. Zapasskiĭ and G. G. Kozlov, “On two models of light pulse delay in saturable absorber,” Opt. Spectrosc.109(3), 407–412 (2010).
    [CrossRef]
  13. A. C. Selden, “Practical tests for distinguishing slow light from saturable absorption,” Opt. Express18(12), 13204–13211 (2010).
    [CrossRef] [PubMed]
  14. R. Lauro, T. Chaneliere, and J. L. Le Gouet, “Slow light using spectral hole burning in a Tm3+-doped yttrium-aluminum-garnet crystal,” Phys. Rev. A79(6), 063844 (2009).
    [CrossRef]
  15. R. M. Camacho, M. V. Pack, and J. C. Howell, “Slow light with large fractional delays by spectral hole-burning in rubidium vapor,” Phys. Rev. A74(3), 033801 (2006).
    [CrossRef]
  16. G. S. Agarwal and T. N. Dey, “Non-electromagnetically induced transparency mechanisms for slow light,” Laser Photonics Rev.3(3), 287–300 (2009).
    [CrossRef]
  17. J. Hahn and B. S. Ham, “Observations of self-induced ultraslow light in a persistent spectral hole burning medium,” Opt. Express16(21), 16723–16728 (2008).
    [CrossRef] [PubMed]
  18. B. S. Ham and J. Hahn, “Transmission enhancement of ultraslow light in an atom shelved model of spectral hole burning solids,” Opt. Express17(11), 9369–9375 (2009).
    [CrossRef] [PubMed]
  19. R. N. Shakhmuratov, A. Rebane, P. Megret, and J. Odeurs, “Slow light with persistent hole burning,” Phys. Rev. A71(5), 053811 (2005).
    [CrossRef]
  20. A. Rebane, R. N. Shakhmuratov, P. Megret, and J. Odeurs, “‘Slow light with persistent spectral hole burning in waveguides,” J. Lumin.127(1), 22–27 (2007).
    [CrossRef]
  21. G. S. Agarwal and T. N. Dey, “Slow light in Doppler-broadened two-level systems,” Phys. Rev. A68(6), 063816 (2003).
    [CrossRef]
  22. W. E. Moerner, “Introduction,” in Persistent Spectral Hole Burning: Science and Applications, W. E. Moerner, ed. (Springer, 1988), Topics In Current Physics 44, pp. 1–15.
  23. H. Riesen and A. Szabo, “Revisiting the temperature dependence of the homogeneous R1 linewidth in ruby,” Chem. Phys. Lett.484(4-6), 181–184 (2010).
    [CrossRef]
  24. H. Riesen, B. F. Hayward, and A. Szabo, “‘Side-hole to anti-hole conversion in time-resolved spectral hole burning of ruby: Long-lived spectral holes due to ground state level population storage,” J. Lumin.127(2), 655–664 (2007).
    [CrossRef]
  25. A. Szabo, “‘Sideband detection of optical hole burning in ruby,” IEEE J. Quantum Electron.10(9), 747–748 (1974).
    [CrossRef]
  26. A. Szabo and R. Kaarli, “Optical hole burning and spectral diffusion in ruby,” Phys. Rev. B Condens. Matter44(22), 12307–12313 (1991).
    [CrossRef] [PubMed]
  27. A. Szabo, “Ultra-narrow optical hole-burning in ruby,” J. Lumin.56(1-6), 47–50 (1993).
    [CrossRef]
  28. N. Kurnit, I. Abella, and S. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett.13(19), 567–568 (1964).
    [CrossRef]
  29. A. Szabo, “Frozen core effects on nonexponential photon-echo decay in ruby at high fields,” J. Lumin.58(1-6), 403–405 (1994).
    [CrossRef]
  30. S. H. Huang and A. Szabo, “Numerical studies of optical dephasing in ruby,” J. Lumin.68(6), 291–297 (1996).
    [CrossRef]
  31. H. M. Nussenzveig, Causality and Dispersion Relations (Academic Press, 1972).
  32. P. E. Jessop and A. Szabo, “High-resolution measurements of the ruby R1 line at low-temperatures,” Opt. Commun.33(3), 301–302 (1980).
    [CrossRef]
  33. P. E. Jessop and A. Szabo, “Visual observations of macroscopic inhomogeneous broadening of the R1 line in ruby,” Appl. Phys. Lett.37(6), 510–512 (1980).
    [CrossRef]
  34. M. L. Lewis and H. Riesen, “Transient and persistent spectral hole-burning in the R-lines of chromium(III) in NaMgAl(oxalate)3·9H2O,” J. Phys. Chem. A106(35), 8039–8045 (2002).
    [CrossRef]
  35. P. E. Jessop and A. Szabo, “Optical hole-burning and ground state energy transfer in ruby” in Laser Spectroscopy V, A. McKellar, T. Oka and B.P. Stoicheff, eds. (Springer-Verlag, 1981) pp. 408–411.
  36. H. Riesen and A. Szabo, “Probing hyperfine interactions in 53Cr(III) doped Al2O3 by spectral hole-burning in low magnetic fields,” Phys. Procedia3(4), 1577–1582 (2010).
    [CrossRef]
  37. A. Renn, U. P. Wild, and A. Rebane, “Multidimensional holography by persistent spectral hole burning,” J. Phys. Chem. A106(13), 3045–3060 (2002).
    [CrossRef]
  38. A. Rebane, R. Kaarli, P. Saari, A. Anijalg, and K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun.47(3), 173–176 (1983).
    [CrossRef]
  39. J. H. Eberly, S. R. Hartmann, and A. Szabo, “Propagation narrowing in the transmission of a light-pulse through a spectral hole,” Phys. Rev. A23(5), 2502–2506 (1981).
    [CrossRef]

2011 (1)

2010 (5)

J. B. Khurgin, “Slow light in various media: a tutorial,” Adv. Opt. Photon.2(3), 287 (2010).
[CrossRef]

A. C. Selden, “Practical tests for distinguishing slow light from saturable absorption,” Opt. Express18(12), 13204–13211 (2010).
[CrossRef] [PubMed]

V. S. Zapasskiĭ and G. G. Kozlov, “On two models of light pulse delay in saturable absorber,” Opt. Spectrosc.109(3), 407–412 (2010).
[CrossRef]

H. Riesen and A. Szabo, “Revisiting the temperature dependence of the homogeneous R1 linewidth in ruby,” Chem. Phys. Lett.484(4-6), 181–184 (2010).
[CrossRef]

H. Riesen and A. Szabo, “Probing hyperfine interactions in 53Cr(III) doped Al2O3 by spectral hole-burning in low magnetic fields,” Phys. Procedia3(4), 1577–1582 (2010).
[CrossRef]

2009 (4)

R. Lauro, T. Chaneliere, and J. L. Le Gouet, “Slow light using spectral hole burning in a Tm3+-doped yttrium-aluminum-garnet crystal,” Phys. Rev. A79(6), 063844 (2009).
[CrossRef]

R. W. Boyd, “Slow and fast light: fundamentals and applications,” J. Mod. Opt.56(18-19), 1908–1915 (2009).
[CrossRef]

G. S. Agarwal and T. N. Dey, “Non-electromagnetically induced transparency mechanisms for slow light,” Laser Photonics Rev.3(3), 287–300 (2009).
[CrossRef]

B. S. Ham and J. Hahn, “Transmission enhancement of ultraslow light in an atom shelved model of spectral hole burning solids,” Opt. Express17(11), 9369–9375 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (2)

H. Riesen, B. F. Hayward, and A. Szabo, “‘Side-hole to anti-hole conversion in time-resolved spectral hole burning of ruby: Long-lived spectral holes due to ground state level population storage,” J. Lumin.127(2), 655–664 (2007).
[CrossRef]

A. Rebane, R. N. Shakhmuratov, P. Megret, and J. Odeurs, “‘Slow light with persistent spectral hole burning in waveguides,” J. Lumin.127(1), 22–27 (2007).
[CrossRef]

2006 (1)

R. M. Camacho, M. V. Pack, and J. C. Howell, “Slow light with large fractional delays by spectral hole-burning in rubidium vapor,” Phys. Rev. A74(3), 033801 (2006).
[CrossRef]

2005 (3)

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett.95(6), 063601 (2005).
[CrossRef] [PubMed]

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett.95(14), 143601 (2005).
[CrossRef] [PubMed]

R. N. Shakhmuratov, A. Rebane, P. Megret, and J. Odeurs, “Slow light with persistent hole burning,” Phys. Rev. A71(5), 053811 (2005).
[CrossRef]

2003 (2)

G. S. Agarwal and T. N. Dey, “Slow light in Doppler-broadened two-level systems,” Phys. Rev. A68(6), 063816 (2003).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.90(11), 113903 (2003).
[CrossRef] [PubMed]

2002 (2)

A. Renn, U. P. Wild, and A. Rebane, “Multidimensional holography by persistent spectral hole burning,” J. Phys. Chem. A106(13), 3045–3060 (2002).
[CrossRef]

M. L. Lewis and H. Riesen, “Transient and persistent spectral hole-burning in the R-lines of chromium(III) in NaMgAl(oxalate)3·9H2O,” J. Phys. Chem. A106(35), 8039–8045 (2002).
[CrossRef]

2001 (1)

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88(2), 023602 (2001).
[CrossRef] [PubMed]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999).
[CrossRef]

1996 (1)

S. H. Huang and A. Szabo, “Numerical studies of optical dephasing in ruby,” J. Lumin.68(6), 291–297 (1996).
[CrossRef]

1994 (1)

A. Szabo, “Frozen core effects on nonexponential photon-echo decay in ruby at high fields,” J. Lumin.58(1-6), 403–405 (1994).
[CrossRef]

1993 (1)

A. Szabo, “Ultra-narrow optical hole-burning in ruby,” J. Lumin.56(1-6), 47–50 (1993).
[CrossRef]

1991 (1)

A. Szabo and R. Kaarli, “Optical hole burning and spectral diffusion in ruby,” Phys. Rev. B Condens. Matter44(22), 12307–12313 (1991).
[CrossRef] [PubMed]

1983 (1)

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, and K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun.47(3), 173–176 (1983).
[CrossRef]

1981 (1)

J. H. Eberly, S. R. Hartmann, and A. Szabo, “Propagation narrowing in the transmission of a light-pulse through a spectral hole,” Phys. Rev. A23(5), 2502–2506 (1981).
[CrossRef]

1980 (2)

P. E. Jessop and A. Szabo, “High-resolution measurements of the ruby R1 line at low-temperatures,” Opt. Commun.33(3), 301–302 (1980).
[CrossRef]

P. E. Jessop and A. Szabo, “Visual observations of macroscopic inhomogeneous broadening of the R1 line in ruby,” Appl. Phys. Lett.37(6), 510–512 (1980).
[CrossRef]

1974 (1)

A. Szabo, “‘Sideband detection of optical hole burning in ruby,” IEEE J. Quantum Electron.10(9), 747–748 (1974).
[CrossRef]

1964 (1)

N. Kurnit, I. Abella, and S. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett.13(19), 567–568 (1964).
[CrossRef]

Abella, I.

N. Kurnit, I. Abella, and S. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett.13(19), 567–568 (1964).
[CrossRef]

Agarwal, G. S.

G. S. Agarwal and T. N. Dey, “Non-electromagnetically induced transparency mechanisms for slow light,” Laser Photonics Rev.3(3), 287–300 (2009).
[CrossRef]

G. S. Agarwal and T. N. Dey, “Slow light in Doppler-broadened two-level systems,” Phys. Rev. A68(6), 063816 (2003).
[CrossRef]

Anijalg, A.

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, and K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun.47(3), 173–176 (1983).
[CrossRef]

Baldit, E.

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett.95(14), 143601 (2005).
[CrossRef] [PubMed]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999).
[CrossRef]

Bencheikh, K.

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett.95(14), 143601 (2005).
[CrossRef] [PubMed]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.90(11), 113903 (2003).
[CrossRef] [PubMed]

Boyd, R. W.

R. W. Boyd, “Material slow light and structural slow light: similarities and differences for nonlinear optics,” J. Opt. Soc. Am. B28(12), A38–A44 (2011).
[CrossRef]

R. W. Boyd, “Slow and fast light: fundamentals and applications,” J. Mod. Opt.56(18-19), 1908–1915 (2009).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.90(11), 113903 (2003).
[CrossRef] [PubMed]

Camacho, R. M.

R. M. Camacho, M. V. Pack, and J. C. Howell, “Slow light with large fractional delays by spectral hole-burning in rubidium vapor,” Phys. Rev. A74(3), 033801 (2006).
[CrossRef]

Chaneliere, T.

R. Lauro, T. Chaneliere, and J. L. Le Gouet, “Slow light using spectral hole burning in a Tm3+-doped yttrium-aluminum-garnet crystal,” Phys. Rev. A79(6), 063844 (2009).
[CrossRef]

Dey, T. N.

G. S. Agarwal and T. N. Dey, “Non-electromagnetically induced transparency mechanisms for slow light,” Laser Photonics Rev.3(3), 287–300 (2009).
[CrossRef]

G. S. Agarwal and T. N. Dey, “Slow light in Doppler-broadened two-level systems,” Phys. Rev. A68(6), 063816 (2003).
[CrossRef]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999).
[CrossRef]

Eberly, J. H.

J. H. Eberly, S. R. Hartmann, and A. Szabo, “Propagation narrowing in the transmission of a light-pulse through a spectral hole,” Phys. Rev. A23(5), 2502–2506 (1981).
[CrossRef]

Fraval, E.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett.95(6), 063601 (2005).
[CrossRef] [PubMed]

Hahn, J.

Ham, B. S.

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999).
[CrossRef]

Hartmann, S.

N. Kurnit, I. Abella, and S. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett.13(19), 567–568 (1964).
[CrossRef]

Hartmann, S. R.

J. H. Eberly, S. R. Hartmann, and A. Szabo, “Propagation narrowing in the transmission of a light-pulse through a spectral hole,” Phys. Rev. A23(5), 2502–2506 (1981).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999).
[CrossRef]

Hayward, B. F.

H. Riesen, B. F. Hayward, and A. Szabo, “‘Side-hole to anti-hole conversion in time-resolved spectral hole burning of ruby: Long-lived spectral holes due to ground state level population storage,” J. Lumin.127(2), 655–664 (2007).
[CrossRef]

Hemmer, P. R.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88(2), 023602 (2001).
[CrossRef] [PubMed]

Howell, J. C.

R. M. Camacho, M. V. Pack, and J. C. Howell, “Slow light with large fractional delays by spectral hole-burning in rubidium vapor,” Phys. Rev. A74(3), 033801 (2006).
[CrossRef]

Huang, S. H.

S. H. Huang and A. Szabo, “Numerical studies of optical dephasing in ruby,” J. Lumin.68(6), 291–297 (1996).
[CrossRef]

Jessop, P. E.

P. E. Jessop and A. Szabo, “High-resolution measurements of the ruby R1 line at low-temperatures,” Opt. Commun.33(3), 301–302 (1980).
[CrossRef]

P. E. Jessop and A. Szabo, “Visual observations of macroscopic inhomogeneous broadening of the R1 line in ruby,” Appl. Phys. Lett.37(6), 510–512 (1980).
[CrossRef]

Kaarli, R.

A. Szabo and R. Kaarli, “Optical hole burning and spectral diffusion in ruby,” Phys. Rev. B Condens. Matter44(22), 12307–12313 (1991).
[CrossRef] [PubMed]

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, and K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun.47(3), 173–176 (1983).
[CrossRef]

Khurgin, J. B.

Kozlov, G. G.

V. S. Zapasskiĭ and G. G. Kozlov, “On two models of light pulse delay in saturable absorber,” Opt. Spectrosc.109(3), 407–412 (2010).
[CrossRef]

Krauss, T. F.

T. F. Krauss, “Why do we need slow light?” Nat. Photonics2(8), 448–450 (2008).
[CrossRef]

Kurnit, N.

N. Kurnit, I. Abella, and S. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett.13(19), 567–568 (1964).
[CrossRef]

Lauro, R.

R. Lauro, T. Chaneliere, and J. L. Le Gouet, “Slow light using spectral hole burning in a Tm3+-doped yttrium-aluminum-garnet crystal,” Phys. Rev. A79(6), 063844 (2009).
[CrossRef]

Le Gouet, J. L.

R. Lauro, T. Chaneliere, and J. L. Le Gouet, “Slow light using spectral hole burning in a Tm3+-doped yttrium-aluminum-garnet crystal,” Phys. Rev. A79(6), 063844 (2009).
[CrossRef]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.90(11), 113903 (2003).
[CrossRef] [PubMed]

Levenson, J. A.

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett.95(14), 143601 (2005).
[CrossRef] [PubMed]

Lewis, M. L.

M. L. Lewis and H. Riesen, “Transient and persistent spectral hole-burning in the R-lines of chromium(III) in NaMgAl(oxalate)3·9H2O,” J. Phys. Chem. A106(35), 8039–8045 (2002).
[CrossRef]

Longdell, J. J.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett.95(6), 063601 (2005).
[CrossRef] [PubMed]

Manson, N. B.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett.95(6), 063601 (2005).
[CrossRef] [PubMed]

Megret, P.

A. Rebane, R. N. Shakhmuratov, P. Megret, and J. Odeurs, “‘Slow light with persistent spectral hole burning in waveguides,” J. Lumin.127(1), 22–27 (2007).
[CrossRef]

R. N. Shakhmuratov, A. Rebane, P. Megret, and J. Odeurs, “Slow light with persistent hole burning,” Phys. Rev. A71(5), 053811 (2005).
[CrossRef]

Monnier, P.

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett.95(14), 143601 (2005).
[CrossRef] [PubMed]

Musser, J. A.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88(2), 023602 (2001).
[CrossRef] [PubMed]

Odeurs, J.

A. Rebane, R. N. Shakhmuratov, P. Megret, and J. Odeurs, “‘Slow light with persistent spectral hole burning in waveguides,” J. Lumin.127(1), 22–27 (2007).
[CrossRef]

R. N. Shakhmuratov, A. Rebane, P. Megret, and J. Odeurs, “Slow light with persistent hole burning,” Phys. Rev. A71(5), 053811 (2005).
[CrossRef]

Pack, M. V.

R. M. Camacho, M. V. Pack, and J. C. Howell, “Slow light with large fractional delays by spectral hole-burning in rubidium vapor,” Phys. Rev. A74(3), 033801 (2006).
[CrossRef]

Rebane, A.

A. Rebane, R. N. Shakhmuratov, P. Megret, and J. Odeurs, “‘Slow light with persistent spectral hole burning in waveguides,” J. Lumin.127(1), 22–27 (2007).
[CrossRef]

R. N. Shakhmuratov, A. Rebane, P. Megret, and J. Odeurs, “Slow light with persistent hole burning,” Phys. Rev. A71(5), 053811 (2005).
[CrossRef]

A. Renn, U. P. Wild, and A. Rebane, “Multidimensional holography by persistent spectral hole burning,” J. Phys. Chem. A106(13), 3045–3060 (2002).
[CrossRef]

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, and K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun.47(3), 173–176 (1983).
[CrossRef]

Renn, A.

A. Renn, U. P. Wild, and A. Rebane, “Multidimensional holography by persistent spectral hole burning,” J. Phys. Chem. A106(13), 3045–3060 (2002).
[CrossRef]

Riesen, H.

H. Riesen and A. Szabo, “Probing hyperfine interactions in 53Cr(III) doped Al2O3 by spectral hole-burning in low magnetic fields,” Phys. Procedia3(4), 1577–1582 (2010).
[CrossRef]

H. Riesen and A. Szabo, “Revisiting the temperature dependence of the homogeneous R1 linewidth in ruby,” Chem. Phys. Lett.484(4-6), 181–184 (2010).
[CrossRef]

H. Riesen, B. F. Hayward, and A. Szabo, “‘Side-hole to anti-hole conversion in time-resolved spectral hole burning of ruby: Long-lived spectral holes due to ground state level population storage,” J. Lumin.127(2), 655–664 (2007).
[CrossRef]

M. L. Lewis and H. Riesen, “Transient and persistent spectral hole-burning in the R-lines of chromium(III) in NaMgAl(oxalate)3·9H2O,” J. Phys. Chem. A106(35), 8039–8045 (2002).
[CrossRef]

Rouget, V.

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett.95(14), 143601 (2005).
[CrossRef] [PubMed]

Saari, P.

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, and K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun.47(3), 173–176 (1983).
[CrossRef]

Selden, A. C.

Sellars, M. J.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett.95(6), 063601 (2005).
[CrossRef] [PubMed]

Shahriar, M. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88(2), 023602 (2001).
[CrossRef] [PubMed]

Shakhmuratov, R. N.

A. Rebane, R. N. Shakhmuratov, P. Megret, and J. Odeurs, “‘Slow light with persistent spectral hole burning in waveguides,” J. Lumin.127(1), 22–27 (2007).
[CrossRef]

R. N. Shakhmuratov, A. Rebane, P. Megret, and J. Odeurs, “Slow light with persistent hole burning,” Phys. Rev. A71(5), 053811 (2005).
[CrossRef]

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88(2), 023602 (2001).
[CrossRef] [PubMed]

Szabo, A.

H. Riesen and A. Szabo, “Revisiting the temperature dependence of the homogeneous R1 linewidth in ruby,” Chem. Phys. Lett.484(4-6), 181–184 (2010).
[CrossRef]

H. Riesen and A. Szabo, “Probing hyperfine interactions in 53Cr(III) doped Al2O3 by spectral hole-burning in low magnetic fields,” Phys. Procedia3(4), 1577–1582 (2010).
[CrossRef]

H. Riesen, B. F. Hayward, and A. Szabo, “‘Side-hole to anti-hole conversion in time-resolved spectral hole burning of ruby: Long-lived spectral holes due to ground state level population storage,” J. Lumin.127(2), 655–664 (2007).
[CrossRef]

S. H. Huang and A. Szabo, “Numerical studies of optical dephasing in ruby,” J. Lumin.68(6), 291–297 (1996).
[CrossRef]

A. Szabo, “Frozen core effects on nonexponential photon-echo decay in ruby at high fields,” J. Lumin.58(1-6), 403–405 (1994).
[CrossRef]

A. Szabo, “Ultra-narrow optical hole-burning in ruby,” J. Lumin.56(1-6), 47–50 (1993).
[CrossRef]

A. Szabo and R. Kaarli, “Optical hole burning and spectral diffusion in ruby,” Phys. Rev. B Condens. Matter44(22), 12307–12313 (1991).
[CrossRef] [PubMed]

J. H. Eberly, S. R. Hartmann, and A. Szabo, “Propagation narrowing in the transmission of a light-pulse through a spectral hole,” Phys. Rev. A23(5), 2502–2506 (1981).
[CrossRef]

P. E. Jessop and A. Szabo, “High-resolution measurements of the ruby R1 line at low-temperatures,” Opt. Commun.33(3), 301–302 (1980).
[CrossRef]

P. E. Jessop and A. Szabo, “Visual observations of macroscopic inhomogeneous broadening of the R1 line in ruby,” Appl. Phys. Lett.37(6), 510–512 (1980).
[CrossRef]

A. Szabo, “‘Sideband detection of optical hole burning in ruby,” IEEE J. Quantum Electron.10(9), 747–748 (1974).
[CrossRef]

Timpmann, K.

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, and K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun.47(3), 173–176 (1983).
[CrossRef]

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88(2), 023602 (2001).
[CrossRef] [PubMed]

Wild, U. P.

A. Renn, U. P. Wild, and A. Rebane, “Multidimensional holography by persistent spectral hole burning,” J. Phys. Chem. A106(13), 3045–3060 (2002).
[CrossRef]

Zapasskii, V. S.

V. S. Zapasskiĭ and G. G. Kozlov, “On two models of light pulse delay in saturable absorber,” Opt. Spectrosc.109(3), 407–412 (2010).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

P. E. Jessop and A. Szabo, “Visual observations of macroscopic inhomogeneous broadening of the R1 line in ruby,” Appl. Phys. Lett.37(6), 510–512 (1980).
[CrossRef]

Chem. Phys. Lett. (1)

H. Riesen and A. Szabo, “Revisiting the temperature dependence of the homogeneous R1 linewidth in ruby,” Chem. Phys. Lett.484(4-6), 181–184 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Szabo, “‘Sideband detection of optical hole burning in ruby,” IEEE J. Quantum Electron.10(9), 747–748 (1974).
[CrossRef]

J. Lumin. (5)

A. Szabo, “Ultra-narrow optical hole-burning in ruby,” J. Lumin.56(1-6), 47–50 (1993).
[CrossRef]

A. Szabo, “Frozen core effects on nonexponential photon-echo decay in ruby at high fields,” J. Lumin.58(1-6), 403–405 (1994).
[CrossRef]

S. H. Huang and A. Szabo, “Numerical studies of optical dephasing in ruby,” J. Lumin.68(6), 291–297 (1996).
[CrossRef]

H. Riesen, B. F. Hayward, and A. Szabo, “‘Side-hole to anti-hole conversion in time-resolved spectral hole burning of ruby: Long-lived spectral holes due to ground state level population storage,” J. Lumin.127(2), 655–664 (2007).
[CrossRef]

A. Rebane, R. N. Shakhmuratov, P. Megret, and J. Odeurs, “‘Slow light with persistent spectral hole burning in waveguides,” J. Lumin.127(1), 22–27 (2007).
[CrossRef]

J. Mod. Opt. (1)

R. W. Boyd, “Slow and fast light: fundamentals and applications,” J. Mod. Opt.56(18-19), 1908–1915 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (2)

M. L. Lewis and H. Riesen, “Transient and persistent spectral hole-burning in the R-lines of chromium(III) in NaMgAl(oxalate)3·9H2O,” J. Phys. Chem. A106(35), 8039–8045 (2002).
[CrossRef]

A. Renn, U. P. Wild, and A. Rebane, “Multidimensional holography by persistent spectral hole burning,” J. Phys. Chem. A106(13), 3045–3060 (2002).
[CrossRef]

Laser Photonics Rev. (1)

G. S. Agarwal and T. N. Dey, “Non-electromagnetically induced transparency mechanisms for slow light,” Laser Photonics Rev.3(3), 287–300 (2009).
[CrossRef]

Nat. Photonics (1)

T. F. Krauss, “Why do we need slow light?” Nat. Photonics2(8), 448–450 (2008).
[CrossRef]

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999).
[CrossRef]

Opt. Commun. (2)

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, and K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun.47(3), 173–176 (1983).
[CrossRef]

P. E. Jessop and A. Szabo, “High-resolution measurements of the ruby R1 line at low-temperatures,” Opt. Commun.33(3), 301–302 (1980).
[CrossRef]

Opt. Express (3)

Opt. Spectrosc. (1)

V. S. Zapasskiĭ and G. G. Kozlov, “On two models of light pulse delay in saturable absorber,” Opt. Spectrosc.109(3), 407–412 (2010).
[CrossRef]

Phys. Procedia (1)

H. Riesen and A. Szabo, “Probing hyperfine interactions in 53Cr(III) doped Al2O3 by spectral hole-burning in low magnetic fields,” Phys. Procedia3(4), 1577–1582 (2010).
[CrossRef]

Phys. Rev. A (5)

J. H. Eberly, S. R. Hartmann, and A. Szabo, “Propagation narrowing in the transmission of a light-pulse through a spectral hole,” Phys. Rev. A23(5), 2502–2506 (1981).
[CrossRef]

R. N. Shakhmuratov, A. Rebane, P. Megret, and J. Odeurs, “Slow light with persistent hole burning,” Phys. Rev. A71(5), 053811 (2005).
[CrossRef]

R. Lauro, T. Chaneliere, and J. L. Le Gouet, “Slow light using spectral hole burning in a Tm3+-doped yttrium-aluminum-garnet crystal,” Phys. Rev. A79(6), 063844 (2009).
[CrossRef]

R. M. Camacho, M. V. Pack, and J. C. Howell, “Slow light with large fractional delays by spectral hole-burning in rubidium vapor,” Phys. Rev. A74(3), 033801 (2006).
[CrossRef]

G. S. Agarwal and T. N. Dey, “Slow light in Doppler-broadened two-level systems,” Phys. Rev. A68(6), 063816 (2003).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

A. Szabo and R. Kaarli, “Optical hole burning and spectral diffusion in ruby,” Phys. Rev. B Condens. Matter44(22), 12307–12313 (1991).
[CrossRef] [PubMed]

Phys. Rev. Lett. (5)

N. Kurnit, I. Abella, and S. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett.13(19), 567–568 (1964).
[CrossRef]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88(2), 023602 (2001).
[CrossRef] [PubMed]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett.95(6), 063601 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.90(11), 113903 (2003).
[CrossRef] [PubMed]

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett.95(14), 143601 (2005).
[CrossRef] [PubMed]

Other (5)

R. Boyd, “Slow Light, Fast Light, and their Applications,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThR1.)

J. B. Khurgin and R. S. Tucker, eds., Slow Light: Science and Applications (CRC Press, 2008).

W. E. Moerner, “Introduction,” in Persistent Spectral Hole Burning: Science and Applications, W. E. Moerner, ed. (Springer, 1988), Topics In Current Physics 44, pp. 1–15.

P. E. Jessop and A. Szabo, “Optical hole-burning and ground state energy transfer in ruby” in Laser Spectroscopy V, A. McKellar, T. Oka and B.P. Stoicheff, eds. (Springer-Verlag, 1981) pp. 408–411.

H. M. Nussenzveig, Causality and Dispersion Relations (Academic Press, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic energy level diagram for the 4A2 ground state and the 2E lowest-excited state in ruby and the transitions used in the slow light experiments of the present work.

Fig. 2
Fig. 2

Experimental setup for the generation of slow light by transient spectral hole-burning. The beam of an External Cavity Diode Laser (Toptica DL110) is modulated by an AOM and the transmitted signal is detected by a fast Si photodiode (Thorlabs PDA10A-EC). The inset shows a schematic diagram of the burn-probe pulse sequence.

Fig. 3
Fig. 3

Absorption spectrum at 2.4 K in α-polarization of a 2.3 mm pink sapphire (130 ppm Cr(III) doped Al2O3) in the region of the R1-line (~693.6 nm) as measured by modulating the injection current of a free running diode laser (2500 Hz modulation). The R1( ± 3/2) and R1( ± 1/2) lines of the stable isotopes of Cr(III) are denoted. The arrow indicates the relative frequency where the slow light experiments were conducted. The wavelength is 693.5767 nm, corresponding to 432241 GHz.

Fig. 4
Fig. 4

Transmission spectra with (red trace; Ib) and without (black dashed trace; Inb) hole-burning in the R1( ± 3/2) line in α-polarization at 2.4 K in zero field. The corresponding hole-burning spectrum ΔA = log10(Inb/Ib) is also shown (blue solid trace at top). The relative laser frequency 0 GHz corresponds to a wavelength of 693.5767 nm. The laser frequency was modulated at 2500 Hz.

Fig. 5
Fig. 5

Slow light in the R1( ± 3/2) line (693.5767 nm) at 2.4 K in α-polarization and B||c = 9 mT. The solid line shows the temporal shape of the 57 ns wide Gaussian probe pulse transmitted through the spectral hole. The probe pulse was applied with a 10 μs delay after the burning pulse. A 750 μs wide hole-burning pulse was applied to burn a ΔA = −1.09 deep hole into an initial absorbance of A = 1.53. The reference probe pulse, as observed without the hole-burning pulse, is shown as a dash-dotted line and is also shown normalized to the delayed pulse. The dotted lines are calculated by the linear filter theory discussed in the text, using empirical parameters only. The inset shows hole-burning spectra in the region of the resonant hole for two hole depths. The right-hand and left-hand y-axes correspond to the solid line and dashed lines, respectively.

Fig. 6
Fig. 6

Slowing light down by an external magnetic field. The pulse delay after hole-burning in the R1( ± 3/2) transition in a magnetic field B||c = 9 mT (ΔA = −0.82; hole width 44 MHz) is compared with the zero field experiment (ΔA = −0.9; hole width 88 MHz) at 2.4 K. The probe pulse width was 55 ns applied at 250 μs after a 1 ms burn pulse. The normalized probe pulse without a burn pulse is also shown (dashed line). The lower panel shows the normalized pulse shapes calculated, as outlined in the text, with experimental input parameters only.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

v g = c n g ,
n g =n+ω dn dω .
E out (ω)=G(ω) E p (ω)
E p (ω)= 1 2π E p (t')exp(iωt')dt'
G(ω)= T(ω) exp[ iΔφ(ω) ]
Δφ(ω)= 1 π ln T(ω') ωω' dω'

Metrics