Abstract

We report measurements which give direct insight into the origins of the transparency current for λ ~5 µm In0.6Ga0.4As/In0.42Al0.58As quantum cascade lasers in the temperature range of 80-280 K. The transparency current values have been found from broadband transmission measurements through the laser waveguides under sub-threshold operating conditions. Two active region designs were compared. The active region of the first laser is based on double-LO-phonon relaxation approach, while the second device has only one lower level, without specially designed resonant LO-phonon assisted depopulation. It is shown that transparency current contributes more than 70% to the magnitude of threshold current at high temperatures for both designs.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
    [CrossRef] [PubMed]
  2. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C.K.N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 Watts of continuous wave optical power,” Opt. Express20(4), 4382–4388 (2012).
    [CrossRef] [PubMed]
  3. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
    [CrossRef]
  4. R. P. Green, A. B. Krysa, J. S. Roberts, D. G. Revin, L. R. Wilson, E. A. Zibik, W. H. Ng, and J. W. Cockburn, “Room temperature operation of InGaAs/AlInAs quantum cascade lasers grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett.83(10), 1921–1922 (2003).
    [CrossRef]
  5. D. G. Revin, L. R. Wilson, J. W. Cockburn, A. B. Krysa, J. S. Roberts, and R. J. Airey, “Intersubband spectroscopy of quantum cascade lasers under operating conditions,” Appl. Phys. Lett.88(13), 131105 (2006).
    [CrossRef]
  6. H. Willenberg, G. H. Döhler, and J. Faist, “Intersubband gain in a Bloch oscillator and quantum cascade laser,” Phys. Rev. B67(8), 085315 (2003).
    [CrossRef]
  7. R. Terazzi, T. Gresch, M. Giovannini, N. Hoyler, N. Sekine, and J. Faist, “Bloch gain in quantum cascade lasers,” Nat. Phys.3(5), 329–333 (2007).
    [CrossRef]
  8. D. G. Revin, M. R. Soulby, J. W. Cockburn, Q. Yang, C. Manz, and J. Wagner, “Dispersive gain and loss in midinfrared quantum cascade laser,” Appl. Phys. Lett.92(8), 081110 (2008).
    [CrossRef]
  9. A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum cascade lasers for broad-gain applications,” IEEE J. Quantum Electron.44(1), 36–40 (2008).
    [CrossRef]
  10. R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C.K.N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coating,” Appl. Phys. Lett.95(15), 151112 (2009).
    [CrossRef]
  11. J. S. Yu, S. Slivken, A. J. Evans, and M. Razeghi, “High-performance continuous wave operation of λ ~ 4.6 µm quantum cascade lasers above room temperature,” IEEE J. Quantum Electron.44(8), 747–754 (2008).
    [CrossRef]
  12. E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfared quantum cascade lasers by wavelength chirping spectroscopy,” Appl. Phys. Lett.94(8), 081110 (2009).
    [CrossRef]
  13. Y. Dikmelik, J. B. Khurgin, M. D. Escarra, P. Q. Liu, and C. F. Gmachl, “Temperature dependence of the transparency current density in mid-infrared quantum cascade lasers,” in Conference on Lasers and Electro-Optics 2011, Technical Digest (CD) (Optical Society of America, Washington, DC, 2011), paper CTuC2.
  14. C. Sirtori, H. Page, C. Becker, and V. Ortiz, “GaAs-AlGaAs quantum cascade lasers: Physics, Technology, and Prospects,” IEEE J. Quantum Electron.38(6), 547–558 (2002).
    [CrossRef]

2012

2011

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

2009

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C.K.N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coating,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfared quantum cascade lasers by wavelength chirping spectroscopy,” Appl. Phys. Lett.94(8), 081110 (2009).
[CrossRef]

2008

J. S. Yu, S. Slivken, A. J. Evans, and M. Razeghi, “High-performance continuous wave operation of λ ~ 4.6 µm quantum cascade lasers above room temperature,” IEEE J. Quantum Electron.44(8), 747–754 (2008).
[CrossRef]

D. G. Revin, M. R. Soulby, J. W. Cockburn, Q. Yang, C. Manz, and J. Wagner, “Dispersive gain and loss in midinfrared quantum cascade laser,” Appl. Phys. Lett.92(8), 081110 (2008).
[CrossRef]

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum cascade lasers for broad-gain applications,” IEEE J. Quantum Electron.44(1), 36–40 (2008).
[CrossRef]

2007

R. Terazzi, T. Gresch, M. Giovannini, N. Hoyler, N. Sekine, and J. Faist, “Bloch gain in quantum cascade lasers,” Nat. Phys.3(5), 329–333 (2007).
[CrossRef]

2006

D. G. Revin, L. R. Wilson, J. W. Cockburn, A. B. Krysa, J. S. Roberts, and R. J. Airey, “Intersubband spectroscopy of quantum cascade lasers under operating conditions,” Appl. Phys. Lett.88(13), 131105 (2006).
[CrossRef]

2003

H. Willenberg, G. H. Döhler, and J. Faist, “Intersubband gain in a Bloch oscillator and quantum cascade laser,” Phys. Rev. B67(8), 085315 (2003).
[CrossRef]

R. P. Green, A. B. Krysa, J. S. Roberts, D. G. Revin, L. R. Wilson, E. A. Zibik, W. H. Ng, and J. W. Cockburn, “Room temperature operation of InGaAs/AlInAs quantum cascade lasers grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett.83(10), 1921–1922 (2003).
[CrossRef]

2002

C. Sirtori, H. Page, C. Becker, and V. Ortiz, “GaAs-AlGaAs quantum cascade lasers: Physics, Technology, and Prospects,” IEEE J. Quantum Electron.38(6), 547–558 (2002).
[CrossRef]

1994

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Airey, R. J.

D. G. Revin, L. R. Wilson, J. W. Cockburn, A. B. Krysa, J. S. Roberts, and R. J. Airey, “Intersubband spectroscopy of quantum cascade lasers under operating conditions,” Appl. Phys. Lett.88(13), 131105 (2006).
[CrossRef]

Bai, Y.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

Bandyopadhyay, N.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

Becker, C.

C. Sirtori, H. Page, C. Becker, and V. Ortiz, “GaAs-AlGaAs quantum cascade lasers: Physics, Technology, and Prospects,” IEEE J. Quantum Electron.38(6), 547–558 (2002).
[CrossRef]

Benveniste, E.

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfared quantum cascade lasers by wavelength chirping spectroscopy,” Appl. Phys. Lett.94(8), 081110 (2009).
[CrossRef]

Capasso, F.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C.K.N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coating,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Carras, M.

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfared quantum cascade lasers by wavelength chirping spectroscopy,” Appl. Phys. Lett.94(8), 081110 (2009).
[CrossRef]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Cockburn, J. W.

D. G. Revin, M. R. Soulby, J. W. Cockburn, Q. Yang, C. Manz, and J. Wagner, “Dispersive gain and loss in midinfrared quantum cascade laser,” Appl. Phys. Lett.92(8), 081110 (2008).
[CrossRef]

D. G. Revin, L. R. Wilson, J. W. Cockburn, A. B. Krysa, J. S. Roberts, and R. J. Airey, “Intersubband spectroscopy of quantum cascade lasers under operating conditions,” Appl. Phys. Lett.88(13), 131105 (2006).
[CrossRef]

R. P. Green, A. B. Krysa, J. S. Roberts, D. G. Revin, L. R. Wilson, E. A. Zibik, W. H. Ng, and J. W. Cockburn, “Room temperature operation of InGaAs/AlInAs quantum cascade lasers grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett.83(10), 1921–1922 (2003).
[CrossRef]

Diehl, L.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C.K.N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coating,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

Döhler, G. H.

H. Willenberg, G. H. Döhler, and J. Faist, “Intersubband gain in a Bloch oscillator and quantum cascade laser,” Phys. Rev. B67(8), 085315 (2003).
[CrossRef]

Evans, A. J.

J. S. Yu, S. Slivken, A. J. Evans, and M. Razeghi, “High-performance continuous wave operation of λ ~ 4.6 µm quantum cascade lasers above room temperature,” IEEE J. Quantum Electron.44(8), 747–754 (2008).
[CrossRef]

Faist, J.

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum cascade lasers for broad-gain applications,” IEEE J. Quantum Electron.44(1), 36–40 (2008).
[CrossRef]

R. Terazzi, T. Gresch, M. Giovannini, N. Hoyler, N. Sekine, and J. Faist, “Bloch gain in quantum cascade lasers,” Nat. Phys.3(5), 329–333 (2007).
[CrossRef]

H. Willenberg, G. H. Döhler, and J. Faist, “Intersubband gain in a Bloch oscillator and quantum cascade laser,” Phys. Rev. B67(8), 085315 (2003).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Gini, E.

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum cascade lasers for broad-gain applications,” IEEE J. Quantum Electron.44(1), 36–40 (2008).
[CrossRef]

Giovannini, M.

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum cascade lasers for broad-gain applications,” IEEE J. Quantum Electron.44(1), 36–40 (2008).
[CrossRef]

R. Terazzi, T. Gresch, M. Giovannini, N. Hoyler, N. Sekine, and J. Faist, “Bloch gain in quantum cascade lasers,” Nat. Phys.3(5), 329–333 (2007).
[CrossRef]

Go, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C.K.N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 Watts of continuous wave optical power,” Opt. Express20(4), 4382–4388 (2012).
[CrossRef] [PubMed]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C.K.N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coating,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

Green, R. P.

R. P. Green, A. B. Krysa, J. S. Roberts, D. G. Revin, L. R. Wilson, E. A. Zibik, W. H. Ng, and J. W. Cockburn, “Room temperature operation of InGaAs/AlInAs quantum cascade lasers grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett.83(10), 1921–1922 (2003).
[CrossRef]

Gresch, T.

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum cascade lasers for broad-gain applications,” IEEE J. Quantum Electron.44(1), 36–40 (2008).
[CrossRef]

R. Terazzi, T. Gresch, M. Giovannini, N. Hoyler, N. Sekine, and J. Faist, “Bloch gain in quantum cascade lasers,” Nat. Phys.3(5), 329–333 (2007).
[CrossRef]

Hoyler, N.

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum cascade lasers for broad-gain applications,” IEEE J. Quantum Electron.44(1), 36–40 (2008).
[CrossRef]

R. Terazzi, T. Gresch, M. Giovannini, N. Hoyler, N. Sekine, and J. Faist, “Bloch gain in quantum cascade lasers,” Nat. Phys.3(5), 329–333 (2007).
[CrossRef]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Hvozdara, L.

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum cascade lasers for broad-gain applications,” IEEE J. Quantum Electron.44(1), 36–40 (2008).
[CrossRef]

Krysa, A. B.

D. G. Revin, L. R. Wilson, J. W. Cockburn, A. B. Krysa, J. S. Roberts, and R. J. Airey, “Intersubband spectroscopy of quantum cascade lasers under operating conditions,” Appl. Phys. Lett.88(13), 131105 (2006).
[CrossRef]

R. P. Green, A. B. Krysa, J. S. Roberts, D. G. Revin, L. R. Wilson, E. A. Zibik, W. H. Ng, and J. W. Cockburn, “Room temperature operation of InGaAs/AlInAs quantum cascade lasers grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett.83(10), 1921–1922 (2003).
[CrossRef]

Laurent, S.

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfared quantum cascade lasers by wavelength chirping spectroscopy,” Appl. Phys. Lett.94(8), 081110 (2009).
[CrossRef]

Lyakh, A.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C.K.N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 Watts of continuous wave optical power,” Opt. Express20(4), 4382–4388 (2012).
[CrossRef] [PubMed]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C.K.N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coating,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

Manquest, C.

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfared quantum cascade lasers by wavelength chirping spectroscopy,” Appl. Phys. Lett.94(8), 081110 (2009).
[CrossRef]

Manz, C.

D. G. Revin, M. R. Soulby, J. W. Cockburn, Q. Yang, C. Manz, and J. Wagner, “Dispersive gain and loss in midinfrared quantum cascade laser,” Appl. Phys. Lett.92(8), 081110 (2008).
[CrossRef]

Marcadet, X.

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfared quantum cascade lasers by wavelength chirping spectroscopy,” Appl. Phys. Lett.94(8), 081110 (2009).
[CrossRef]

Maulini, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C.K.N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 Watts of continuous wave optical power,” Opt. Express20(4), 4382–4388 (2012).
[CrossRef] [PubMed]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C.K.N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coating,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

Ng, W. H.

R. P. Green, A. B. Krysa, J. S. Roberts, D. G. Revin, L. R. Wilson, E. A. Zibik, W. H. Ng, and J. W. Cockburn, “Room temperature operation of InGaAs/AlInAs quantum cascade lasers grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett.83(10), 1921–1922 (2003).
[CrossRef]

Ortiz, V.

C. Sirtori, H. Page, C. Becker, and V. Ortiz, “GaAs-AlGaAs quantum cascade lasers: Physics, Technology, and Prospects,” IEEE J. Quantum Electron.38(6), 547–558 (2002).
[CrossRef]

Page, H.

C. Sirtori, H. Page, C. Becker, and V. Ortiz, “GaAs-AlGaAs quantum cascade lasers: Physics, Technology, and Prospects,” IEEE J. Quantum Electron.38(6), 547–558 (2002).
[CrossRef]

Patel, C.K.N.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C.K.N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 Watts of continuous wave optical power,” Opt. Express20(4), 4382–4388 (2012).
[CrossRef] [PubMed]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C.K.N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coating,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

Pflügl, C.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C.K.N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coating,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

Razeghi, M.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

J. S. Yu, S. Slivken, A. J. Evans, and M. Razeghi, “High-performance continuous wave operation of λ ~ 4.6 µm quantum cascade lasers above room temperature,” IEEE J. Quantum Electron.44(8), 747–754 (2008).
[CrossRef]

Revin, D. G.

D. G. Revin, M. R. Soulby, J. W. Cockburn, Q. Yang, C. Manz, and J. Wagner, “Dispersive gain and loss in midinfrared quantum cascade laser,” Appl. Phys. Lett.92(8), 081110 (2008).
[CrossRef]

D. G. Revin, L. R. Wilson, J. W. Cockburn, A. B. Krysa, J. S. Roberts, and R. J. Airey, “Intersubband spectroscopy of quantum cascade lasers under operating conditions,” Appl. Phys. Lett.88(13), 131105 (2006).
[CrossRef]

R. P. Green, A. B. Krysa, J. S. Roberts, D. G. Revin, L. R. Wilson, E. A. Zibik, W. H. Ng, and J. W. Cockburn, “Room temperature operation of InGaAs/AlInAs quantum cascade lasers grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett.83(10), 1921–1922 (2003).
[CrossRef]

Roberts, J. S.

D. G. Revin, L. R. Wilson, J. W. Cockburn, A. B. Krysa, J. S. Roberts, and R. J. Airey, “Intersubband spectroscopy of quantum cascade lasers under operating conditions,” Appl. Phys. Lett.88(13), 131105 (2006).
[CrossRef]

R. P. Green, A. B. Krysa, J. S. Roberts, D. G. Revin, L. R. Wilson, E. A. Zibik, W. H. Ng, and J. W. Cockburn, “Room temperature operation of InGaAs/AlInAs quantum cascade lasers grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett.83(10), 1921–1922 (2003).
[CrossRef]

Sekine, N.

R. Terazzi, T. Gresch, M. Giovannini, N. Hoyler, N. Sekine, and J. Faist, “Bloch gain in quantum cascade lasers,” Nat. Phys.3(5), 329–333 (2007).
[CrossRef]

Sirtori, C.

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfared quantum cascade lasers by wavelength chirping spectroscopy,” Appl. Phys. Lett.94(8), 081110 (2009).
[CrossRef]

C. Sirtori, H. Page, C. Becker, and V. Ortiz, “GaAs-AlGaAs quantum cascade lasers: Physics, Technology, and Prospects,” IEEE J. Quantum Electron.38(6), 547–558 (2002).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Slivken, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

J. S. Yu, S. Slivken, A. J. Evans, and M. Razeghi, “High-performance continuous wave operation of λ ~ 4.6 µm quantum cascade lasers above room temperature,” IEEE J. Quantum Electron.44(8), 747–754 (2008).
[CrossRef]

Soulby, M. R.

D. G. Revin, M. R. Soulby, J. W. Cockburn, Q. Yang, C. Manz, and J. Wagner, “Dispersive gain and loss in midinfrared quantum cascade laser,” Appl. Phys. Lett.92(8), 081110 (2008).
[CrossRef]

Terazzi, R.

R. Terazzi, T. Gresch, M. Giovannini, N. Hoyler, N. Sekine, and J. Faist, “Bloch gain in quantum cascade lasers,” Nat. Phys.3(5), 329–333 (2007).
[CrossRef]

Teulon, F.

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfared quantum cascade lasers by wavelength chirping spectroscopy,” Appl. Phys. Lett.94(8), 081110 (2009).
[CrossRef]

Tsao, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

Tsekoun, A.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C.K.N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 Watts of continuous wave optical power,” Opt. Express20(4), 4382–4388 (2012).
[CrossRef] [PubMed]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C.K.N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coating,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

Vasanelli, A.

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfared quantum cascade lasers by wavelength chirping spectroscopy,” Appl. Phys. Lett.94(8), 081110 (2009).
[CrossRef]

Wagner, J.

D. G. Revin, M. R. Soulby, J. W. Cockburn, Q. Yang, C. Manz, and J. Wagner, “Dispersive gain and loss in midinfrared quantum cascade laser,” Appl. Phys. Lett.92(8), 081110 (2008).
[CrossRef]

Willenberg, H.

H. Willenberg, G. H. Döhler, and J. Faist, “Intersubband gain in a Bloch oscillator and quantum cascade laser,” Phys. Rev. B67(8), 085315 (2003).
[CrossRef]

Wilson, L. R.

D. G. Revin, L. R. Wilson, J. W. Cockburn, A. B. Krysa, J. S. Roberts, and R. J. Airey, “Intersubband spectroscopy of quantum cascade lasers under operating conditions,” Appl. Phys. Lett.88(13), 131105 (2006).
[CrossRef]

R. P. Green, A. B. Krysa, J. S. Roberts, D. G. Revin, L. R. Wilson, E. A. Zibik, W. H. Ng, and J. W. Cockburn, “Room temperature operation of InGaAs/AlInAs quantum cascade lasers grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett.83(10), 1921–1922 (2003).
[CrossRef]

Wittmann, A.

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum cascade lasers for broad-gain applications,” IEEE J. Quantum Electron.44(1), 36–40 (2008).
[CrossRef]

Yang, Q.

D. G. Revin, M. R. Soulby, J. W. Cockburn, Q. Yang, C. Manz, and J. Wagner, “Dispersive gain and loss in midinfrared quantum cascade laser,” Appl. Phys. Lett.92(8), 081110 (2008).
[CrossRef]

Yu, J. S.

J. S. Yu, S. Slivken, A. J. Evans, and M. Razeghi, “High-performance continuous wave operation of λ ~ 4.6 µm quantum cascade lasers above room temperature,” IEEE J. Quantum Electron.44(8), 747–754 (2008).
[CrossRef]

Zibik, E. A.

R. P. Green, A. B. Krysa, J. S. Roberts, D. G. Revin, L. R. Wilson, E. A. Zibik, W. H. Ng, and J. W. Cockburn, “Room temperature operation of InGaAs/AlInAs quantum cascade lasers grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett.83(10), 1921–1922 (2003).
[CrossRef]

Appl. Phys. Lett.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

R. P. Green, A. B. Krysa, J. S. Roberts, D. G. Revin, L. R. Wilson, E. A. Zibik, W. H. Ng, and J. W. Cockburn, “Room temperature operation of InGaAs/AlInAs quantum cascade lasers grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett.83(10), 1921–1922 (2003).
[CrossRef]

D. G. Revin, L. R. Wilson, J. W. Cockburn, A. B. Krysa, J. S. Roberts, and R. J. Airey, “Intersubband spectroscopy of quantum cascade lasers under operating conditions,” Appl. Phys. Lett.88(13), 131105 (2006).
[CrossRef]

D. G. Revin, M. R. Soulby, J. W. Cockburn, Q. Yang, C. Manz, and J. Wagner, “Dispersive gain and loss in midinfrared quantum cascade laser,” Appl. Phys. Lett.92(8), 081110 (2008).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C.K.N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coating,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfared quantum cascade lasers by wavelength chirping spectroscopy,” Appl. Phys. Lett.94(8), 081110 (2009).
[CrossRef]

IEEE J. Quantum Electron.

J. S. Yu, S. Slivken, A. J. Evans, and M. Razeghi, “High-performance continuous wave operation of λ ~ 4.6 µm quantum cascade lasers above room temperature,” IEEE J. Quantum Electron.44(8), 747–754 (2008).
[CrossRef]

C. Sirtori, H. Page, C. Becker, and V. Ortiz, “GaAs-AlGaAs quantum cascade lasers: Physics, Technology, and Prospects,” IEEE J. Quantum Electron.38(6), 547–558 (2002).
[CrossRef]

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum cascade lasers for broad-gain applications,” IEEE J. Quantum Electron.44(1), 36–40 (2008).
[CrossRef]

Nat. Phys.

R. Terazzi, T. Gresch, M. Giovannini, N. Hoyler, N. Sekine, and J. Faist, “Bloch gain in quantum cascade lasers,” Nat. Phys.3(5), 329–333 (2007).
[CrossRef]

Opt. Express

Phys. Rev. B

H. Willenberg, G. H. Döhler, and J. Faist, “Intersubband gain in a Bloch oscillator and quantum cascade laser,” Phys. Rev. B67(8), 085315 (2003).
[CrossRef]

Science

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Other

Y. Dikmelik, J. B. Khurgin, M. D. Escarra, P. Q. Liu, and C. F. Gmachl, “Temperature dependence of the transparency current density in mid-infrared quantum cascade lasers,” in Conference on Lasers and Electro-Optics 2011, Technical Digest (CD) (Optical Society of America, Washington, DC, 2011), paper CTuC2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental transmission spectra (taken for TM polarization and normalized for the spectra taken for TE polarization) for lasers S1 and S2 measured at 80 and 240 K for various current values below the laser thresholds. The spectra are vertically shifted for clarity where the spectra presented as the lowest were measured for the smallest current values. The absorption peaks observed at the energies higher than the laser transitions correspond to other intersubband transitions in the QCL active regions (see [5], for example).

Fig. 2
Fig. 2

The logarithm ( ln( I TM/TE )/L ) of the intensities of the amplification peaks (upper curves, ▲) and the absorption dips (lower curves, ●), extracted from the TM/TE transmission spectra and normalized by the cavity length L, versus the current density for QCLs S1 (a) and S2 (b). The horizontal and vertical thick black lines show the example on how the transparency current for laser S2 was estimated from the data at 240 K.

Fig. 3
Fig. 3

Threshold Jth and transparency Jtr current densities for QCLs S1 and S2 in the temperature range of 80-280 K. T0 values have been extracted from the fitting Jth ~exp(T/T0).

Metrics