Abstract

We propose methods of enhancing pinhole-type integral imaging ray density, resolution, and expressible depth range using a color filter pinhole array on a liquid crystal display panel with a projection scheme. A color filter structure on a liquid crystal display panel acts as pinhole array in integral imaging with separation of color channels. In conventional pinhole-type integral imaging, the resolution, viewing angle, and ray density are limited by the pinhole interval, the width and thickness of the pinhole structure, and the gap between the display panel and the pinhole array. To overcome the limitation of the pinhole interval, we use a color filter pinhole array on a display panel and a projection-type integral imaging scheme. The use of a color filter pinhole array and the projection scheme can enlarge the region of one elemental image and improve the resolution and ray density remarkably. This paper presents the experimental results of the proposed method and a comparison with conventional methods.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, “La photograhie integrale,” C. R. Acad. Sci.146, 446–451 (1908).
  2. J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt.48(34), H77–H94 (2009).
    [CrossRef] [PubMed]
  3. B. Lee, J.-H. Park, and S.-W. Min, “Three-dimensional display and information processing based on integral imaging,” in Digital Holography and Three-Dimensional Display, T.-C. Poon, ed. (Springer, 2006), pp. 333–378.
  4. J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt.50(34), H87–H115 (2011).
    [CrossRef] [PubMed]
  5. Y.-T. Lim, J.-H. Park, K.-C. Kwon, and N. Kim, “Resolution-enhanced integral imaging microscopy that uses lens array shifting,” Opt. Express17(21), 19253–19263 (2009).
    [CrossRef] [PubMed]
  6. J.-Y. Jang, H.-S. Lee, S. Cha, and S.-H. Shin, “Viewing angle enhanced integral imaging display by using a high refractive index medium,” Appl. Opt.50(7), B71–B76 (2011).
    [CrossRef] [PubMed]
  7. J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett.29(23), 2734–2736 (2004).
    [CrossRef] [PubMed]
  8. H. Choi, J. Kim, S.-W. Cho, Y. Kim, J. B. Park, and B. Lee, “Three-dimensional-two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel,” Appl. Opt.47(13), 2207–2214 (2008).
    [CrossRef] [PubMed]
  9. H. Choi, S.-W. Cho, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on a polarizer,” Opt. Express14(12), 5183–5190 (2006).
    [CrossRef] [PubMed]
  10. S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional-three-dimensional display using an LED array based on modified integral imaging,” Opt. Lett.31(19), 2852–2854 (2006).
    [CrossRef] [PubMed]
  11. Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt.46(29), 7149–7154 (2007).
    [CrossRef] [PubMed]
  12. Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express15(26), 18253–18267 (2007).
    [CrossRef] [PubMed]
  13. Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt.47(27), 4927–4934 (2008).
    [CrossRef] [PubMed]
  14. J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee, “Integral imaging system using an electroluminescent film backlight for three-dimensional-two-dimensional convertibility and a curved structure,” Appl. Opt.48(5), 998–1007 (2009).
    [CrossRef] [PubMed]
  15. J.-H. Jung, K. Hong, G. Park, I. Chung, and B. Lee, “360°-viewable cylindrical integral imaging system using a 3-D/2-D switchable and flexible backlight,” J. Soc. Inf. Disp.18(7), 527–534 (2010).
    [CrossRef]
  16. D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph.29(6), 163 (2010).
    [CrossRef]
  17. J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, S.-K. Kim, and H. Choi, “Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier and IP plates,” Opt. Eng.42(11), 3326–3333 (2003).
    [CrossRef]
  18. H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A15(8), 2059–2065 (1998).
    [CrossRef]
  19. Z. Kavehvash, M. Martinez-Corral, K. Mehrany, S. Bagheri, G. Saavedra, and H. Navarro, “Three-dimensional resolvability in an integral imaging system,” J. Opt. Soc. Am. A29(4), 525–530 (2012).
    [CrossRef] [PubMed]

2012 (1)

2011 (2)

2010 (2)

J.-H. Jung, K. Hong, G. Park, I. Chung, and B. Lee, “360°-viewable cylindrical integral imaging system using a 3-D/2-D switchable and flexible backlight,” J. Soc. Inf. Disp.18(7), 527–534 (2010).
[CrossRef]

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph.29(6), 163 (2010).
[CrossRef]

2009 (3)

2008 (2)

2007 (2)

2006 (2)

2004 (1)

2003 (1)

J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, S.-K. Kim, and H. Choi, “Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier and IP plates,” Opt. Eng.42(11), 3326–3333 (2003).
[CrossRef]

1998 (1)

1908 (1)

G. Lippmann, “La photograhie integrale,” C. R. Acad. Sci.146, 446–451 (1908).

Bagheri, S.

Bahn, J.-E.

J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, S.-K. Kim, and H. Choi, “Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier and IP plates,” Opt. Eng.42(11), 3326–3333 (2003).
[CrossRef]

Cha, S.

Chen, N.

Cho, S.-W.

Choi, H.

Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt.47(27), 4927–4934 (2008).
[CrossRef] [PubMed]

H. Choi, J. Kim, S.-W. Cho, Y. Kim, J. B. Park, and B. Lee, “Three-dimensional-two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel,” Appl. Opt.47(13), 2207–2214 (2008).
[CrossRef] [PubMed]

Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express15(26), 18253–18267 (2007).
[CrossRef] [PubMed]

Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt.46(29), 7149–7154 (2007).
[CrossRef] [PubMed]

H. Choi, S.-W. Cho, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on a polarizer,” Opt. Express14(12), 5183–5190 (2006).
[CrossRef] [PubMed]

S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional-three-dimensional display using an LED array based on modified integral imaging,” Opt. Lett.31(19), 2852–2854 (2006).
[CrossRef] [PubMed]

J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, S.-K. Kim, and H. Choi, “Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier and IP plates,” Opt. Eng.42(11), 3326–3333 (2003).
[CrossRef]

Choi, H.-J.

Choi, Y.-J.

J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, S.-K. Kim, and H. Choi, “Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier and IP plates,” Opt. Eng.42(11), 3326–3333 (2003).
[CrossRef]

Chung, I.

J.-H. Jung, K. Hong, G. Park, I. Chung, and B. Lee, “360°-viewable cylindrical integral imaging system using a 3-D/2-D switchable and flexible backlight,” J. Soc. Inf. Disp.18(7), 527–534 (2010).
[CrossRef]

Hahn, J.

Hirsch, M.

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph.29(6), 163 (2010).
[CrossRef]

Hong, J.

Hong, K.

Hoshino, H.

Isono, H.

Jang, J.-Y.

Jung, J.-H.

Kang, J.-M.

Kavehvash, Z.

Kim, H.

Kim, H.-R.

Kim, J.

J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee, “Integral imaging system using an electroluminescent film backlight for three-dimensional-two-dimensional convertibility and a curved structure,” Appl. Opt.48(5), 998–1007 (2009).
[CrossRef] [PubMed]

Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt.47(27), 4927–4934 (2008).
[CrossRef] [PubMed]

H. Choi, J. Kim, S.-W. Cho, Y. Kim, J. B. Park, and B. Lee, “Three-dimensional-two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel,” Appl. Opt.47(13), 2207–2214 (2008).
[CrossRef] [PubMed]

Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express15(26), 18253–18267 (2007).
[CrossRef] [PubMed]

Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt.46(29), 7149–7154 (2007).
[CrossRef] [PubMed]

S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional-three-dimensional display using an LED array based on modified integral imaging,” Opt. Lett.31(19), 2852–2854 (2006).
[CrossRef] [PubMed]

H. Choi, S.-W. Cho, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on a polarizer,” Opt. Express14(12), 5183–5190 (2006).
[CrossRef] [PubMed]

J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett.29(23), 2734–2736 (2004).
[CrossRef] [PubMed]

Kim, N.

Kim, S.-K.

J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, S.-K. Kim, and H. Choi, “Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier and IP plates,” Opt. Eng.42(11), 3326–3333 (2003).
[CrossRef]

Kim, Y.

J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt.50(34), H87–H115 (2011).
[CrossRef] [PubMed]

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph.29(6), 163 (2010).
[CrossRef]

J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee, “Integral imaging system using an electroluminescent film backlight for three-dimensional-two-dimensional convertibility and a curved structure,” Appl. Opt.48(5), 998–1007 (2009).
[CrossRef] [PubMed]

J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee, “Integral imaging system using an electroluminescent film backlight for three-dimensional-two-dimensional convertibility and a curved structure,” Appl. Opt.48(5), 998–1007 (2009).
[CrossRef] [PubMed]

Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt.47(27), 4927–4934 (2008).
[CrossRef] [PubMed]

Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt.47(27), 4927–4934 (2008).
[CrossRef] [PubMed]

H. Choi, J. Kim, S.-W. Cho, Y. Kim, J. B. Park, and B. Lee, “Three-dimensional-two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel,” Appl. Opt.47(13), 2207–2214 (2008).
[CrossRef] [PubMed]

Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express15(26), 18253–18267 (2007).
[CrossRef] [PubMed]

Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt.46(29), 7149–7154 (2007).
[CrossRef] [PubMed]

Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt.46(29), 7149–7154 (2007).
[CrossRef] [PubMed]

S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional-three-dimensional display using an LED array based on modified integral imaging,” Opt. Lett.31(19), 2852–2854 (2006).
[CrossRef] [PubMed]

J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett.29(23), 2734–2736 (2004).
[CrossRef] [PubMed]

Kwon, K.-C.

Lanman, D.

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph.29(6), 163 (2010).
[CrossRef]

Lee, B.

J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt.50(34), H87–H115 (2011).
[CrossRef] [PubMed]

J.-H. Jung, K. Hong, G. Park, I. Chung, and B. Lee, “360°-viewable cylindrical integral imaging system using a 3-D/2-D switchable and flexible backlight,” J. Soc. Inf. Disp.18(7), 527–534 (2010).
[CrossRef]

J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt.48(34), H77–H94 (2009).
[CrossRef] [PubMed]

J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee, “Integral imaging system using an electroluminescent film backlight for three-dimensional-two-dimensional convertibility and a curved structure,” Appl. Opt.48(5), 998–1007 (2009).
[CrossRef] [PubMed]

Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt.47(27), 4927–4934 (2008).
[CrossRef] [PubMed]

H. Choi, J. Kim, S.-W. Cho, Y. Kim, J. B. Park, and B. Lee, “Three-dimensional-two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel,” Appl. Opt.47(13), 2207–2214 (2008).
[CrossRef] [PubMed]

Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express15(26), 18253–18267 (2007).
[CrossRef] [PubMed]

Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt.46(29), 7149–7154 (2007).
[CrossRef] [PubMed]

S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional-three-dimensional display using an LED array based on modified integral imaging,” Opt. Lett.31(19), 2852–2854 (2006).
[CrossRef] [PubMed]

H. Choi, S.-W. Cho, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on a polarizer,” Opt. Express14(12), 5183–5190 (2006).
[CrossRef] [PubMed]

J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett.29(23), 2734–2736 (2004).
[CrossRef] [PubMed]

Lee, H.-S.

Lee, S.-D.

Lim, Y.-T.

Lippmann, G.

G. Lippmann, “La photograhie integrale,” C. R. Acad. Sci.146, 446–451 (1908).

Martinez-Corral, M.

Mehrany, K.

Min, S.-W.

Navarro, H.

Okano, F.

Park, G.

J.-H. Jung, K. Hong, G. Park, I. Chung, and B. Lee, “360°-viewable cylindrical integral imaging system using a 3-D/2-D switchable and flexible backlight,” J. Soc. Inf. Disp.18(7), 527–534 (2010).
[CrossRef]

Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt.46(29), 7149–7154 (2007).
[CrossRef] [PubMed]

Park, J. B.

Park, J.-H.

Raskar, R.

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph.29(6), 163 (2010).
[CrossRef]

Saavedra, G.

Saveljev, V. V.

J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, S.-K. Kim, and H. Choi, “Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier and IP plates,” Opt. Eng.42(11), 3326–3333 (2003).
[CrossRef]

Shin, S.-H.

Son, J.-Y.

J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, S.-K. Kim, and H. Choi, “Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier and IP plates,” Opt. Eng.42(11), 3326–3333 (2003).
[CrossRef]

Yuyama, I.

ACM Trans. Graph. (1)

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph.29(6), 163 (2010).
[CrossRef]

Appl. Opt. (7)

Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt.46(29), 7149–7154 (2007).
[CrossRef] [PubMed]

Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt.47(27), 4927–4934 (2008).
[CrossRef] [PubMed]

J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee, “Integral imaging system using an electroluminescent film backlight for three-dimensional-two-dimensional convertibility and a curved structure,” Appl. Opt.48(5), 998–1007 (2009).
[CrossRef] [PubMed]

J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt.48(34), H77–H94 (2009).
[CrossRef] [PubMed]

J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt.50(34), H87–H115 (2011).
[CrossRef] [PubMed]

J.-Y. Jang, H.-S. Lee, S. Cha, and S.-H. Shin, “Viewing angle enhanced integral imaging display by using a high refractive index medium,” Appl. Opt.50(7), B71–B76 (2011).
[CrossRef] [PubMed]

H. Choi, J. Kim, S.-W. Cho, Y. Kim, J. B. Park, and B. Lee, “Three-dimensional-two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel,” Appl. Opt.47(13), 2207–2214 (2008).
[CrossRef] [PubMed]

C. R. Acad. Sci. (1)

G. Lippmann, “La photograhie integrale,” C. R. Acad. Sci.146, 446–451 (1908).

J. Opt. Soc. Am. A (2)

J. Soc. Inf. Disp. (1)

J.-H. Jung, K. Hong, G. Park, I. Chung, and B. Lee, “360°-viewable cylindrical integral imaging system using a 3-D/2-D switchable and flexible backlight,” J. Soc. Inf. Disp.18(7), 527–534 (2010).
[CrossRef]

Opt. Eng. (1)

J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, S.-K. Kim, and H. Choi, “Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier and IP plates,” Opt. Eng.42(11), 3326–3333 (2003).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Other (1)

B. Lee, J.-H. Park, and S.-W. Min, “Three-dimensional display and information processing based on integral imaging,” in Digital Holography and Three-Dimensional Display, T.-C. Poon, ed. (Springer, 2006), pp. 333–378.

Supplementary Material (2)

» Media 1: MOV (4865 KB)     
» Media 2: MOV (4647 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Parameters of pinhole-type integral imaging.

Fig. 2
Fig. 2

Limitation imposed by the pinhole interval with fixation of pinhole specification d, t, and g: (a) case of too narrow a pinhole interval (Ip < we) and (b) too broad a pinhole interval (Ip > we).

Fig. 3
Fig. 3

Concept of the proposed method: (a) scheme of proposed method, (b) structure of color filter pinhole array on LCD with projection-type integral imaging.

Fig. 4
Fig. 4

Principle of pinhole-type integral imaging using color filter pinhole array: (a) viewing angle and elemental image region of each color channel, (b) principle of pickup process using color filter pinhole array in red, green and blue color objects, (c) principle of pickup process using color filter pinhole array in magenta, yellow and cyan color objects.

Fig. 5
Fig. 5

Comparison of proposed method and other pinhole-type integral imaging methods: (a) conventional pinhole-type integral imaging using passive pinhole array and display panel, (b) conventional pinhole-type integral imaging using two LCD display panels, (c) conventional pinhole-type integral imaging using passive pinhole array and projector, (d) conventional pinhole-type integral imaging using display panel and projector, and (e) proposed method using color filter pinhole array on display panel and projector.

Fig. 6
Fig. 6

The proposed method is evaluated for two different display types: (a) experimental setup using TN LCD panel and (b) S-IPS II panel.

Fig. 7
Fig. 7

Illumination results of pinhole array of conventional method and proposed method: (a) illumination result of conventional pinhole pattern and (b) proposed method; (c) five times magnified point light source array for conventional method and (d) proposed method.

Fig. 8
Fig. 8

Elemental image of three letters at different depths for conventional method and proposed method: (a) elemental image for conventional method and (b) proposed method; (c) magnified elemental image for conventional method and (d) proposed method.

Fig. 9
Fig. 9

Magnified elemental image of high resolution objects for (a) conventional method and (b) proposed method.

Fig. 10
Fig. 10

Experimental result for three white letters for the conventional and proposed methods: (a) center view image and magnified voxels of conventional method and (b) proposed method.

Fig. 11
Fig. 11

Experimental results for high-resolution fish objects for the conventional and proposed methods: (a) center view image of conventional method and (b) proposed method.

Fig. 12
Fig. 12

Experimental result of proposed method for respective color filter pinhole array: (a) center view image of three letters with pink (255, 85, 170), spring grass (170, 255, 85), and sky-blue (85, 170, 255) colors in red color filter pinhole array, (b) green color filter pinhole array, (c) blue color filter pinhole array, and (d) all channels of the color filter pinhole array.

Fig. 13
Fig. 13

Video clips showing different perspectives as the observer changes their viewing positions: (a) three letters with pink, spring grass, and sky-blue colors (Media 1) and (b) two fish (Media 2).

Fig. 14
Fig. 14

Experimental result of comparison of TN LCD and S-IPS II images from left (−15.45°), center and right (15.45°) view points: (a) perspective view images from different view points for a TN LCD panel and (b) an S-IPS II LCD panel.

Fig. 15
Fig. 15

Experimental result of the proposed method in 2D mode.

Tables (1)

Tables Icon

Table 1 Specifications of Experimental Setup

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

θ=2 tan 1 ( w e 2g+t ),
θ=2 tan 1 ( d/t ),
I p =d( 1+2g/t ).
I p =3 I c =d( 1+2g/t )>3d.
R s =W/I, R θ = w e / T p ,
R d =( R θ,R + R θ,G + R θ,B )/ w e ,

Metrics