Z. Wang, J. Ma, and M. Vo, “Recent progress in two-dimensional continuous wavelet transform technique for fringe pattern analysis,” Opt. Lasers Eng.50(8), 1052–1058 (2012).

[CrossRef]

M. Zhong, W. Chen, and M. Jiang, “Application of S-transform profilometry in eliminating nonlinearity in fringe pattern,” Appl. Opt.51(5), 577–587 (2012).

[CrossRef]
[PubMed]

S. Gai and F. Da, “Fringe image analysis based on the amplitude modulation method,” Opt. Express18(10), 10704–10719 (2010).

[CrossRef]
[PubMed]

S. Li, X. Su, and W. Chen, “Wavelet ridge techniques in optical fringe pattern analysis,” J. Opt. Soc. Am. A27(6), 1245–1254 (2010).

[CrossRef]
[PubMed]

J. Zhong and J. Weng, “Generalized Fourier analysis for phase retrieval of fringe pattern,” Opt. Express18(26), 26806–26820 (2010).

[CrossRef]
[PubMed]

S. Gai and F. Da, “A novel phase-shifting method based on strip marker,” Opt. Lasers Eng.48(2), 205–211 (2010).

[CrossRef]

Z. Wu and N. E. Huang, “Ensemble empirical mode decomposition: a noise assisted data analysis method,” Adv. Adapt. Data Anal.1(1), 1–41 (2009).

[CrossRef]

S. Equis and P. Jacquot, “The empirical mode decomposition: a must-have tool in speckle interferometry?” Opt. Express17(2), 611–623 (2009).

[CrossRef]
[PubMed]

S. Li, X. Su, W. Chen, and L. Xiang, “Eliminating the zero spectrum in Fourier transform profilometry using empirical mode decomposition,” J. Opt. Soc. Am. A26(5), 1195–1201 (2009).

[CrossRef]

X. Zhou, H. Zhao, and T. Jiang, “Adaptive analysis of optical fringe patterns using ensemble empirical mode decomposition algorithm,” Opt. Lett.34(13), 2033–2035 (2009).

[CrossRef]
[PubMed]

G. Rilling and P. Flandrin, “One or two frequencies? The empirical mode decomposition answers,” IEEE Trans. Signal Process.56(1), 85–95 (2008).

[CrossRef]

S. Zhang, X. Li, and S. T. Yau, “Multilevel quality-guided phase unwrapping algorithm for real-time three-dimensional shape reconstruction,” Appl. Opt.46(1), 50–57 (2007).

[CrossRef]
[PubMed]

S. Özder, Ö. Kocahan, E. Coşkun, and H. Göktaş, “Optical phase distribution evaluation by using an S-transform,” Opt. Lett.32(6), 591–593 (2007).

[CrossRef]
[PubMed]

J. Zhong and H. Zeng, “Multiscale windowed Fourier transform for phase extraction of fringe patterns,” Appl. Opt.46(14), 2670–2675 (2007).

[CrossRef]
[PubMed]

S. Zheng, W. Chen, and X. Su, “Adaptive Windowed Fourier transform in 3-D shape measurement,” Opt. Eng.45(6), 063601 (2006).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A454(1971), 903–995 (1998).

[CrossRef]

S. Fernandez, M. A. Gdeisat, J. Salvi, and D. Burton, “Automatic window size selection in Windowed Fourier Transform for 3D reconstruction using adapted mother wavelets,” Opt. Commun.284(12), 2797–2807 (2011).

[CrossRef]

M. Zhong, W. Chen, and M. Jiang, “Application of S-transform profilometry in eliminating nonlinearity in fringe pattern,” Appl. Opt.51(5), 577–587 (2012).

[CrossRef]
[PubMed]

S. Li, X. Su, and W. Chen, “Wavelet ridge techniques in optical fringe pattern analysis,” J. Opt. Soc. Am. A27(6), 1245–1254 (2010).

[CrossRef]
[PubMed]

S. Li, X. Su, W. Chen, and L. Xiang, “Eliminating the zero spectrum in Fourier transform profilometry using empirical mode decomposition,” J. Opt. Soc. Am. A26(5), 1195–1201 (2009).

[CrossRef]

S. Zheng, W. Chen, and X. Su, “Adaptive Windowed Fourier transform in 3-D shape measurement,” Opt. Eng.45(6), 063601 (2006).

[CrossRef]

S. Fernandez, M. A. Gdeisat, J. Salvi, and D. Burton, “Automatic window size selection in Windowed Fourier Transform for 3D reconstruction using adapted mother wavelets,” Opt. Commun.284(12), 2797–2807 (2011).

[CrossRef]

G. Rilling and P. Flandrin, “One or two frequencies? The empirical mode decomposition answers,” IEEE Trans. Signal Process.56(1), 85–95 (2008).

[CrossRef]

S. Fernandez, M. A. Gdeisat, J. Salvi, and D. Burton, “Automatic window size selection in Windowed Fourier Transform for 3D reconstruction using adapted mother wavelets,” Opt. Commun.284(12), 2797–2807 (2011).

[CrossRef]

Z. Wu and N. E. Huang, “Ensemble empirical mode decomposition: a noise assisted data analysis method,” Adv. Adapt. Data Anal.1(1), 1–41 (2009).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A454(1971), 903–995 (1998).

[CrossRef]

S. Li, X. Su, and W. Chen, “Wavelet ridge techniques in optical fringe pattern analysis,” J. Opt. Soc. Am. A27(6), 1245–1254 (2010).

[CrossRef]
[PubMed]

S. Li, X. Su, W. Chen, and L. Xiang, “Eliminating the zero spectrum in Fourier transform profilometry using empirical mode decomposition,” J. Opt. Soc. Am. A26(5), 1195–1201 (2009).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A454(1971), 903–995 (1998).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A454(1971), 903–995 (1998).

[CrossRef]

Z. Wang, J. Ma, and M. Vo, “Recent progress in two-dimensional continuous wavelet transform technique for fringe pattern analysis,” Opt. Lasers Eng.50(8), 1052–1058 (2012).

[CrossRef]

G. Rilling and P. Flandrin, “One or two frequencies? The empirical mode decomposition answers,” IEEE Trans. Signal Process.56(1), 85–95 (2008).

[CrossRef]

S. Fernandez, M. A. Gdeisat, J. Salvi, and D. Burton, “Automatic window size selection in Windowed Fourier Transform for 3D reconstruction using adapted mother wavelets,” Opt. Commun.284(12), 2797–2807 (2011).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A454(1971), 903–995 (1998).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A454(1971), 903–995 (1998).

[CrossRef]

S. Li, X. Su, and W. Chen, “Wavelet ridge techniques in optical fringe pattern analysis,” J. Opt. Soc. Am. A27(6), 1245–1254 (2010).

[CrossRef]
[PubMed]

S. Li, X. Su, W. Chen, and L. Xiang, “Eliminating the zero spectrum in Fourier transform profilometry using empirical mode decomposition,” J. Opt. Soc. Am. A26(5), 1195–1201 (2009).

[CrossRef]

S. Zheng, W. Chen, and X. Su, “Adaptive Windowed Fourier transform in 3-D shape measurement,” Opt. Eng.45(6), 063601 (2006).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A454(1971), 903–995 (1998).

[CrossRef]

Z. Wang, J. Ma, and M. Vo, “Recent progress in two-dimensional continuous wavelet transform technique for fringe pattern analysis,” Opt. Lasers Eng.50(8), 1052–1058 (2012).

[CrossRef]

Z. Wang, J. Ma, and M. Vo, “Recent progress in two-dimensional continuous wavelet transform technique for fringe pattern analysis,” Opt. Lasers Eng.50(8), 1052–1058 (2012).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A454(1971), 903–995 (1998).

[CrossRef]

Z. Wu and N. E. Huang, “Ensemble empirical mode decomposition: a noise assisted data analysis method,” Adv. Adapt. Data Anal.1(1), 1–41 (2009).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A454(1971), 903–995 (1998).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A454(1971), 903–995 (1998).

[CrossRef]

S. Zheng, W. Chen, and X. Su, “Adaptive Windowed Fourier transform in 3-D shape measurement,” Opt. Eng.45(6), 063601 (2006).

[CrossRef]

Z. Wu and N. E. Huang, “Ensemble empirical mode decomposition: a noise assisted data analysis method,” Adv. Adapt. Data Anal.1(1), 1–41 (2009).

[CrossRef]

M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt.22(24), 3977–3982 (1983).

[CrossRef]
[PubMed]

Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt.43(13), 2695–2702 (2004).

[CrossRef]
[PubMed]

S. Zhang, X. Li, and S. T. Yau, “Multilevel quality-guided phase unwrapping algorithm for real-time three-dimensional shape reconstruction,” Appl. Opt.46(1), 50–57 (2007).

[CrossRef]
[PubMed]

J. Zhong and H. Zeng, “Multiscale windowed Fourier transform for phase extraction of fringe patterns,” Appl. Opt.46(14), 2670–2675 (2007).

[CrossRef]
[PubMed]

W. Gao and Q. Kemao, “Statistical analysis for windowed Fourier ridge algorithm in fringe pattern analysis,” Appl. Opt.51(3), 328–337 (2011).

[CrossRef]
[PubMed]

M. Zhong, W. Chen, and M. Jiang, “Application of S-transform profilometry in eliminating nonlinearity in fringe pattern,” Appl. Opt.51(5), 577–587 (2012).

[CrossRef]
[PubMed]

G. Rilling and P. Flandrin, “One or two frequencies? The empirical mode decomposition answers,” IEEE Trans. Signal Process.56(1), 85–95 (2008).

[CrossRef]

S. Li, X. Su, W. Chen, and L. Xiang, “Eliminating the zero spectrum in Fourier transform profilometry using empirical mode decomposition,” J. Opt. Soc. Am. A26(5), 1195–1201 (2009).

[CrossRef]

S. Li, X. Su, and W. Chen, “Wavelet ridge techniques in optical fringe pattern analysis,” J. Opt. Soc. Am. A27(6), 1245–1254 (2010).

[CrossRef]
[PubMed]

S. Fernandez, M. A. Gdeisat, J. Salvi, and D. Burton, “Automatic window size selection in Windowed Fourier Transform for 3D reconstruction using adapted mother wavelets,” Opt. Commun.284(12), 2797–2807 (2011).

[CrossRef]

S. Zheng, W. Chen, and X. Su, “Adaptive Windowed Fourier transform in 3-D shape measurement,” Opt. Eng.45(6), 063601 (2006).

[CrossRef]

Z. Wang, J. Ma, and M. Vo, “Recent progress in two-dimensional continuous wavelet transform technique for fringe pattern analysis,” Opt. Lasers Eng.50(8), 1052–1058 (2012).

[CrossRef]

S. Gai and F. Da, “A novel phase-shifting method based on strip marker,” Opt. Lasers Eng.48(2), 205–211 (2010).

[CrossRef]

S. Özder, Ö. Kocahan, E. Coşkun, and H. Göktaş, “Optical phase distribution evaluation by using an S-transform,” Opt. Lett.32(6), 591–593 (2007).

[CrossRef]
[PubMed]

J. Zhong and J. Weng, “Phase retrieval of optical fringe patterns from the ridge of a wavelet transform,” Opt. Lett.30(19), 2560–2562 (2005).

[CrossRef]
[PubMed]

X. Zhou, H. Zhao, and T. Jiang, “Adaptive analysis of optical fringe patterns using ensemble empirical mode decomposition algorithm,” Opt. Lett.34(13), 2033–2035 (2009).

[CrossRef]
[PubMed]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A454(1971), 903–995 (1998).

[CrossRef]

G. Rilling, P. Flandrin, and P. Goncalves, “On empirical mode decomposition and its algorithms,” in IEEE-EURASIP Workshop on Nonlinear signal and Image Processing, NSTP-03, GRADO (I) (2003).