Abstract

We investigate the suitability of various commercially available pump lasers for operation with a carrier-envelope offset frequency stabilized Ti:sapphire oscillator. Although the tested pump lasers differ in their setup and properties (e.g., single vs. multi-mode), we find that they are all well-suited for the purpose. The residual rms phase noise (integrated between 20Hz and 5MHz) of the stabilized oscillator is found to be below 160mrad with each pump laser, corresponding to less than 1/40 of an optical cycle. Differences in performance vary slightly. In particular, our results indicate that the latest generation of multi-mode pump lasers can be used for applications where precise phase control of the oscillator is strictly required.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416, 233–237 (2002).
    [CrossRef] [PubMed]
  2. S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293, 825–828 (2001).
    [CrossRef] [PubMed]
  3. P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys.3, 381–387 (2007).
    [CrossRef]
  4. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys.81, 163–234 (2009).
    [CrossRef]
  5. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326, 681 (2009).
    [CrossRef] [PubMed]
  6. O. Mücke, R. Ell, A. Winter, J. Kim, J. Birge, L. Matos, and F. Kärtner, “Self-referenced 200 MHz octave-spanning Ti:sapphire laser with 50 attosecond carrier-envelope phase jitter,” Opt. Express13, 5163–5169 (2005).
    [CrossRef] [PubMed]
  7. S. Rausch, T. Binhammer, A. Harth, J. Kim, R. Ell, F. Kärtner, and U. Morgner, “Controlled waveforms on the single-cycle scale from a femtosecond oscillator,” Opt. Express16, 9739–9745 (2008).
    [CrossRef] [PubMed]
  8. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B27, B51–B62 (2010).
    [CrossRef]
  9. S. Witte, R. Zinkstok, W. Hogervorst, and K. Eikema, “Control and precise measurement of carrier-envelope phase dynamics,” Appl. Phys. B78, 5–12 (2004).
    [CrossRef]
  10. L. Matos, O. D. Mücke, J. Chen, and F. X. Kärtner, “Carrier-envelope phase dynamics and noise analysis in octave-spanning Ti:sapphire lasers,” Opt. Express14, 2497–2511 (2006).
    [CrossRef] [PubMed]
  11. J. Reichert, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun.172, 59–68 (1999).
    [CrossRef]
  12. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
    [CrossRef] [PubMed]
  13. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
    [CrossRef] [PubMed]
  14. G. Paulus, F. Lindner, H. Walther, A. Baltuska, E. Goulielmakis, M. Lezius, and F. Krausz, “Measurement of the phase of few-cycle laser pulses,” Phys. Rev. Lett.91, 253004 (2003).
    [CrossRef]
  15. M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature475, 78–81 (2011).
    [CrossRef] [PubMed]
  16. A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature421, 611–615 (2003).
    [CrossRef] [PubMed]
  17. L. Xu, C. Spielmann, A. Poppe, T. Brabec, F. Krausz, and T. W. Hänsch, “Route to phase control of ultrashort light pulses,” Opt. Lett.21, 2008–2010 (1996).
    [CrossRef] [PubMed]
  18. A. Poppe, R. Holzwarth, A. Apolonski, G. Tempea, C. Spielmann, T. W. Hänsch, and F. Krausz, “Few-cycle optical waveform synthesis,” Appl. Phys. B72, 373–376 (2001).
    [CrossRef]
  19. T. M. Fortier, J. Ye, S. T. Cundiff, and R. S. Windeler, “Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carrier-envelope phase,” Opt. Lett.27, 445–447 (2002).
    [CrossRef]
  20. K. Holman, R. Jones, A. Marian, S. Cundiff, and J. Ye, “Detailed studies and control of intensity-related dynamics of femtosecond frequency combs from mode-locked ti:sapphire lasers,” IEEE J. Sel. Top. Quantum Electron.9, 1018–1024 (2003).
    [CrossRef]
  21. R. Paschotta, A. Schlatter, S. Zeller, H. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B82, 265–273 (2006).
    [CrossRef]
  22. R. P. Scott, T. D. Mulder, K. A. Baker, and B. H. Kolner, “Amplitude and phase noise sensitivity of modelocked Ti:sapphire lasers in terms of a complex noise transfer function,” Opt. Express15, 9090–9095 (2007).
    [CrossRef] [PubMed]
  23. J. McFerran, W. Swann, B. Washburn, and N. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions,” Appl. Phys. B86, 219–227 (2007).
    [CrossRef]
  24. T. D. Mulder, R. P. Scott, and B. H. Kolner, “Amplitude and envelope phase noise of amodelocked laser predicted from its noise transfer function and the pumpnoise power spectrum,” Opt. Express16, 14186–14191 (2008).
    [CrossRef] [PubMed]
  25. M. Y. Sander, E. P. Ippen, and F. X. Kärtner, “Carrier-envelope phase dynamics of octave-spanning dispersion-managed Ti:sapphire lasers,” Opt. Express18, 4948–4960 (2010).
    [CrossRef] [PubMed]
  26. D. C. Heinecke, A. Bartels, and S. A. Diddams, “Offset frequency dynamics and phase noise properties of a self-referenced 10 GHz Ti:sapphire frequency comb,” Opt. Express19, 18440–18451 (2011).
    [CrossRef] [PubMed]
  27. F. Helbing, G. Steinmeyer, and U. Keller, “Carrier-envelope offset phase-locking with attosecond timing jitter,” IEEE J. Sel. Top. Quantum Electron.9, 1030–1040 (2003).
    [CrossRef]

2011 (2)

2010 (2)

2009 (2)

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys.81, 163–234 (2009).
[CrossRef]

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326, 681 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (3)

R. P. Scott, T. D. Mulder, K. A. Baker, and B. H. Kolner, “Amplitude and phase noise sensitivity of modelocked Ti:sapphire lasers in terms of a complex noise transfer function,” Opt. Express15, 9090–9095 (2007).
[CrossRef] [PubMed]

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys.3, 381–387 (2007).
[CrossRef]

J. McFerran, W. Swann, B. Washburn, and N. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions,” Appl. Phys. B86, 219–227 (2007).
[CrossRef]

2006 (2)

R. Paschotta, A. Schlatter, S. Zeller, H. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B82, 265–273 (2006).
[CrossRef]

L. Matos, O. D. Mücke, J. Chen, and F. X. Kärtner, “Carrier-envelope phase dynamics and noise analysis in octave-spanning Ti:sapphire lasers,” Opt. Express14, 2497–2511 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

S. Witte, R. Zinkstok, W. Hogervorst, and K. Eikema, “Control and precise measurement of carrier-envelope phase dynamics,” Appl. Phys. B78, 5–12 (2004).
[CrossRef]

2003 (4)

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature421, 611–615 (2003).
[CrossRef] [PubMed]

F. Helbing, G. Steinmeyer, and U. Keller, “Carrier-envelope offset phase-locking with attosecond timing jitter,” IEEE J. Sel. Top. Quantum Electron.9, 1030–1040 (2003).
[CrossRef]

K. Holman, R. Jones, A. Marian, S. Cundiff, and J. Ye, “Detailed studies and control of intensity-related dynamics of femtosecond frequency combs from mode-locked ti:sapphire lasers,” IEEE J. Sel. Top. Quantum Electron.9, 1018–1024 (2003).
[CrossRef]

G. Paulus, F. Lindner, H. Walther, A. Baltuska, E. Goulielmakis, M. Lezius, and F. Krausz, “Measurement of the phase of few-cycle laser pulses,” Phys. Rev. Lett.91, 253004 (2003).
[CrossRef]

2002 (2)

2001 (2)

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293, 825–828 (2001).
[CrossRef] [PubMed]

A. Poppe, R. Holzwarth, A. Apolonski, G. Tempea, C. Spielmann, T. W. Hänsch, and F. Krausz, “Few-cycle optical waveform synthesis,” Appl. Phys. B72, 373–376 (2001).
[CrossRef]

2000 (2)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
[CrossRef] [PubMed]

1999 (1)

J. Reichert, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun.172, 59–68 (1999).
[CrossRef]

1996 (1)

Apolonski, A.

A. Poppe, R. Holzwarth, A. Apolonski, G. Tempea, C. Spielmann, T. W. Hänsch, and F. Krausz, “Few-cycle optical waveform synthesis,” Appl. Phys. B72, 373–376 (2001).
[CrossRef]

Baker, K. A.

Baltuska, A.

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature421, 611–615 (2003).
[CrossRef] [PubMed]

G. Paulus, F. Lindner, H. Walther, A. Baltuska, E. Goulielmakis, M. Lezius, and F. Krausz, “Measurement of the phase of few-cycle laser pulses,” Phys. Rev. Lett.91, 253004 (2003).
[CrossRef]

Bartels, A.

Bergquist, J. C.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293, 825–828 (2001).
[CrossRef] [PubMed]

Binhammer, T.

Birge, J.

Brabec, T.

Chen, J.

Corkum, P. B.

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys.3, 381–387 (2007).
[CrossRef]

Cundiff, S.

K. Holman, R. Jones, A. Marian, S. Cundiff, and J. Ye, “Detailed studies and control of intensity-related dynamics of femtosecond frequency combs from mode-locked ti:sapphire lasers,” IEEE J. Sel. Top. Quantum Electron.9, 1018–1024 (2003).
[CrossRef]

Cundiff, S. T.

T. M. Fortier, J. Ye, S. T. Cundiff, and R. S. Windeler, “Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carrier-envelope phase,” Opt. Lett.27, 445–447 (2002).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
[CrossRef] [PubMed]

Curtis, E. A.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293, 825–828 (2001).
[CrossRef] [PubMed]

Diddams, S. A.

D. C. Heinecke, A. Bartels, and S. A. Diddams, “Offset frequency dynamics and phase noise properties of a self-referenced 10 GHz Ti:sapphire frequency comb,” Opt. Express19, 18440–18451 (2011).
[CrossRef] [PubMed]

S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B27, B51–B62 (2010).
[CrossRef]

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326, 681 (2009).
[CrossRef] [PubMed]

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293, 825–828 (2001).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

Drullinger, R. E.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293, 825–828 (2001).
[CrossRef] [PubMed]

Eikema, K.

S. Witte, R. Zinkstok, W. Hogervorst, and K. Eikema, “Control and precise measurement of carrier-envelope phase dynamics,” Appl. Phys. B78, 5–12 (2004).
[CrossRef]

Ell, R.

Fortier, T. M.

Gohle, Ch.

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature421, 611–615 (2003).
[CrossRef] [PubMed]

Goulielmakis, E.

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature421, 611–615 (2003).
[CrossRef] [PubMed]

G. Paulus, F. Lindner, H. Walther, A. Baltuska, E. Goulielmakis, M. Lezius, and F. Krausz, “Measurement of the phase of few-cycle laser pulses,” Phys. Rev. Lett.91, 253004 (2003).
[CrossRef]

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

Hänsch, T. W.

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature421, 611–615 (2003).
[CrossRef] [PubMed]

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416, 233–237 (2002).
[CrossRef] [PubMed]

A. Poppe, R. Holzwarth, A. Apolonski, G. Tempea, C. Spielmann, T. W. Hänsch, and F. Krausz, “Few-cycle optical waveform synthesis,” Appl. Phys. B72, 373–376 (2001).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

J. Reichert, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun.172, 59–68 (1999).
[CrossRef]

L. Xu, C. Spielmann, A. Poppe, T. Brabec, F. Krausz, and T. W. Hänsch, “Route to phase control of ultrashort light pulses,” Opt. Lett.21, 2008–2010 (1996).
[CrossRef] [PubMed]

Harth, A.

Heinecke, D.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326, 681 (2009).
[CrossRef] [PubMed]

Heinecke, D. C.

Helbing, F.

F. Helbing, G. Steinmeyer, and U. Keller, “Carrier-envelope offset phase-locking with attosecond timing jitter,” IEEE J. Sel. Top. Quantum Electron.9, 1030–1040 (2003).
[CrossRef]

Hentschel, M.

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature421, 611–615 (2003).
[CrossRef] [PubMed]

Hogervorst, W.

S. Witte, R. Zinkstok, W. Hogervorst, and K. Eikema, “Control and precise measurement of carrier-envelope phase dynamics,” Appl. Phys. B78, 5–12 (2004).
[CrossRef]

Hollberg, L.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293, 825–828 (2001).
[CrossRef] [PubMed]

Holman, K.

K. Holman, R. Jones, A. Marian, S. Cundiff, and J. Ye, “Detailed studies and control of intensity-related dynamics of femtosecond frequency combs from mode-locked ti:sapphire lasers,” IEEE J. Sel. Top. Quantum Electron.9, 1018–1024 (2003).
[CrossRef]

Holzwarth, R.

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature421, 611–615 (2003).
[CrossRef] [PubMed]

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416, 233–237 (2002).
[CrossRef] [PubMed]

A. Poppe, R. Holzwarth, A. Apolonski, G. Tempea, C. Spielmann, T. W. Hänsch, and F. Krausz, “Few-cycle optical waveform synthesis,” Appl. Phys. B72, 373–376 (2001).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

J. Reichert, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun.172, 59–68 (1999).
[CrossRef]

Hommelhoff, P.

M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature475, 78–81 (2011).
[CrossRef] [PubMed]

Ippen, E. P.

Itano, W. M.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293, 825–828 (2001).
[CrossRef] [PubMed]

Ivanov, M.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys.81, 163–234 (2009).
[CrossRef]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

Jones, R.

K. Holman, R. Jones, A. Marian, S. Cundiff, and J. Ye, “Detailed studies and control of intensity-related dynamics of femtosecond frequency combs from mode-locked ti:sapphire lasers,” IEEE J. Sel. Top. Quantum Electron.9, 1018–1024 (2003).
[CrossRef]

Kärtner, F.

Kärtner, F. X.

Keller, U.

R. Paschotta, A. Schlatter, S. Zeller, H. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B82, 265–273 (2006).
[CrossRef]

F. Helbing, G. Steinmeyer, and U. Keller, “Carrier-envelope offset phase-locking with attosecond timing jitter,” IEEE J. Sel. Top. Quantum Electron.9, 1030–1040 (2003).
[CrossRef]

Kim, J.

Kolner, B. H.

Krausz, F.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys.81, 163–234 (2009).
[CrossRef]

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys.3, 381–387 (2007).
[CrossRef]

G. Paulus, F. Lindner, H. Walther, A. Baltuska, E. Goulielmakis, M. Lezius, and F. Krausz, “Measurement of the phase of few-cycle laser pulses,” Phys. Rev. Lett.91, 253004 (2003).
[CrossRef]

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature421, 611–615 (2003).
[CrossRef] [PubMed]

A. Poppe, R. Holzwarth, A. Apolonski, G. Tempea, C. Spielmann, T. W. Hänsch, and F. Krausz, “Few-cycle optical waveform synthesis,” Appl. Phys. B72, 373–376 (2001).
[CrossRef]

L. Xu, C. Spielmann, A. Poppe, T. Brabec, F. Krausz, and T. W. Hänsch, “Route to phase control of ultrashort light pulses,” Opt. Lett.21, 2008–2010 (1996).
[CrossRef] [PubMed]

Krüger, M.

M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature475, 78–81 (2011).
[CrossRef] [PubMed]

Lee, W. D.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293, 825–828 (2001).
[CrossRef] [PubMed]

Lezius, M.

G. Paulus, F. Lindner, H. Walther, A. Baltuska, E. Goulielmakis, M. Lezius, and F. Krausz, “Measurement of the phase of few-cycle laser pulses,” Phys. Rev. Lett.91, 253004 (2003).
[CrossRef]

Lindner, F.

G. Paulus, F. Lindner, H. Walther, A. Baltuska, E. Goulielmakis, M. Lezius, and F. Krausz, “Measurement of the phase of few-cycle laser pulses,” Phys. Rev. Lett.91, 253004 (2003).
[CrossRef]

Marian, A.

K. Holman, R. Jones, A. Marian, S. Cundiff, and J. Ye, “Detailed studies and control of intensity-related dynamics of femtosecond frequency combs from mode-locked ti:sapphire lasers,” IEEE J. Sel. Top. Quantum Electron.9, 1018–1024 (2003).
[CrossRef]

Matos, L.

McFerran, J.

J. McFerran, W. Swann, B. Washburn, and N. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions,” Appl. Phys. B86, 219–227 (2007).
[CrossRef]

Morgner, U.

Mücke, O.

Mücke, O. D.

Mulder, T. D.

Newbury, N.

J. McFerran, W. Swann, B. Washburn, and N. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions,” Appl. Phys. B86, 219–227 (2007).
[CrossRef]

Oates, C. W.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293, 825–828 (2001).
[CrossRef] [PubMed]

Paschotta, R.

R. Paschotta, A. Schlatter, S. Zeller, H. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B82, 265–273 (2006).
[CrossRef]

Paulus, G.

G. Paulus, F. Lindner, H. Walther, A. Baltuska, E. Goulielmakis, M. Lezius, and F. Krausz, “Measurement of the phase of few-cycle laser pulses,” Phys. Rev. Lett.91, 253004 (2003).
[CrossRef]

Poppe, A.

A. Poppe, R. Holzwarth, A. Apolonski, G. Tempea, C. Spielmann, T. W. Hänsch, and F. Krausz, “Few-cycle optical waveform synthesis,” Appl. Phys. B72, 373–376 (2001).
[CrossRef]

L. Xu, C. Spielmann, A. Poppe, T. Brabec, F. Krausz, and T. W. Hänsch, “Route to phase control of ultrashort light pulses,” Opt. Lett.21, 2008–2010 (1996).
[CrossRef] [PubMed]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

Rausch, S.

Reichert, J.

J. Reichert, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun.172, 59–68 (1999).
[CrossRef]

Sander, M. Y.

Schenk, M.

M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature475, 78–81 (2011).
[CrossRef] [PubMed]

Schlatter, A.

R. Paschotta, A. Schlatter, S. Zeller, H. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B82, 265–273 (2006).
[CrossRef]

Scott, R. P.

Scrinzi, A.

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature421, 611–615 (2003).
[CrossRef] [PubMed]

Spielmann, C.

A. Poppe, R. Holzwarth, A. Apolonski, G. Tempea, C. Spielmann, T. W. Hänsch, and F. Krausz, “Few-cycle optical waveform synthesis,” Appl. Phys. B72, 373–376 (2001).
[CrossRef]

L. Xu, C. Spielmann, A. Poppe, T. Brabec, F. Krausz, and T. W. Hänsch, “Route to phase control of ultrashort light pulses,” Opt. Lett.21, 2008–2010 (1996).
[CrossRef] [PubMed]

Steinmeyer, G.

F. Helbing, G. Steinmeyer, and U. Keller, “Carrier-envelope offset phase-locking with attosecond timing jitter,” IEEE J. Sel. Top. Quantum Electron.9, 1030–1040 (2003).
[CrossRef]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
[CrossRef] [PubMed]

Swann, W.

J. McFerran, W. Swann, B. Washburn, and N. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions,” Appl. Phys. B86, 219–227 (2007).
[CrossRef]

Telle, H.

R. Paschotta, A. Schlatter, S. Zeller, H. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B82, 265–273 (2006).
[CrossRef]

Tempea, G.

A. Poppe, R. Holzwarth, A. Apolonski, G. Tempea, C. Spielmann, T. W. Hänsch, and F. Krausz, “Few-cycle optical waveform synthesis,” Appl. Phys. B72, 373–376 (2001).
[CrossRef]

Udem, Th.

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature421, 611–615 (2003).
[CrossRef] [PubMed]

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416, 233–237 (2002).
[CrossRef] [PubMed]

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293, 825–828 (2001).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

J. Reichert, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun.172, 59–68 (1999).
[CrossRef]

Uiberacker, M.

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature421, 611–615 (2003).
[CrossRef] [PubMed]

Vogel, K. R.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293, 825–828 (2001).
[CrossRef] [PubMed]

Walther, H.

G. Paulus, F. Lindner, H. Walther, A. Baltuska, E. Goulielmakis, M. Lezius, and F. Krausz, “Measurement of the phase of few-cycle laser pulses,” Phys. Rev. Lett.91, 253004 (2003).
[CrossRef]

Washburn, B.

J. McFerran, W. Swann, B. Washburn, and N. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions,” Appl. Phys. B86, 219–227 (2007).
[CrossRef]

Windeler, R. S.

T. M. Fortier, J. Ye, S. T. Cundiff, and R. S. Windeler, “Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carrier-envelope phase,” Opt. Lett.27, 445–447 (2002).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
[CrossRef] [PubMed]

Wineland, D. J.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293, 825–828 (2001).
[CrossRef] [PubMed]

Winter, A.

Witte, S.

S. Witte, R. Zinkstok, W. Hogervorst, and K. Eikema, “Control and precise measurement of carrier-envelope phase dynamics,” Appl. Phys. B78, 5–12 (2004).
[CrossRef]

Xu, L.

Yakovlev, V. S.

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature421, 611–615 (2003).
[CrossRef] [PubMed]

Ye, J.

K. Holman, R. Jones, A. Marian, S. Cundiff, and J. Ye, “Detailed studies and control of intensity-related dynamics of femtosecond frequency combs from mode-locked ti:sapphire lasers,” IEEE J. Sel. Top. Quantum Electron.9, 1018–1024 (2003).
[CrossRef]

T. M. Fortier, J. Ye, S. T. Cundiff, and R. S. Windeler, “Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carrier-envelope phase,” Opt. Lett.27, 445–447 (2002).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

Zeller, S.

R. Paschotta, A. Schlatter, S. Zeller, H. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B82, 265–273 (2006).
[CrossRef]

Zinkstok, R.

S. Witte, R. Zinkstok, W. Hogervorst, and K. Eikema, “Control and precise measurement of carrier-envelope phase dynamics,” Appl. Phys. B78, 5–12 (2004).
[CrossRef]

Appl. Phys. B (4)

S. Witte, R. Zinkstok, W. Hogervorst, and K. Eikema, “Control and precise measurement of carrier-envelope phase dynamics,” Appl. Phys. B78, 5–12 (2004).
[CrossRef]

A. Poppe, R. Holzwarth, A. Apolonski, G. Tempea, C. Spielmann, T. W. Hänsch, and F. Krausz, “Few-cycle optical waveform synthesis,” Appl. Phys. B72, 373–376 (2001).
[CrossRef]

J. McFerran, W. Swann, B. Washburn, and N. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions,” Appl. Phys. B86, 219–227 (2007).
[CrossRef]

R. Paschotta, A. Schlatter, S. Zeller, H. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B82, 265–273 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

F. Helbing, G. Steinmeyer, and U. Keller, “Carrier-envelope offset phase-locking with attosecond timing jitter,” IEEE J. Sel. Top. Quantum Electron.9, 1030–1040 (2003).
[CrossRef]

K. Holman, R. Jones, A. Marian, S. Cundiff, and J. Ye, “Detailed studies and control of intensity-related dynamics of femtosecond frequency combs from mode-locked ti:sapphire lasers,” IEEE J. Sel. Top. Quantum Electron.9, 1018–1024 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Phys. (1)

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys.3, 381–387 (2007).
[CrossRef]

Nature (3)

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416, 233–237 (2002).
[CrossRef] [PubMed]

M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature475, 78–81 (2011).
[CrossRef] [PubMed]

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature421, 611–615 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. Reichert, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun.172, 59–68 (1999).
[CrossRef]

Opt. Express (7)

D. C. Heinecke, A. Bartels, and S. A. Diddams, “Offset frequency dynamics and phase noise properties of a self-referenced 10 GHz Ti:sapphire frequency comb,” Opt. Express19, 18440–18451 (2011).
[CrossRef] [PubMed]

O. Mücke, R. Ell, A. Winter, J. Kim, J. Birge, L. Matos, and F. Kärtner, “Self-referenced 200 MHz octave-spanning Ti:sapphire laser with 50 attosecond carrier-envelope phase jitter,” Opt. Express13, 5163–5169 (2005).
[CrossRef] [PubMed]

L. Matos, O. D. Mücke, J. Chen, and F. X. Kärtner, “Carrier-envelope phase dynamics and noise analysis in octave-spanning Ti:sapphire lasers,” Opt. Express14, 2497–2511 (2006).
[CrossRef] [PubMed]

R. P. Scott, T. D. Mulder, K. A. Baker, and B. H. Kolner, “Amplitude and phase noise sensitivity of modelocked Ti:sapphire lasers in terms of a complex noise transfer function,” Opt. Express15, 9090–9095 (2007).
[CrossRef] [PubMed]

S. Rausch, T. Binhammer, A. Harth, J. Kim, R. Ell, F. Kärtner, and U. Morgner, “Controlled waveforms on the single-cycle scale from a femtosecond oscillator,” Opt. Express16, 9739–9745 (2008).
[CrossRef] [PubMed]

T. D. Mulder, R. P. Scott, and B. H. Kolner, “Amplitude and envelope phase noise of amodelocked laser predicted from its noise transfer function and the pumpnoise power spectrum,” Opt. Express16, 14186–14191 (2008).
[CrossRef] [PubMed]

M. Y. Sander, E. P. Ippen, and F. X. Kärtner, “Carrier-envelope phase dynamics of octave-spanning dispersion-managed Ti:sapphire lasers,” Opt. Express18, 4948–4960 (2010).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (2)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

G. Paulus, F. Lindner, H. Walther, A. Baltuska, E. Goulielmakis, M. Lezius, and F. Krausz, “Measurement of the phase of few-cycle laser pulses,” Phys. Rev. Lett.91, 253004 (2003).
[CrossRef]

Rev. Mod. Phys. (1)

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys.81, 163–234 (2009).
[CrossRef]

Science (3)

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326, 681 (2009).
[CrossRef] [PubMed]

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science293, 825–828 (2001).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of experimental setup. AOM: acousto-optic modulator, BS: beam splitter, L: lens, PCF: photonic crystal fiber, M: mirror, HWP: half-wave plate, DCM: dichroic mirror, NLC: nonlinear crystal, VDS: variable delay stage, PBS: polarizing beam splitter, G: grating, PD: photodiode, (Out-of-)Loop filter: MenloSystems XPS800-E. See text for details.

Fig. 2
Fig. 2

Comparison of integrated carrier-envelope offset phase jitter datasets of a) V10, b) V5, c) G5, and d) Sprout. Note that the scale is the same in all plots and that the number of measured datasets is different for the V10.

Fig. 3
Fig. 3

Comparison of minimum integrated phase jitter (thick lines) and underlying power spectral density (PSD, thin lines) obtained with the tested pump lasers in the range between 20Hz and 5MHz. For all pump lasers, the residual phase noise stays below 1/40 of an optical cycle. The obtained values are a) 112mrad for the V10, b) 132mrad for the V5, c) 156mrad for the G5, and d) 126mrad for the Sprout. The main phase noise contributions originate from the frequency interval 10 – 100kHz for the Verdi pump lasers (V10, V5, G5) and from the somewhat larger 1 – 100kHz range for the Sprout.

Fig. 4
Fig. 4

Comparison of influence of signal-to-noise ratio on phase noise exemplified by two different datasets obtained with the Verdi V10 and the frequency domain method. The dataset resulting in lower phase noise (solid blue line) was recorded with 10dB more S/N than the other one (dashed black line) in the frequency range above 1MHz, where the main difference in phase noise is accumulated. This can be seen in the corresponding rf spectra (10MHz span, 91kHz resolution bandwidth) shown on the right.

Fig. 5
Fig. 5

Comparison of integrated relative intensity noise of a) V10, b) V5, c) G5, and d) Sprout in the frequency range between 2Hz and 625kHz. Different line styles (colors) indicate datasets from different days. The RIN data from the respective day of the phase noise measurement is shown as solid (blue) lines. Note that the RIN was measured at slightly different power levels for different pump lasers and that the number of recorded datasets is different for each laser.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f 0 = 1 2 π d ϕ 0 d t = Δ ϕ 0 2 π f r ,

Metrics