Y. Kushiyama, T. Uno, and T. Arima, “Novel negative permittivity structure and its application to excitation of surface plasmon in microwave frequency range,” IEICE Trans. Commun. E93-B, 2629–2635 (2010).

[CrossRef]

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102, 073901 (2009).

[CrossRef]
[PubMed]

M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17, 18184–18195 (2009).

[CrossRef]
[PubMed]

A. Demetriadou and J. B. Pendry, “Taming spatial dispersion in wire metamaterial,” J. Phys.: Condens. Matter 20, 295222 (2008).

[CrossRef]

V. Hernandez, J. E. Roman, and V. Vidal, “SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems,” ACM Trans. Math. Software 31, 351–362 (2005).

[CrossRef]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308, 670–672 (2005).

[CrossRef]
[PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).

[CrossRef]
[PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).

[CrossRef]
[PubMed]

D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).

[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).

[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely-low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).

[CrossRef]
[PubMed]

K. Beilenhoff, W. Heinrich, and H. Hartnagel, “Improved finite-difference formulation in frequency domain for three-dimensional scattering problems,” IEEE Trans. Microwave Theory Tech. 40, 540–546 (1992).

[CrossRef]

D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).

[CrossRef]

Y. Kushiyama, T. Uno, and T. Arima, “Novel negative permittivity structure and its application to excitation of surface plasmon in microwave frequency range,” IEICE Trans. Commun. E93-B, 2629–2635 (2010).

[CrossRef]

K. Beilenhoff, W. Heinrich, and H. Hartnagel, “Improved finite-difference formulation in frequency domain for three-dimensional scattering problems,” IEEE Trans. Microwave Theory Tech. 40, 540–546 (1992).

[CrossRef]

D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).

[CrossRef]

A. Demetriadou and J. B. Pendry, “Taming spatial dispersion in wire metamaterial,” J. Phys.: Condens. Matter 20, 295222 (2008).

[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).

[CrossRef]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308, 670–672 (2005).

[CrossRef]
[PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).

[CrossRef]
[PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).

[CrossRef]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition (Artech House Publishers, 2000).

K. Beilenhoff, W. Heinrich, and H. Hartnagel, “Improved finite-difference formulation in frequency domain for three-dimensional scattering problems,” IEEE Trans. Microwave Theory Tech. 40, 540–546 (1992).

[CrossRef]

K. Beilenhoff, W. Heinrich, and H. Hartnagel, “Improved finite-difference formulation in frequency domain for three-dimensional scattering problems,” IEEE Trans. Microwave Theory Tech. 40, 540–546 (1992).

[CrossRef]

V. Hernandez, J. E. Roman, and V. Vidal, “SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems,” ACM Trans. Math. Software 31, 351–362 (2005).

[CrossRef]

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102, 073901 (2009).

[CrossRef]
[PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308, 670–672 (2005).

[CrossRef]
[PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely-low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).

[CrossRef]
[PubMed]

Y. Kushiyama, T. Uno, and T. Arima, “Novel negative permittivity structure and its application to excitation of surface plasmon in microwave frequency range,” IEICE Trans. Commun. E93-B, 2629–2635 (2010).

[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).

[CrossRef]

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102, 073901 (2009).

[CrossRef]
[PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).

[CrossRef]
[PubMed]

A. Demetriadou and J. B. Pendry, “Taming spatial dispersion in wire metamaterial,” J. Phys.: Condens. Matter 20, 295222 (2008).

[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).

[CrossRef]
[PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).

[CrossRef]
[PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely-low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).

[CrossRef]
[PubMed]

R. Raether, Surface Plasmons (Springer–Verlag, Berlin, 1988).

V. Hernandez, J. E. Roman, and V. Vidal, “SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems,” ACM Trans. Math. Software 31, 351–362 (2005).

[CrossRef]

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102, 073901 (2009).

[CrossRef]
[PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308, 670–672 (2005).

[CrossRef]
[PubMed]

D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).

[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely-low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).

[CrossRef]
[PubMed]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition (Artech House Publishers, 2000).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).

[CrossRef]

Y. Kushiyama, T. Uno, and T. Arima, “Novel negative permittivity structure and its application to excitation of surface plasmon in microwave frequency range,” IEICE Trans. Commun. E93-B, 2629–2635 (2010).

[CrossRef]

V. Hernandez, J. E. Roman, and V. Vidal, “SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems,” ACM Trans. Math. Software 31, 351–362 (2005).

[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).

[CrossRef]

D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).

[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely-low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).

[CrossRef]
[PubMed]

D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).

[CrossRef]

V. Hernandez, J. E. Roman, and V. Vidal, “SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems,” ACM Trans. Math. Software 31, 351–362 (2005).

[CrossRef]

K. Beilenhoff, W. Heinrich, and H. Hartnagel, “Improved finite-difference formulation in frequency domain for three-dimensional scattering problems,” IEEE Trans. Microwave Theory Tech. 40, 540–546 (1992).

[CrossRef]

D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).

[CrossRef]

Y. Kushiyama, T. Uno, and T. Arima, “Novel negative permittivity structure and its application to excitation of surface plasmon in microwave frequency range,” IEICE Trans. Commun. E93-B, 2629–2635 (2010).

[CrossRef]

A. Demetriadou and J. B. Pendry, “Taming spatial dispersion in wire metamaterial,” J. Phys.: Condens. Matter 20, 295222 (2008).

[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).

[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely-low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).

[CrossRef]
[PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).

[CrossRef]
[PubMed]

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102, 073901 (2009).

[CrossRef]
[PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).

[CrossRef]
[PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308, 670–672 (2005).

[CrossRef]
[PubMed]

R. Raether, Surface Plasmons (Springer–Verlag, Berlin, 1988).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition (Artech House Publishers, 2000).