Abstract

The requirements for higher data rates in optical communication systems lead to the use of more efficient modulation formats. In the networks the all optical synchronization and storage of these signals is still a major challenge in order to enable higher transmittable data rates and reduce the energy consumption. In this contribution we show for the first time, to the best of our knowledge, the tunable storage of phase modulated optical data packets with up to 60 pulse widths. This opens the way to the optical storage of data packets modulated with highly efficient modulation formats.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94, 952–985 (2006).
    [CrossRef]
  2. R. S. Tucker, “Green optical communicationspart II: energy limitations in networks,” IEEE J. Sel. Top. Quantum Electron.17, 261–274 (2011).
    [CrossRef]
  3. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tuneable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94, 153902–153906 (2005).
    [CrossRef] [PubMed]
  4. K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express13, 82–88 (2005).
    [CrossRef] [PubMed]
  5. T. Schneider, “Time Delay limits of stimulated-Brillouin-scattering based slow light systems,” Opt. Lett.33, 1398–1400 (2008).
    [CrossRef] [PubMed]
  6. T. Schneider, M. Junker, and K.-U. Lauterbach, “Time delay enhancement in stimulated Brillouin scattering based slow light systems,” Opt. Lett.32, 220–222 (2007).
    [CrossRef] [PubMed]
  7. B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu, and D. J. Gauthier, “Slow light on Gbps differential-phase-shift-keying signals,” Opt. Express15, 1878–1883 (2007).
    [CrossRef] [PubMed]
  8. K. Jamshidi, S. Preussler, A. Wiatrek, and T. Schneider, “A review to the all-optical quasi-light storage,” IEEE J. Sel. Top. Quantum Electron.18, 884–890 (2012).
    [CrossRef]
  9. T. Schneider, K. Jamshidi, and S. Preussler, “Quasi-light storage: a method for the tunable storage of optical packets with a potential delay-bandwidth product of several thousand bits,” J. Lightwave Technol.28, 2586–2592 (2010).
    [CrossRef]
  10. S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Quasi-light-storage enhancement by reducing the Brillouin gain bandwidth,” Appl. Opt.50, 4252–4256 (2011).
    [CrossRef] [PubMed]
  11. A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol.23, 115–130 (2005).
    [CrossRef]
  12. S. Preussler, K. Jamshidi, A. Wiatrek, R. Henker, C. Bunge, and T. Schneider, “Quasi-Light-Storage based on time-frequency coherence,” Opt. Express17, 15790–15798 (2009).
    [CrossRef] [PubMed]
  13. T. Schneider, Nonlinear Optics in Telecommunications (Springer-Verlag, 2004).
  14. A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photon.2, 1–59 (2010).
    [CrossRef]
  15. T. Schneider, M. Junker, and K.-U. Lauterbach, “Theoretical and experimental investigation of Brillouin scattering for the generation of Millimeter waves,” J. Opt. Soc. Am. B23, 1012–1019 (2006).
    [CrossRef]
  16. D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun.4, 10–19 (1983).
    [CrossRef]
  17. E. Voges and K. Petermann, Handbuch der Optischen Kommunikationstechnik (Springer-Verlag, 2002).
  18. S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Brillouin scattering gain bandwidth reduction down to 3.4MHz,” Opt. Express19, 8565–8570 (2011).
    [CrossRef] [PubMed]
  19. S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Quasi-light-storage enhancement by reducing the brillouin gain bandwidth,” Appl. Opt.50, 4252–4256 (2011).
    [CrossRef] [PubMed]

2012

K. Jamshidi, S. Preussler, A. Wiatrek, and T. Schneider, “A review to the all-optical quasi-light storage,” IEEE J. Sel. Top. Quantum Electron.18, 884–890 (2012).
[CrossRef]

2011

2010

2009

2008

2007

2006

2005

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tuneable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94, 153902–153906 (2005).
[CrossRef] [PubMed]

K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express13, 82–88 (2005).
[CrossRef] [PubMed]

A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol.23, 115–130 (2005).
[CrossRef]

1983

D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun.4, 10–19 (1983).
[CrossRef]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tuneable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94, 153902–153906 (2005).
[CrossRef] [PubMed]

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tuneable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94, 153902–153906 (2005).
[CrossRef] [PubMed]

Bunge, C.

Chowdhury, D.

Cotter, D.

D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun.4, 10–19 (1983).
[CrossRef]

Essiambre, R.-J.

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94, 952–985 (2006).
[CrossRef]

Fazal, I.

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tuneable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94, 153902–153906 (2005).
[CrossRef] [PubMed]

Gauthier, D. J.

B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu, and D. J. Gauthier, “Slow light on Gbps differential-phase-shift-keying signals,” Opt. Express15, 1878–1883 (2007).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tuneable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94, 153902–153906 (2005).
[CrossRef] [PubMed]

Gnauck, A. H.

Henker, R.

Herráez, M. G.

Jamshidi, K.

Junker, M.

Kobyakov, A.

Lauterbach, K.-U.

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tuneable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94, 153902–153906 (2005).
[CrossRef] [PubMed]

Petermann, K.

E. Voges and K. Petermann, Handbuch der Optischen Kommunikationstechnik (Springer-Verlag, 2002).

Preussler, S.

Sauer, M.

Schneider, T.

K. Jamshidi, S. Preussler, A. Wiatrek, and T. Schneider, “A review to the all-optical quasi-light storage,” IEEE J. Sel. Top. Quantum Electron.18, 884–890 (2012).
[CrossRef]

S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Quasi-light-storage enhancement by reducing the Brillouin gain bandwidth,” Appl. Opt.50, 4252–4256 (2011).
[CrossRef] [PubMed]

S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Quasi-light-storage enhancement by reducing the brillouin gain bandwidth,” Appl. Opt.50, 4252–4256 (2011).
[CrossRef] [PubMed]

S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Brillouin scattering gain bandwidth reduction down to 3.4MHz,” Opt. Express19, 8565–8570 (2011).
[CrossRef] [PubMed]

T. Schneider, K. Jamshidi, and S. Preussler, “Quasi-light storage: a method for the tunable storage of optical packets with a potential delay-bandwidth product of several thousand bits,” J. Lightwave Technol.28, 2586–2592 (2010).
[CrossRef]

S. Preussler, K. Jamshidi, A. Wiatrek, R. Henker, C. Bunge, and T. Schneider, “Quasi-Light-Storage based on time-frequency coherence,” Opt. Express17, 15790–15798 (2009).
[CrossRef] [PubMed]

T. Schneider, “Time Delay limits of stimulated-Brillouin-scattering based slow light systems,” Opt. Lett.33, 1398–1400 (2008).
[CrossRef] [PubMed]

T. Schneider, M. Junker, and K.-U. Lauterbach, “Time delay enhancement in stimulated Brillouin scattering based slow light systems,” Opt. Lett.32, 220–222 (2007).
[CrossRef] [PubMed]

T. Schneider, M. Junker, and K.-U. Lauterbach, “Theoretical and experimental investigation of Brillouin scattering for the generation of Millimeter waves,” J. Opt. Soc. Am. B23, 1012–1019 (2006).
[CrossRef]

T. Schneider, Nonlinear Optics in Telecommunications (Springer-Verlag, 2004).

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tuneable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94, 153902–153906 (2005).
[CrossRef] [PubMed]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tuneable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94, 153902–153906 (2005).
[CrossRef] [PubMed]

Song, K. Y.

Thévenaz, L.

Tucker, R. S.

R. S. Tucker, “Green optical communicationspart II: energy limitations in networks,” IEEE J. Sel. Top. Quantum Electron.17, 261–274 (2011).
[CrossRef]

Voges, E.

E. Voges and K. Petermann, Handbuch der Optischen Kommunikationstechnik (Springer-Verlag, 2002).

Wiatrek, A.

Willner, A. E.

Winzer, P. J.

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94, 952–985 (2006).
[CrossRef]

A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol.23, 115–130 (2005).
[CrossRef]

Yan, L.

Zhang, B.

Zhang, L.

Zhu, Z.

Zhu, Z. M.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tuneable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94, 153902–153906 (2005).
[CrossRef] [PubMed]

Adv. Opt. Photon.

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

R. S. Tucker, “Green optical communicationspart II: energy limitations in networks,” IEEE J. Sel. Top. Quantum Electron.17, 261–274 (2011).
[CrossRef]

K. Jamshidi, S. Preussler, A. Wiatrek, and T. Schneider, “A review to the all-optical quasi-light storage,” IEEE J. Sel. Top. Quantum Electron.18, 884–890 (2012).
[CrossRef]

J. Lightwave Technol.

J. Opt. Commun.

D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun.4, 10–19 (1983).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tuneable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94, 153902–153906 (2005).
[CrossRef] [PubMed]

Proc. IEEE

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94, 952–985 (2006).
[CrossRef]

Other

T. Schneider, Nonlinear Optics in Telecommunications (Springer-Verlag, 2004).

E. Voges and K. Petermann, Handbuch der Optischen Kommunikationstechnik (Springer-Verlag, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Representation of the BPSK modulated data packet in time (left side) and frequency domain (right side). The dashed line shows the power spectral density function of the BPSK modulated packet whereas the solid line shows the QLS applied to the spectrum. The frequency components resulting from the packet length are not shown.

Fig. 2
Fig. 2

Normalized real and imaginary parts of the Brillouin gain.

Fig. 3
Fig. 3

Experimental setup for the storage of phase modulated signals. LD: laser diode, PM: phase modulator, AWG: arbitrary waveform generator, MZM: Mach-Zehnder modulator, EDFA: erbium doped fiber amplifier, C: circulator, LO: local oscillator, Osci: oscilloscope, OSA: optical spectrum analyzer.

Fig. 4
Fig. 4

Measurement results for a 11001101 BPSK modulated bit sequence with the reference signal on the left side (black) and the different extracted copies of the SBS based QLS.

Fig. 5
Fig. 5

The extracted patterns overlapped together with the reference (black line) in order to highlight the distortions.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ k = Δ k R + j Δ k I = v a 2 α a / 2 ( Δ f B 2 ) 2 + ( f f S B S ) 2 + j v a ( f f S B S ) ( Δ f B 2 ) 2 + ( f f S B S ) 2

Metrics