Abstract

A compact, static hyperspectral imaging linear polarimeter (HILP) based on a Savart interferometer (SI) is conceptually described. It improves the existing SI by replacing front polarizer with two Wollaston prisms, and can simultaneously acquire four interferograms corresponding to four linearly polarized lights on a single CCD. The spectral dependence of linear Stokes parameters can be recovered with Fourier transformation. Since there is no rotating or moving parts, the system is relatively robust. The interference model of the HILP is proved. The performance of the system is demonstrated through a numerical simulation, and the methods for compensating the imperfection of the polarization elements are described.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt.45(22), 5453–5469 (2006).
    [CrossRef] [PubMed]
  2. E. A. Sornsin and R. A. Chipman, “Alignment and calibration of an infrared achromatic retarder using FTIR Mueller matrix spectropolarimetry,” Proc. SPIE3121, 28–34 (1997).
    [CrossRef]
  3. D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Food, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE5659, 88–96 (2005).
    [CrossRef]
  4. N. Hagen, A. M. Locke, D. S. Sabatke, E. L. Dereniak, and D. T. Sass, “Methods and applications of snapshot spectropolarimetry,” Proc. SPIE5432, 167–174 (2004).
    [CrossRef]
  5. S. H. Jones, F. J. Iannarilli, and P. L. Kebabian, “Realization of quantitative-grade fieldable snapshot imaging spectropolarimeter,” Opt. Express12(26), 6559–6573 (2004).
    [CrossRef] [PubMed]
  6. F. Snik, T. Karalidi, and C. U. Keller, “Spectral modulation for full linear polarimetry,” Appl. Opt.48(7), 1337–1346 (2009).
    [CrossRef] [PubMed]
  7. R. G. Nadeau, W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, and K. Messmer, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med.5(10), 1209–1212 (1999).
    [CrossRef] [PubMed]
  8. R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med.7(11), 1245–1248 (2001).
    [CrossRef] [PubMed]
  9. D. Goldstein, Polarized Light, 2 ed. (Marcel Dekker, 2003).
  10. J. S. Tyo and T. S. Turner., “Variable-retardance, Fourier-transform imaging spectropolarimeters for visible spectrum remote sensing,” Appl. Opt.40(9), 1450–1458 (2001).
    [CrossRef] [PubMed]
  11. J. E. Ahmad and Y. Takakura, “Error analysis for rotating active Stokes-Mueller imaging polarimeters,” Opt. Lett.31(19), 2858–2860 (2006).
    [CrossRef] [PubMed]
  12. S. Guyot, M. Anastasiadou, E. Deléchelle, and A. De Martino, “Registration scheme suitable to Mueller matrix imaging for biomedical applications,” Opt. Express15(12), 7393–7400 (2007).
    [CrossRef] [PubMed]
  13. K. Oka and T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Opt. Lett.24(21), 1475–1477 (1999).
    [CrossRef] [PubMed]
  14. D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng.41(5), 1048–1054 (2002).
    [CrossRef]
  15. M. W. Kudenov, N. A. Hagen, E. L. Dereniak, and G. R. Gerhart, “Fourier transform channeled spectropolarimetry in the MWIR,” Opt. Express15(20), 12792–12805 (2007).
    [CrossRef] [PubMed]
  16. J. Craven-Jones, M. W. Kudenov, M. G. Stapelbroek, and E. L. Dereniak, “Infrared hyperspectral imaging polarimeter using birefringent prisms,” Appl. Opt.50(8), 1170–1185 (2011).
    [CrossRef] [PubMed]
  17. C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun.203(1-2), 21–26 (2002).
    [CrossRef]
  18. C. Zhang, B. Zhao, and B. Xiangli, “Wide-field-of-view polarization interference imaging spectrometer,” Appl. Opt.43(33), 6090–6094 (2004).
    [CrossRef] [PubMed]
  19. C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun.281(8), 2050–2056 (2008).
    [CrossRef]
  20. T. Mu, C. Zhang, and B. Zhao, “Principle and analysis of a polarization imaging spectrometer,” Appl. Opt.48(12), 2333–2339 (2009).
    [CrossRef] [PubMed]
  21. X. Jian, C. Zhang, L. Zhang, and B. Zhao, “The data processing of the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Express18(6), 5674–5680 (2010).
    [CrossRef] [PubMed]
  22. C. Zhang and X. Jian, “Wide-spectrum reconstruction method for a birefringence interference imaging spectrometer,” Opt. Lett.35(3), 366–368 (2010).
    [CrossRef] [PubMed]
  23. T. Mu, C. Zhang, W. Ren, and X. Jian, “Static dual-channel polarization imaging spectrometer for simultaneous acquisition of inphase and antiphase interference images,” Meas. Sci. Technol.22(10), 105302 (2011).
    [CrossRef]
  24. T. Mu, C. Zhang, W. Ren, L. Zhang, and X. Jian, “Interferometric verification for the polarization imaging spectrometer,” J. Mod. Opt.58(2), 154–159 (2011).
    [CrossRef]
  25. R. G. Sellar and G. D. Boreman, “Comparison of relative signal-to-noise ratios of different classes of imaging spectrometer,” Appl. Opt.44(9), 1614–1624 (2005).
    [CrossRef] [PubMed]
  26. T. Mu, C. Zhang, and B. Zhao, “Analysis of the accuracy optical path difference and fringe location in polarization interference imaging spectrometer,” Acta Phys. Sin.58, 3877–3886 (2009).
  27. G. Wong, R. Pilkington, and A. R. Harvey, “Achromatization of Wollaston polarizing beam splitters,” Opt. Lett.36(8), 1332–1334 (2011).
    [CrossRef] [PubMed]
  28. B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, and M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun.130(1-3), 1–6 (1996).
    [CrossRef]
  29. W. Ren, C. Zhang, T. Mu, and H. Dai, “Spectrum reconstruction based on the constrained optimal linear inverse methods,” Opt. Lett.37(13), 2580–2582 (2012).
    [CrossRef] [PubMed]
  30. Newport Corporation, http://www.newport.com/ .
  31. J. Liu, Y. Cai, H. Chen, X. Zeng, D. Zou, and S. Xu, “Design for the optical retardation in broadband zero-order half-wave plates,” Opt. Express19(9), 8557–8564 (2011).
    [CrossRef] [PubMed]

2012 (1)

2011 (5)

2010 (2)

2009 (3)

2008 (1)

C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun.281(8), 2050–2056 (2008).
[CrossRef]

2007 (2)

2006 (2)

2005 (2)

R. G. Sellar and G. D. Boreman, “Comparison of relative signal-to-noise ratios of different classes of imaging spectrometer,” Appl. Opt.44(9), 1614–1624 (2005).
[CrossRef] [PubMed]

D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Food, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE5659, 88–96 (2005).
[CrossRef]

2004 (3)

2002 (2)

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng.41(5), 1048–1054 (2002).
[CrossRef]

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun.203(1-2), 21–26 (2002).
[CrossRef]

2001 (2)

J. S. Tyo and T. S. Turner., “Variable-retardance, Fourier-transform imaging spectropolarimeters for visible spectrum remote sensing,” Appl. Opt.40(9), 1450–1458 (2001).
[CrossRef] [PubMed]

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med.7(11), 1245–1248 (2001).
[CrossRef] [PubMed]

1999 (2)

R. G. Nadeau, W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, and K. Messmer, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med.5(10), 1209–1212 (1999).
[CrossRef] [PubMed]

K. Oka and T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Opt. Lett.24(21), 1475–1477 (1999).
[CrossRef] [PubMed]

1997 (1)

E. A. Sornsin and R. A. Chipman, “Alignment and calibration of an infrared achromatic retarder using FTIR Mueller matrix spectropolarimetry,” Proc. SPIE3121, 28–34 (1997).
[CrossRef]

1996 (1)

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, and M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun.130(1-3), 1–6 (1996).
[CrossRef]

Ahmad, J. E.

Anastasiadou, M.

Antoni, M.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, and M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun.130(1-3), 1–6 (1996).
[CrossRef]

Backman, V.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med.7(11), 1245–1248 (2001).
[CrossRef] [PubMed]

Badizadegan, K.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med.7(11), 1245–1248 (2001).
[CrossRef] [PubMed]

Beaudry, N.

D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Food, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE5659, 88–96 (2005).
[CrossRef]

Boreman, G. D.

Bouma, G. J.

R. G. Nadeau, W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, and K. Messmer, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med.5(10), 1209–1212 (1999).
[CrossRef] [PubMed]

Cai, Y.

Cairns, B.

D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Food, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE5659, 88–96 (2005).
[CrossRef]

Chen, H.

Chenault, D. B.

Chipman, R. A.

D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Food, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE5659, 88–96 (2005).
[CrossRef]

E. A. Sornsin and R. A. Chipman, “Alignment and calibration of an infrared achromatic retarder using FTIR Mueller matrix spectropolarimetry,” Proc. SPIE3121, 28–34 (1997).
[CrossRef]

Courtial, J.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, and M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun.130(1-3), 1–6 (1996).
[CrossRef]

Craven-Jones, J.

Cunningham, T. J.

D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Food, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE5659, 88–96 (2005).
[CrossRef]

Dai, H.

Dasari, R. R.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med.7(11), 1245–1248 (2001).
[CrossRef] [PubMed]

De Martino, A.

Deléchelle, E.

Dereniak, E. L.

J. Craven-Jones, M. W. Kudenov, M. G. Stapelbroek, and E. L. Dereniak, “Infrared hyperspectral imaging polarimeter using birefringent prisms,” Appl. Opt.50(8), 1170–1185 (2011).
[CrossRef] [PubMed]

M. W. Kudenov, N. A. Hagen, E. L. Dereniak, and G. R. Gerhart, “Fourier transform channeled spectropolarimetry in the MWIR,” Opt. Express15(20), 12792–12805 (2007).
[CrossRef] [PubMed]

N. Hagen, A. M. Locke, D. S. Sabatke, E. L. Dereniak, and D. T. Sass, “Methods and applications of snapshot spectropolarimetry,” Proc. SPIE5432, 167–174 (2004).
[CrossRef]

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng.41(5), 1048–1054 (2002).
[CrossRef]

Descour, M.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng.41(5), 1048–1054 (2002).
[CrossRef]

Diner, D. J.

D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Food, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE5659, 88–96 (2005).
[CrossRef]

Duncan, A. J.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, and M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun.130(1-3), 1–6 (1996).
[CrossRef]

Feld, M. S.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med.7(11), 1245–1248 (2001).
[CrossRef] [PubMed]

Food, L. D.

D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Food, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE5659, 88–96 (2005).
[CrossRef]

Garcia, J.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng.41(5), 1048–1054 (2002).
[CrossRef]

Georgakoudi, I.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med.7(11), 1245–1248 (2001).
[CrossRef] [PubMed]

Gerhart, G. R.

Goldstein, D. L.

Groner, W.

R. G. Nadeau, W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, and K. Messmer, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med.5(10), 1209–1212 (1999).
[CrossRef] [PubMed]

Gurjar, R. S.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med.7(11), 1245–1248 (2001).
[CrossRef] [PubMed]

Guyot, S.

Hagen, N.

N. Hagen, A. M. Locke, D. S. Sabatke, E. L. Dereniak, and D. T. Sass, “Methods and applications of snapshot spectropolarimetry,” Proc. SPIE5432, 167–174 (2004).
[CrossRef]

Hagen, N. A.

Hamilton, T.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng.41(5), 1048–1054 (2002).
[CrossRef]

Harris, A. G.

R. G. Nadeau, W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, and K. Messmer, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med.5(10), 1209–1212 (1999).
[CrossRef] [PubMed]

Harvey, A. R.

Iannarilli, F. J.

Ince, C.

R. G. Nadeau, W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, and K. Messmer, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med.5(10), 1209–1212 (1999).
[CrossRef] [PubMed]

Itzkan, I.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med.7(11), 1245–1248 (2001).
[CrossRef] [PubMed]

Jian, X.

T. Mu, C. Zhang, W. Ren, and X. Jian, “Static dual-channel polarization imaging spectrometer for simultaneous acquisition of inphase and antiphase interference images,” Meas. Sci. Technol.22(10), 105302 (2011).
[CrossRef]

T. Mu, C. Zhang, W. Ren, L. Zhang, and X. Jian, “Interferometric verification for the polarization imaging spectrometer,” J. Mod. Opt.58(2), 154–159 (2011).
[CrossRef]

C. Zhang and X. Jian, “Wide-spectrum reconstruction method for a birefringence interference imaging spectrometer,” Opt. Lett.35(3), 366–368 (2010).
[CrossRef] [PubMed]

X. Jian, C. Zhang, L. Zhang, and B. Zhao, “The data processing of the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Express18(6), 5674–5680 (2010).
[CrossRef] [PubMed]

Jones, S. H.

Karalidi, T.

Kato, T.

Kebabian, P. L.

Keller, C.

D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Food, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE5659, 88–96 (2005).
[CrossRef]

Keller, C. U.

Kudenov, M. W.

Liu, J.

Locke, A.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng.41(5), 1048–1054 (2002).
[CrossRef]

Locke, A. M.

N. Hagen, A. M. Locke, D. S. Sabatke, E. L. Dereniak, and D. T. Sass, “Methods and applications of snapshot spectropolarimetry,” Proc. SPIE5432, 167–174 (2004).
[CrossRef]

Macenka, S. A.

D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Food, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE5659, 88–96 (2005).
[CrossRef]

McMillan, R. W.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng.41(5), 1048–1054 (2002).
[CrossRef]

Messmer, K.

R. G. Nadeau, W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, and K. Messmer, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med.5(10), 1209–1212 (1999).
[CrossRef] [PubMed]

Mu, T.

W. Ren, C. Zhang, T. Mu, and H. Dai, “Spectrum reconstruction based on the constrained optimal linear inverse methods,” Opt. Lett.37(13), 2580–2582 (2012).
[CrossRef] [PubMed]

T. Mu, C. Zhang, W. Ren, L. Zhang, and X. Jian, “Interferometric verification for the polarization imaging spectrometer,” J. Mod. Opt.58(2), 154–159 (2011).
[CrossRef]

T. Mu, C. Zhang, W. Ren, and X. Jian, “Static dual-channel polarization imaging spectrometer for simultaneous acquisition of inphase and antiphase interference images,” Meas. Sci. Technol.22(10), 105302 (2011).
[CrossRef]

T. Mu, C. Zhang, and B. Zhao, “Analysis of the accuracy optical path difference and fringe location in polarization interference imaging spectrometer,” Acta Phys. Sin.58, 3877–3886 (2009).

T. Mu, C. Zhang, and B. Zhao, “Principle and analysis of a polarization imaging spectrometer,” Appl. Opt.48(12), 2333–2339 (2009).
[CrossRef] [PubMed]

Nadeau, R. G.

R. G. Nadeau, W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, and K. Messmer, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med.5(10), 1209–1212 (1999).
[CrossRef] [PubMed]

Oka, K.

Padgett, M. J.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, and M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun.130(1-3), 1–6 (1996).
[CrossRef]

Patterson, B. A.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, and M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun.130(1-3), 1–6 (1996).
[CrossRef]

Perelman, L. T.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med.7(11), 1245–1248 (2001).
[CrossRef] [PubMed]

Pilkington, R.

Ren, W.

W. Ren, C. Zhang, T. Mu, and H. Dai, “Spectrum reconstruction based on the constrained optimal linear inverse methods,” Opt. Lett.37(13), 2580–2582 (2012).
[CrossRef] [PubMed]

T. Mu, C. Zhang, W. Ren, L. Zhang, and X. Jian, “Interferometric verification for the polarization imaging spectrometer,” J. Mod. Opt.58(2), 154–159 (2011).
[CrossRef]

T. Mu, C. Zhang, W. Ren, and X. Jian, “Static dual-channel polarization imaging spectrometer for simultaneous acquisition of inphase and antiphase interference images,” Meas. Sci. Technol.22(10), 105302 (2011).
[CrossRef]

Sabatke, D.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng.41(5), 1048–1054 (2002).
[CrossRef]

Sabatke, D. S.

N. Hagen, A. M. Locke, D. S. Sabatke, E. L. Dereniak, and D. T. Sass, “Methods and applications of snapshot spectropolarimetry,” Proc. SPIE5432, 167–174 (2004).
[CrossRef]

Sass, D. T.

N. Hagen, A. M. Locke, D. S. Sabatke, E. L. Dereniak, and D. T. Sass, “Methods and applications of snapshot spectropolarimetry,” Proc. SPIE5432, 167–174 (2004).
[CrossRef]

Sellar, R. G.

Seshadri, S.

D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Food, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE5659, 88–96 (2005).
[CrossRef]

Shaw, J. A.

Sibbett, W.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, and M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun.130(1-3), 1–6 (1996).
[CrossRef]

Snik, F.

Sornsin, E. A.

E. A. Sornsin and R. A. Chipman, “Alignment and calibration of an infrared achromatic retarder using FTIR Mueller matrix spectropolarimetry,” Proc. SPIE3121, 28–34 (1997).
[CrossRef]

Stapelbroek, M. G.

Takakura, Y.

Turner, T. S.

Tyo, J. S.

Winkelman, J. W.

R. G. Nadeau, W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, and K. Messmer, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med.5(10), 1209–1212 (1999).
[CrossRef] [PubMed]

Wong, G.

Xiangli, B.

C. Zhang, B. Zhao, and B. Xiangli, “Wide-field-of-view polarization interference imaging spectrometer,” Appl. Opt.43(33), 6090–6094 (2004).
[CrossRef] [PubMed]

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun.203(1-2), 21–26 (2002).
[CrossRef]

Xu, S.

Yan, X.

C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun.281(8), 2050–2056 (2008).
[CrossRef]

Yuan, X.

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun.203(1-2), 21–26 (2002).
[CrossRef]

Zeng, X.

Zhang, C.

W. Ren, C. Zhang, T. Mu, and H. Dai, “Spectrum reconstruction based on the constrained optimal linear inverse methods,” Opt. Lett.37(13), 2580–2582 (2012).
[CrossRef] [PubMed]

T. Mu, C. Zhang, W. Ren, L. Zhang, and X. Jian, “Interferometric verification for the polarization imaging spectrometer,” J. Mod. Opt.58(2), 154–159 (2011).
[CrossRef]

T. Mu, C. Zhang, W. Ren, and X. Jian, “Static dual-channel polarization imaging spectrometer for simultaneous acquisition of inphase and antiphase interference images,” Meas. Sci. Technol.22(10), 105302 (2011).
[CrossRef]

X. Jian, C. Zhang, L. Zhang, and B. Zhao, “The data processing of the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Express18(6), 5674–5680 (2010).
[CrossRef] [PubMed]

C. Zhang and X. Jian, “Wide-spectrum reconstruction method for a birefringence interference imaging spectrometer,” Opt. Lett.35(3), 366–368 (2010).
[CrossRef] [PubMed]

T. Mu, C. Zhang, and B. Zhao, “Principle and analysis of a polarization imaging spectrometer,” Appl. Opt.48(12), 2333–2339 (2009).
[CrossRef] [PubMed]

T. Mu, C. Zhang, and B. Zhao, “Analysis of the accuracy optical path difference and fringe location in polarization interference imaging spectrometer,” Acta Phys. Sin.58, 3877–3886 (2009).

C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun.281(8), 2050–2056 (2008).
[CrossRef]

C. Zhang, B. Zhao, and B. Xiangli, “Wide-field-of-view polarization interference imaging spectrometer,” Appl. Opt.43(33), 6090–6094 (2004).
[CrossRef] [PubMed]

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun.203(1-2), 21–26 (2002).
[CrossRef]

Zhang, L.

T. Mu, C. Zhang, W. Ren, L. Zhang, and X. Jian, “Interferometric verification for the polarization imaging spectrometer,” J. Mod. Opt.58(2), 154–159 (2011).
[CrossRef]

X. Jian, C. Zhang, L. Zhang, and B. Zhao, “The data processing of the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Express18(6), 5674–5680 (2010).
[CrossRef] [PubMed]

Zhao, B.

X. Jian, C. Zhang, L. Zhang, and B. Zhao, “The data processing of the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Express18(6), 5674–5680 (2010).
[CrossRef] [PubMed]

T. Mu, C. Zhang, and B. Zhao, “Analysis of the accuracy optical path difference and fringe location in polarization interference imaging spectrometer,” Acta Phys. Sin.58, 3877–3886 (2009).

T. Mu, C. Zhang, and B. Zhao, “Principle and analysis of a polarization imaging spectrometer,” Appl. Opt.48(12), 2333–2339 (2009).
[CrossRef] [PubMed]

C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun.281(8), 2050–2056 (2008).
[CrossRef]

C. Zhang, B. Zhao, and B. Xiangli, “Wide-field-of-view polarization interference imaging spectrometer,” Appl. Opt.43(33), 6090–6094 (2004).
[CrossRef] [PubMed]

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun.203(1-2), 21–26 (2002).
[CrossRef]

Zou, D.

Acta Phys. Sin. (1)

T. Mu, C. Zhang, and B. Zhao, “Analysis of the accuracy optical path difference and fringe location in polarization interference imaging spectrometer,” Acta Phys. Sin.58, 3877–3886 (2009).

Appl. Opt. (7)

J. Mod. Opt. (1)

T. Mu, C. Zhang, W. Ren, L. Zhang, and X. Jian, “Interferometric verification for the polarization imaging spectrometer,” J. Mod. Opt.58(2), 154–159 (2011).
[CrossRef]

Meas. Sci. Technol. (1)

T. Mu, C. Zhang, W. Ren, and X. Jian, “Static dual-channel polarization imaging spectrometer for simultaneous acquisition of inphase and antiphase interference images,” Meas. Sci. Technol.22(10), 105302 (2011).
[CrossRef]

Nat. Med. (2)

R. G. Nadeau, W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, and K. Messmer, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med.5(10), 1209–1212 (1999).
[CrossRef] [PubMed]

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med.7(11), 1245–1248 (2001).
[CrossRef] [PubMed]

Opt. Commun. (3)

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun.203(1-2), 21–26 (2002).
[CrossRef]

C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun.281(8), 2050–2056 (2008).
[CrossRef]

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, and M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun.130(1-3), 1–6 (1996).
[CrossRef]

Opt. Eng. (1)

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng.41(5), 1048–1054 (2002).
[CrossRef]

Opt. Express (5)

Opt. Lett. (5)

Proc. SPIE (3)

E. A. Sornsin and R. A. Chipman, “Alignment and calibration of an infrared achromatic retarder using FTIR Mueller matrix spectropolarimetry,” Proc. SPIE3121, 28–34 (1997).
[CrossRef]

D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Food, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE5659, 88–96 (2005).
[CrossRef]

N. Hagen, A. M. Locke, D. S. Sabatke, E. L. Dereniak, and D. T. Sass, “Methods and applications of snapshot spectropolarimetry,” Proc. SPIE5432, 167–174 (2004).
[CrossRef]

Other (2)

D. Goldstein, Polarized Light, 2 ed. (Marcel Dekker, 2003).

Newport Corporation, http://www.newport.com/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical layout of a hyperspectral imaging linear polarimeter based on a Savart interferometer. L0, L1, L2, lens; WP, Wollaston prism; HWP, achromatic half-wave plate; SP, Savart polariscope; LA, linear polarizer; CCD, charge coupled device. The double-arrow lines in WPs, HWP and SP indicate the orientation of optic axes and in LA denotes transmission axis.

Fig. 2
Fig. 2

The simulated interferograms corresponding each input polarized components.

Fig. 3
Fig. 3

Superimposed original spectra (solid lines) and reconstructed spectra (dotted lines) for (a) the four polarization components and (b) for the Stokes parameters.

Fig. 4
Fig. 4

Retardance of the achromatic HWP varies with the wavelength (Attainable from the webpage of the Newport Corp).

Fig. 5
Fig. 5

Optical layout of a HILP based on a Wollaston interferogram.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S(σ,x,y)=[ S 0 (σ,x,y) S 1 (σ,x,y) S 2 (σ,x,y) S 3 (σ,x,y) ]=[ I 0° (σ,x,y)+ I 90° (σ,x,y) I 0° (σ,x,y) I 90° (σ,x,y) I 45° (σ,x,y) I 45° (σ,x,y) I R (σ,x,y) I L (σ,x,y) ]
Δ(σ,x)=d(σ)x/f,
I 1 (σ,x,y)=1/2[ I 0° (σ,x,y)+ I 0° (σ,x,y)cos(2πσxd/f)],
I 2 (σ,x,y)=1/2[ I 90° (σ,x,y) I 90° (σ,x,y)cos(2πσxd/f)],
I 3 (σ,x,y)=1/2[ I 45° (σ,x,y)+ I 45° (σ,x,y)cos(2πσxd/f)],
I 4 (σ,x,y)=1/2[ I 45° (σ,x,y) I 45° (σ,x,y)cos(2πσxd/f)],

Metrics