Abstract

We demonstrate rapid switching between picosecond and femtosecond operational regimes in a Cr4+:forsterite laser, using an electrically-contacted GaInNAs SESAM with saturable absorption characteristics controlled via the quantum-confined Stark effect. Additionally, continuous picosecond pulse duration tuning by over a factor 3 is reported.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Sibbett, A. A. Lagatsky, and C. T. A. Brown, “The development and application of femtosecond laser systems,” Opt. Express20(7), 6989–7001 (2012).
    [CrossRef] [PubMed]
  2. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2(3), 454–464 (1996).
    [CrossRef]
  3. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
    [CrossRef]
  4. V. G. Savitski, D. Burns, and S. Calvez, “Optically-pumped saturable absorber for fast switching between continuous-wave and passively mode-locked regimes of a Nd:YVO(4) laser,” Opt. Express17(7), 5373–5378 (2009).
    [CrossRef] [PubMed]
  5. V. G. Savitski, N. K. Metzger, S. Calvez, D. Burns, W. Sibbett, and C. T. A. Brown, “Optical trapping with “on-demand” two-photon luminescence using Cr:LiSAF laser with optically addressed saturable Bragg reflector,” Opt. Express20(7), 7066–7070 (2012).
    [CrossRef] [PubMed]
  6. B. Stormont, E. U. Rafailov, I. G. Cormack, A. Mooradian, and W. Sibbett, “Extended-cavity surface-emitting diode laser as active mirror controlling modelocked Ti: sapphire laser,” Electron. Lett.40(12), 732–734 (2004).
    [CrossRef]
  7. A. A. Lagatsky, E. U. Rafailov, W. Sibbett, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Quantum-dot-based saturable absorber with p-n junction for mode-locking of solid-state lasers,” IEEE Photon. Technol. Lett.17(2), 294–296 (2005).
    [CrossRef]
  8. S. A. Zolotovskaya, K. G. Wilcox, A. Abdolvand, D. A. Livshits, and E. U. Rafailov, “Electronically controlled pulse duration passively modelocked Cr: forsterite laser,” IEEE Photon. Technol. Lett.21(16), 1124–1126 (2009).
    [CrossRef]
  9. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures - the quantum-confined Stark-effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
    [CrossRef]
  10. C. T. A. Brown, D. J. Stevenson, X. Tsampoula, C. McDougall, A. A. Lagatsky, W. Sibbett, F. J. Gunn-Moore, and K. Dholakia, “Enhanced operation of femtosecond lasers and applications in cell transfection,” J Biophoton.1(3), 183–199 (2008).
    [CrossRef] [PubMed]
  11. V. Liverini, S. Schon, R. Grange, M. Haiml, S. C. Zeller, and U. Keller, “Low-loss GaInNAs saturable absorber mode locking a 1.3-mu m solid-state laser,” Appl. Phys. Lett.84(20), 4002–4004 (2004).
    [CrossRef]
  12. A. McWilliam, A. A. Lagatsky, C. G. Leburn, P. Fischer, C. T. A. Brown, G. J. Valentine, A. J. Kemp, S. Calvez, D. Burns, M. D. Dawson, M. Pessa, and W. Sibbett, “Low-loss GaInNAs saturable Bragg reflector for mode-locking of a femtosecond Cr4+: Forsterite-laser,” IEEE Photon. Technol. Lett.17(11), 2292–2294 (2005).
    [CrossRef]
  13. R. Grange, A. Rutz, V. Liverini, M. Haiml, S. Schon, and U. Keller, “Nonlinear absorption edge properties of 1.3-mu m GaInNAs saturable absorbers,” Appl. Phys. Lett.87(13), 132103 (2005).
    [CrossRef]
  14. J. Misiewicz, P. Sitarek, G. Sek, and R. Kudrawiec, “Semiconductor heterostructures and device structures investigated by photoreflectance spectroscopy,” Mater. Sci.-Poland21, 263–320 (2003).
  15. S. L. Chuang, Physics of Photonic Devices 1 ed., Wiley Series in Pure and Applied Optics (Wiley,2009).
  16. P. Cerný, G. Valentine, D. Burns, and K. McEwan, “Passive stabilization of a passively mode-locked laser by nonlinear absorption in indium phosphide,” Opt. Lett.29(12), 1387–1389 (2004).
    [CrossRef] [PubMed]
  17. F. X. Kärtner and U. Keller, “Stabilization of solitonlike pulses with a slow saturable absorber,” Opt. Lett.20(1), 16–18 (1995).
    [CrossRef] [PubMed]

2012 (2)

2009 (2)

V. G. Savitski, D. Burns, and S. Calvez, “Optically-pumped saturable absorber for fast switching between continuous-wave and passively mode-locked regimes of a Nd:YVO(4) laser,” Opt. Express17(7), 5373–5378 (2009).
[CrossRef] [PubMed]

S. A. Zolotovskaya, K. G. Wilcox, A. Abdolvand, D. A. Livshits, and E. U. Rafailov, “Electronically controlled pulse duration passively modelocked Cr: forsterite laser,” IEEE Photon. Technol. Lett.21(16), 1124–1126 (2009).
[CrossRef]

2008 (1)

C. T. A. Brown, D. J. Stevenson, X. Tsampoula, C. McDougall, A. A. Lagatsky, W. Sibbett, F. J. Gunn-Moore, and K. Dholakia, “Enhanced operation of femtosecond lasers and applications in cell transfection,” J Biophoton.1(3), 183–199 (2008).
[CrossRef] [PubMed]

2005 (3)

A. A. Lagatsky, E. U. Rafailov, W. Sibbett, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Quantum-dot-based saturable absorber with p-n junction for mode-locking of solid-state lasers,” IEEE Photon. Technol. Lett.17(2), 294–296 (2005).
[CrossRef]

A. McWilliam, A. A. Lagatsky, C. G. Leburn, P. Fischer, C. T. A. Brown, G. J. Valentine, A. J. Kemp, S. Calvez, D. Burns, M. D. Dawson, M. Pessa, and W. Sibbett, “Low-loss GaInNAs saturable Bragg reflector for mode-locking of a femtosecond Cr4+: Forsterite-laser,” IEEE Photon. Technol. Lett.17(11), 2292–2294 (2005).
[CrossRef]

R. Grange, A. Rutz, V. Liverini, M. Haiml, S. Schon, and U. Keller, “Nonlinear absorption edge properties of 1.3-mu m GaInNAs saturable absorbers,” Appl. Phys. Lett.87(13), 132103 (2005).
[CrossRef]

2004 (3)

B. Stormont, E. U. Rafailov, I. G. Cormack, A. Mooradian, and W. Sibbett, “Extended-cavity surface-emitting diode laser as active mirror controlling modelocked Ti: sapphire laser,” Electron. Lett.40(12), 732–734 (2004).
[CrossRef]

V. Liverini, S. Schon, R. Grange, M. Haiml, S. C. Zeller, and U. Keller, “Low-loss GaInNAs saturable absorber mode locking a 1.3-mu m solid-state laser,” Appl. Phys. Lett.84(20), 4002–4004 (2004).
[CrossRef]

P. Cerný, G. Valentine, D. Burns, and K. McEwan, “Passive stabilization of a passively mode-locked laser by nonlinear absorption in indium phosphide,” Opt. Lett.29(12), 1387–1389 (2004).
[CrossRef] [PubMed]

2003 (1)

J. Misiewicz, P. Sitarek, G. Sek, and R. Kudrawiec, “Semiconductor heterostructures and device structures investigated by photoreflectance spectroscopy,” Mater. Sci.-Poland21, 263–320 (2003).

1996 (2)

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2(3), 454–464 (1996).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

1995 (1)

1984 (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures - the quantum-confined Stark-effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Abdolvand, A.

S. A. Zolotovskaya, K. G. Wilcox, A. Abdolvand, D. A. Livshits, and E. U. Rafailov, “Electronically controlled pulse duration passively modelocked Cr: forsterite laser,” IEEE Photon. Technol. Lett.21(16), 1124–1126 (2009).
[CrossRef]

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Brown, C. T. A.

V. G. Savitski, N. K. Metzger, S. Calvez, D. Burns, W. Sibbett, and C. T. A. Brown, “Optical trapping with “on-demand” two-photon luminescence using Cr:LiSAF laser with optically addressed saturable Bragg reflector,” Opt. Express20(7), 7066–7070 (2012).
[CrossRef] [PubMed]

W. Sibbett, A. A. Lagatsky, and C. T. A. Brown, “The development and application of femtosecond laser systems,” Opt. Express20(7), 6989–7001 (2012).
[CrossRef] [PubMed]

C. T. A. Brown, D. J. Stevenson, X. Tsampoula, C. McDougall, A. A. Lagatsky, W. Sibbett, F. J. Gunn-Moore, and K. Dholakia, “Enhanced operation of femtosecond lasers and applications in cell transfection,” J Biophoton.1(3), 183–199 (2008).
[CrossRef] [PubMed]

A. McWilliam, A. A. Lagatsky, C. G. Leburn, P. Fischer, C. T. A. Brown, G. J. Valentine, A. J. Kemp, S. Calvez, D. Burns, M. D. Dawson, M. Pessa, and W. Sibbett, “Low-loss GaInNAs saturable Bragg reflector for mode-locking of a femtosecond Cr4+: Forsterite-laser,” IEEE Photon. Technol. Lett.17(11), 2292–2294 (2005).
[CrossRef]

Burns, D.

Burrus, C. A.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures - the quantum-confined Stark-effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Calvez, S.

Cerný, P.

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures - the quantum-confined Stark-effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Cormack, I. G.

B. Stormont, E. U. Rafailov, I. G. Cormack, A. Mooradian, and W. Sibbett, “Extended-cavity surface-emitting diode laser as active mirror controlling modelocked Ti: sapphire laser,” Electron. Lett.40(12), 732–734 (2004).
[CrossRef]

Cundiff, S. T.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2(3), 454–464 (1996).
[CrossRef]

Cunningham, J. E.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2(3), 454–464 (1996).
[CrossRef]

Damen, T. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures - the quantum-confined Stark-effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Dawson, M. D.

A. McWilliam, A. A. Lagatsky, C. G. Leburn, P. Fischer, C. T. A. Brown, G. J. Valentine, A. J. Kemp, S. Calvez, D. Burns, M. D. Dawson, M. Pessa, and W. Sibbett, “Low-loss GaInNAs saturable Bragg reflector for mode-locking of a femtosecond Cr4+: Forsterite-laser,” IEEE Photon. Technol. Lett.17(11), 2292–2294 (2005).
[CrossRef]

Dholakia, K.

C. T. A. Brown, D. J. Stevenson, X. Tsampoula, C. McDougall, A. A. Lagatsky, W. Sibbett, F. J. Gunn-Moore, and K. Dholakia, “Enhanced operation of femtosecond lasers and applications in cell transfection,” J Biophoton.1(3), 183–199 (2008).
[CrossRef] [PubMed]

Fischer, P.

A. McWilliam, A. A. Lagatsky, C. G. Leburn, P. Fischer, C. T. A. Brown, G. J. Valentine, A. J. Kemp, S. Calvez, D. Burns, M. D. Dawson, M. Pessa, and W. Sibbett, “Low-loss GaInNAs saturable Bragg reflector for mode-locking of a femtosecond Cr4+: Forsterite-laser,” IEEE Photon. Technol. Lett.17(11), 2292–2294 (2005).
[CrossRef]

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Gossard, A. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures - the quantum-confined Stark-effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Grange, R.

R. Grange, A. Rutz, V. Liverini, M. Haiml, S. Schon, and U. Keller, “Nonlinear absorption edge properties of 1.3-mu m GaInNAs saturable absorbers,” Appl. Phys. Lett.87(13), 132103 (2005).
[CrossRef]

V. Liverini, S. Schon, R. Grange, M. Haiml, S. C. Zeller, and U. Keller, “Low-loss GaInNAs saturable absorber mode locking a 1.3-mu m solid-state laser,” Appl. Phys. Lett.84(20), 4002–4004 (2004).
[CrossRef]

Gunn-Moore, F. J.

C. T. A. Brown, D. J. Stevenson, X. Tsampoula, C. McDougall, A. A. Lagatsky, W. Sibbett, F. J. Gunn-Moore, and K. Dholakia, “Enhanced operation of femtosecond lasers and applications in cell transfection,” J Biophoton.1(3), 183–199 (2008).
[CrossRef] [PubMed]

Haiml, M.

R. Grange, A. Rutz, V. Liverini, M. Haiml, S. Schon, and U. Keller, “Nonlinear absorption edge properties of 1.3-mu m GaInNAs saturable absorbers,” Appl. Phys. Lett.87(13), 132103 (2005).
[CrossRef]

V. Liverini, S. Schon, R. Grange, M. Haiml, S. C. Zeller, and U. Keller, “Low-loss GaInNAs saturable absorber mode locking a 1.3-mu m solid-state laser,” Appl. Phys. Lett.84(20), 4002–4004 (2004).
[CrossRef]

Honninger, C.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Jan, W. Y.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2(3), 454–464 (1996).
[CrossRef]

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Kartner, F. X.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Kärtner, F. X.

Keller, U.

R. Grange, A. Rutz, V. Liverini, M. Haiml, S. Schon, and U. Keller, “Nonlinear absorption edge properties of 1.3-mu m GaInNAs saturable absorbers,” Appl. Phys. Lett.87(13), 132103 (2005).
[CrossRef]

V. Liverini, S. Schon, R. Grange, M. Haiml, S. C. Zeller, and U. Keller, “Low-loss GaInNAs saturable absorber mode locking a 1.3-mu m solid-state laser,” Appl. Phys. Lett.84(20), 4002–4004 (2004).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

F. X. Kärtner and U. Keller, “Stabilization of solitonlike pulses with a slow saturable absorber,” Opt. Lett.20(1), 16–18 (1995).
[CrossRef] [PubMed]

Kemp, A. J.

A. McWilliam, A. A. Lagatsky, C. G. Leburn, P. Fischer, C. T. A. Brown, G. J. Valentine, A. J. Kemp, S. Calvez, D. Burns, M. D. Dawson, M. Pessa, and W. Sibbett, “Low-loss GaInNAs saturable Bragg reflector for mode-locking of a femtosecond Cr4+: Forsterite-laser,” IEEE Photon. Technol. Lett.17(11), 2292–2294 (2005).
[CrossRef]

Knox, W. H.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2(3), 454–464 (1996).
[CrossRef]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Kudrawiec, R.

J. Misiewicz, P. Sitarek, G. Sek, and R. Kudrawiec, “Semiconductor heterostructures and device structures investigated by photoreflectance spectroscopy,” Mater. Sci.-Poland21, 263–320 (2003).

Lagatsky, A. A.

W. Sibbett, A. A. Lagatsky, and C. T. A. Brown, “The development and application of femtosecond laser systems,” Opt. Express20(7), 6989–7001 (2012).
[CrossRef] [PubMed]

C. T. A. Brown, D. J. Stevenson, X. Tsampoula, C. McDougall, A. A. Lagatsky, W. Sibbett, F. J. Gunn-Moore, and K. Dholakia, “Enhanced operation of femtosecond lasers and applications in cell transfection,” J Biophoton.1(3), 183–199 (2008).
[CrossRef] [PubMed]

A. McWilliam, A. A. Lagatsky, C. G. Leburn, P. Fischer, C. T. A. Brown, G. J. Valentine, A. J. Kemp, S. Calvez, D. Burns, M. D. Dawson, M. Pessa, and W. Sibbett, “Low-loss GaInNAs saturable Bragg reflector for mode-locking of a femtosecond Cr4+: Forsterite-laser,” IEEE Photon. Technol. Lett.17(11), 2292–2294 (2005).
[CrossRef]

A. A. Lagatsky, E. U. Rafailov, W. Sibbett, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Quantum-dot-based saturable absorber with p-n junction for mode-locking of solid-state lasers,” IEEE Photon. Technol. Lett.17(2), 294–296 (2005).
[CrossRef]

Leburn, C. G.

A. McWilliam, A. A. Lagatsky, C. G. Leburn, P. Fischer, C. T. A. Brown, G. J. Valentine, A. J. Kemp, S. Calvez, D. Burns, M. D. Dawson, M. Pessa, and W. Sibbett, “Low-loss GaInNAs saturable Bragg reflector for mode-locking of a femtosecond Cr4+: Forsterite-laser,” IEEE Photon. Technol. Lett.17(11), 2292–2294 (2005).
[CrossRef]

Liverini, V.

R. Grange, A. Rutz, V. Liverini, M. Haiml, S. Schon, and U. Keller, “Nonlinear absorption edge properties of 1.3-mu m GaInNAs saturable absorbers,” Appl. Phys. Lett.87(13), 132103 (2005).
[CrossRef]

V. Liverini, S. Schon, R. Grange, M. Haiml, S. C. Zeller, and U. Keller, “Low-loss GaInNAs saturable absorber mode locking a 1.3-mu m solid-state laser,” Appl. Phys. Lett.84(20), 4002–4004 (2004).
[CrossRef]

Livshits, D. A.

S. A. Zolotovskaya, K. G. Wilcox, A. Abdolvand, D. A. Livshits, and E. U. Rafailov, “Electronically controlled pulse duration passively modelocked Cr: forsterite laser,” IEEE Photon. Technol. Lett.21(16), 1124–1126 (2009).
[CrossRef]

A. A. Lagatsky, E. U. Rafailov, W. Sibbett, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Quantum-dot-based saturable absorber with p-n junction for mode-locking of solid-state lasers,” IEEE Photon. Technol. Lett.17(2), 294–296 (2005).
[CrossRef]

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

McDougall, C.

C. T. A. Brown, D. J. Stevenson, X. Tsampoula, C. McDougall, A. A. Lagatsky, W. Sibbett, F. J. Gunn-Moore, and K. Dholakia, “Enhanced operation of femtosecond lasers and applications in cell transfection,” J Biophoton.1(3), 183–199 (2008).
[CrossRef] [PubMed]

McEwan, K.

McWilliam, A.

A. McWilliam, A. A. Lagatsky, C. G. Leburn, P. Fischer, C. T. A. Brown, G. J. Valentine, A. J. Kemp, S. Calvez, D. Burns, M. D. Dawson, M. Pessa, and W. Sibbett, “Low-loss GaInNAs saturable Bragg reflector for mode-locking of a femtosecond Cr4+: Forsterite-laser,” IEEE Photon. Technol. Lett.17(11), 2292–2294 (2005).
[CrossRef]

Metzger, N. K.

Miller, D. A. B.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures - the quantum-confined Stark-effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Misiewicz, J.

J. Misiewicz, P. Sitarek, G. Sek, and R. Kudrawiec, “Semiconductor heterostructures and device structures investigated by photoreflectance spectroscopy,” Mater. Sci.-Poland21, 263–320 (2003).

Mooradian, A.

B. Stormont, E. U. Rafailov, I. G. Cormack, A. Mooradian, and W. Sibbett, “Extended-cavity surface-emitting diode laser as active mirror controlling modelocked Ti: sapphire laser,” Electron. Lett.40(12), 732–734 (2004).
[CrossRef]

Pessa, M.

A. McWilliam, A. A. Lagatsky, C. G. Leburn, P. Fischer, C. T. A. Brown, G. J. Valentine, A. J. Kemp, S. Calvez, D. Burns, M. D. Dawson, M. Pessa, and W. Sibbett, “Low-loss GaInNAs saturable Bragg reflector for mode-locking of a femtosecond Cr4+: Forsterite-laser,” IEEE Photon. Technol. Lett.17(11), 2292–2294 (2005).
[CrossRef]

Rafailov, E. U.

S. A. Zolotovskaya, K. G. Wilcox, A. Abdolvand, D. A. Livshits, and E. U. Rafailov, “Electronically controlled pulse duration passively modelocked Cr: forsterite laser,” IEEE Photon. Technol. Lett.21(16), 1124–1126 (2009).
[CrossRef]

A. A. Lagatsky, E. U. Rafailov, W. Sibbett, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Quantum-dot-based saturable absorber with p-n junction for mode-locking of solid-state lasers,” IEEE Photon. Technol. Lett.17(2), 294–296 (2005).
[CrossRef]

B. Stormont, E. U. Rafailov, I. G. Cormack, A. Mooradian, and W. Sibbett, “Extended-cavity surface-emitting diode laser as active mirror controlling modelocked Ti: sapphire laser,” Electron. Lett.40(12), 732–734 (2004).
[CrossRef]

Rutz, A.

R. Grange, A. Rutz, V. Liverini, M. Haiml, S. Schon, and U. Keller, “Nonlinear absorption edge properties of 1.3-mu m GaInNAs saturable absorbers,” Appl. Phys. Lett.87(13), 132103 (2005).
[CrossRef]

Savitski, V. G.

Schon, S.

R. Grange, A. Rutz, V. Liverini, M. Haiml, S. Schon, and U. Keller, “Nonlinear absorption edge properties of 1.3-mu m GaInNAs saturable absorbers,” Appl. Phys. Lett.87(13), 132103 (2005).
[CrossRef]

V. Liverini, S. Schon, R. Grange, M. Haiml, S. C. Zeller, and U. Keller, “Low-loss GaInNAs saturable absorber mode locking a 1.3-mu m solid-state laser,” Appl. Phys. Lett.84(20), 4002–4004 (2004).
[CrossRef]

Sek, G.

J. Misiewicz, P. Sitarek, G. Sek, and R. Kudrawiec, “Semiconductor heterostructures and device structures investigated by photoreflectance spectroscopy,” Mater. Sci.-Poland21, 263–320 (2003).

Sibbett, W.

W. Sibbett, A. A. Lagatsky, and C. T. A. Brown, “The development and application of femtosecond laser systems,” Opt. Express20(7), 6989–7001 (2012).
[CrossRef] [PubMed]

V. G. Savitski, N. K. Metzger, S. Calvez, D. Burns, W. Sibbett, and C. T. A. Brown, “Optical trapping with “on-demand” two-photon luminescence using Cr:LiSAF laser with optically addressed saturable Bragg reflector,” Opt. Express20(7), 7066–7070 (2012).
[CrossRef] [PubMed]

C. T. A. Brown, D. J. Stevenson, X. Tsampoula, C. McDougall, A. A. Lagatsky, W. Sibbett, F. J. Gunn-Moore, and K. Dholakia, “Enhanced operation of femtosecond lasers and applications in cell transfection,” J Biophoton.1(3), 183–199 (2008).
[CrossRef] [PubMed]

A. McWilliam, A. A. Lagatsky, C. G. Leburn, P. Fischer, C. T. A. Brown, G. J. Valentine, A. J. Kemp, S. Calvez, D. Burns, M. D. Dawson, M. Pessa, and W. Sibbett, “Low-loss GaInNAs saturable Bragg reflector for mode-locking of a femtosecond Cr4+: Forsterite-laser,” IEEE Photon. Technol. Lett.17(11), 2292–2294 (2005).
[CrossRef]

A. A. Lagatsky, E. U. Rafailov, W. Sibbett, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Quantum-dot-based saturable absorber with p-n junction for mode-locking of solid-state lasers,” IEEE Photon. Technol. Lett.17(2), 294–296 (2005).
[CrossRef]

B. Stormont, E. U. Rafailov, I. G. Cormack, A. Mooradian, and W. Sibbett, “Extended-cavity surface-emitting diode laser as active mirror controlling modelocked Ti: sapphire laser,” Electron. Lett.40(12), 732–734 (2004).
[CrossRef]

Sitarek, P.

J. Misiewicz, P. Sitarek, G. Sek, and R. Kudrawiec, “Semiconductor heterostructures and device structures investigated by photoreflectance spectroscopy,” Mater. Sci.-Poland21, 263–320 (2003).

Stevenson, D. J.

C. T. A. Brown, D. J. Stevenson, X. Tsampoula, C. McDougall, A. A. Lagatsky, W. Sibbett, F. J. Gunn-Moore, and K. Dholakia, “Enhanced operation of femtosecond lasers and applications in cell transfection,” J Biophoton.1(3), 183–199 (2008).
[CrossRef] [PubMed]

Stormont, B.

B. Stormont, E. U. Rafailov, I. G. Cormack, A. Mooradian, and W. Sibbett, “Extended-cavity surface-emitting diode laser as active mirror controlling modelocked Ti: sapphire laser,” Electron. Lett.40(12), 732–734 (2004).
[CrossRef]

Tsampoula, X.

C. T. A. Brown, D. J. Stevenson, X. Tsampoula, C. McDougall, A. A. Lagatsky, W. Sibbett, F. J. Gunn-Moore, and K. Dholakia, “Enhanced operation of femtosecond lasers and applications in cell transfection,” J Biophoton.1(3), 183–199 (2008).
[CrossRef] [PubMed]

Tsuda, S.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2(3), 454–464 (1996).
[CrossRef]

Ustinov, V. M.

A. A. Lagatsky, E. U. Rafailov, W. Sibbett, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Quantum-dot-based saturable absorber with p-n junction for mode-locking of solid-state lasers,” IEEE Photon. Technol. Lett.17(2), 294–296 (2005).
[CrossRef]

Valentine, G.

Valentine, G. J.

A. McWilliam, A. A. Lagatsky, C. G. Leburn, P. Fischer, C. T. A. Brown, G. J. Valentine, A. J. Kemp, S. Calvez, D. Burns, M. D. Dawson, M. Pessa, and W. Sibbett, “Low-loss GaInNAs saturable Bragg reflector for mode-locking of a femtosecond Cr4+: Forsterite-laser,” IEEE Photon. Technol. Lett.17(11), 2292–2294 (2005).
[CrossRef]

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Wiegmann, W.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures - the quantum-confined Stark-effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Wilcox, K. G.

S. A. Zolotovskaya, K. G. Wilcox, A. Abdolvand, D. A. Livshits, and E. U. Rafailov, “Electronically controlled pulse duration passively modelocked Cr: forsterite laser,” IEEE Photon. Technol. Lett.21(16), 1124–1126 (2009).
[CrossRef]

Wood, T. H.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures - the quantum-confined Stark-effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Zeller, S. C.

V. Liverini, S. Schon, R. Grange, M. Haiml, S. C. Zeller, and U. Keller, “Low-loss GaInNAs saturable absorber mode locking a 1.3-mu m solid-state laser,” Appl. Phys. Lett.84(20), 4002–4004 (2004).
[CrossRef]

Zhukov, A. E.

A. A. Lagatsky, E. U. Rafailov, W. Sibbett, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Quantum-dot-based saturable absorber with p-n junction for mode-locking of solid-state lasers,” IEEE Photon. Technol. Lett.17(2), 294–296 (2005).
[CrossRef]

Zolotovskaya, S. A.

S. A. Zolotovskaya, K. G. Wilcox, A. Abdolvand, D. A. Livshits, and E. U. Rafailov, “Electronically controlled pulse duration passively modelocked Cr: forsterite laser,” IEEE Photon. Technol. Lett.21(16), 1124–1126 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

V. Liverini, S. Schon, R. Grange, M. Haiml, S. C. Zeller, and U. Keller, “Low-loss GaInNAs saturable absorber mode locking a 1.3-mu m solid-state laser,” Appl. Phys. Lett.84(20), 4002–4004 (2004).
[CrossRef]

R. Grange, A. Rutz, V. Liverini, M. Haiml, S. Schon, and U. Keller, “Nonlinear absorption edge properties of 1.3-mu m GaInNAs saturable absorbers,” Appl. Phys. Lett.87(13), 132103 (2005).
[CrossRef]

Electron. Lett. (1)

B. Stormont, E. U. Rafailov, I. G. Cormack, A. Mooradian, and W. Sibbett, “Extended-cavity surface-emitting diode laser as active mirror controlling modelocked Ti: sapphire laser,” Electron. Lett.40(12), 732–734 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2(3), 454–464 (1996).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

A. A. Lagatsky, E. U. Rafailov, W. Sibbett, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Quantum-dot-based saturable absorber with p-n junction for mode-locking of solid-state lasers,” IEEE Photon. Technol. Lett.17(2), 294–296 (2005).
[CrossRef]

S. A. Zolotovskaya, K. G. Wilcox, A. Abdolvand, D. A. Livshits, and E. U. Rafailov, “Electronically controlled pulse duration passively modelocked Cr: forsterite laser,” IEEE Photon. Technol. Lett.21(16), 1124–1126 (2009).
[CrossRef]

A. McWilliam, A. A. Lagatsky, C. G. Leburn, P. Fischer, C. T. A. Brown, G. J. Valentine, A. J. Kemp, S. Calvez, D. Burns, M. D. Dawson, M. Pessa, and W. Sibbett, “Low-loss GaInNAs saturable Bragg reflector for mode-locking of a femtosecond Cr4+: Forsterite-laser,” IEEE Photon. Technol. Lett.17(11), 2292–2294 (2005).
[CrossRef]

J Biophoton. (1)

C. T. A. Brown, D. J. Stevenson, X. Tsampoula, C. McDougall, A. A. Lagatsky, W. Sibbett, F. J. Gunn-Moore, and K. Dholakia, “Enhanced operation of femtosecond lasers and applications in cell transfection,” J Biophoton.1(3), 183–199 (2008).
[CrossRef] [PubMed]

Mater. Sci.-Poland (1)

J. Misiewicz, P. Sitarek, G. Sek, and R. Kudrawiec, “Semiconductor heterostructures and device structures investigated by photoreflectance spectroscopy,” Mater. Sci.-Poland21, 263–320 (2003).

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures - the quantum-confined Stark-effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Other (1)

S. L. Chuang, Physics of Photonic Devices 1 ed., Wiley Series in Pure and Applied Optics (Wiley,2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Photograph of the contacted QCSE SESAM where the inner diameter of the top electrical contacts ranged from 50 µm to 200 µm. (b) Measured linear reflectivity curve for the QCSE device. (c) Field-induced absorption change derived from the photocurrent response of a 200 μm-diameter QCSE SESAM.

Fig. 2
Fig. 2

(a) Photo-reflectance characterization of the response of a 200 μm diameter QCSE SESAM. The curves are vertically offset for enhanced visibility. The dashed line indicates the bandgap energy. (b) Field-induced bandgap change derived from the photo-reflectance response of a 200 μm diameter QCSE SESAM with calculated values. The applied E-field is taken to be the result of the applied voltage across the 187.2 nm thick intrinsic region of the device i.e. we assume negligible voltage drops across the doped regions.

Fig. 3
Fig. 3

(a) Schematic of the laser resonator, incorporating a pair of fused silica prisms and a Brewster-cut Cr4+:forsterite crystal. (b) Power characteristics of the laser with contacted (red) and uncontacted (black) SESAMs.

Fig. 4
Fig. 4

(a) The reverse-bias signal (red) and 2-photon signal (blue) under switched operation. Note the blue 2-photon trace does not reach zero because picosecond pulses still have sufficient intensity to induce a 2-photon response. (b) Rapid switching between femtosecond and picosecond regimes. In this case, the reverse bias on the QCSE SESAM was modulated at 300 Hz. The output from a two-photon detector is shown in blue and the applied reverse bias in red.

Fig. 5
Fig. 5

(a) Observed signal on the two-photon detector blue and corresponding applied reverse bias (red). Note that at this wavelength the laser switches to picosecond operation with an applied bias but with no bias switches to cw operation. (b) Observed signal from the two-photon detector (blue) overlaid with the applied reverse bias (blue). In this case, unstable switching between CW and femtosecond regimes is observed as the reverse bias is changed. In some cases also (e.g. around 6 ms), picosecond operation can also be observed.

Fig. 6
Fig. 6

Main plot: temporal profiles of picosecond pulses measured by intensity autocorrelation under reverse bias levels from 0 V to 6 V. Top left: spectra of pulses corresponding to those in the main plot. Top right: plot showing the evolution of the pulse duration with reverse bias levels up to 10 V.

Metrics