Abstract

Ho3+/Yb3+ codoped glass ceramic was prepared by melt-quenching and subsequent thermal treatment. Under a 980 nm diode laser excitation, upconversion emissions from Ho3+ ions centered at 540, 650, and 750 nm were greatly enhanced compared with those in the precursor glass. Especially, the short-wavelength upconversion emissions centered at 360, 385, 418, 445, and 485 nm were successfully obtained in the glass ceramic. An explanation for this phenomenon is given based on the fluorescence decay curve measurements. In addition, an optical temperature sensor based on the blue upconversion emissions from 5F2,3/3K85I8 and 5F1/5G65I8 transitions in Ho3+/Yb3+ codoped glass ceramic has been developed. It was found that by using fluorescence intensity ratio technique, appreciable sensitivity for temperature measurement can be achieved by using the Ho3+/Yb3+ codoped glass ceramic. This result makes the Ho3+/Yb3+ codoped glass ceramic be a promising candidate for sensitive optical temperature sensor with high resolution and good accuracy.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004).
    [CrossRef] [PubMed]
  2. E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science273(5279), 1185–1189 (1996).
    [CrossRef]
  3. S. Sivakumar, F. C. J. M. van Veggel, and P. S. May, “Near-infrared (NIR) to red and green up-conversion emission from silica sol-gel thin films made with La0.45Yb0.50Er0.05F3 nanoparticles, hetero-looping-enhanced energy transfer (Hetero-LEET): a new up-conversion process,” J. Am. Chem. Soc.129(3), 620–625 (2007).
    [CrossRef] [PubMed]
  4. A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+: ZrO2 nanocrystals,” J. Phys. Chem. B106(8), 1909–1912 (2002).
    [CrossRef]
  5. J. A. Capobianco, J. C. Boyer, F. Vetrone, A. Speghini, and M. Bettinelli, “Optical spectroscopy and upconversion studies of Ho3+-doped bulk and nanocrystalline Y2O3,” Chem. Mater.14(7), 2915–2921 (2002).
    [CrossRef]
  6. Y. Guyot, R. Moncorge, L. F. Merkle, A. Pinto, B. Mclntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater.5(1-2), 127–136 (1996).
    [CrossRef]
  7. X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipation method,” Appl. Phys. B93(4), 801–807 (2008).
    [CrossRef]
  8. G. Y. Chen, G. H. Yang, B. Aghahadi, H. J. Liang, Y. Liu, L. Li, and Z. G. Zhang, “Ultraviolet-blue upconversion emissions of Ho3+ ions,” J. Opt. Soc. Am. B27(6), 1158–1164 (2010).
    [CrossRef]
  9. J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
    [CrossRef]
  10. F. Lahoz, I. R. Martín, and A. Briones, “Infrared-laser induced photon avalanche upconversion in Ho3+–Yb3+ codoped fluoroindate glasses,” J. Appl. Phys.95(6), 2957–2962 (2004).
    [CrossRef]
  11. G. J. Ding, F. Gao, G. H. Wu, and D. H. Bao, “Bright up-conversion green photoluminescence in Ho3+-Yb3+ co-doped Bi4Ti3O12 ferroelectric thin films,” J. Appl. Phys.109(12), 123101 (2011).
    [CrossRef]
  12. F. Lahoz, I. R. Martín, and J. M. Calvilla-Quintero, “Ultraviolet and white phonon avalanche upconversion in Ho3+ doped nanophase glass ceramic,” Appl. Phys. Lett.86(5), 051106 (2005).
    [CrossRef]
  13. D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+:beta-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett.91(5), 051920 (2007).
    [CrossRef]
  14. S. Tanabe, H. Hayashi, T. Hanada, and N. Onodera, “Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals,” Opt. Mater.19(3), 343–349 (2002).
    [CrossRef]
  15. Y. Kawamoto, R. Kanno, and J. Qiu, “Upconversion luminescence of Er3+ in transparent SiO2-PbF2-ErF3 glass ceramic,” J. Mater. Sci.33(1), 63–67 (1998).
    [CrossRef]
  16. B. N. Samson, P. A. Tick, and N. F. Borrelli, “Efficient neodymium-doped glass-ceramic fiber laser and amplifier,” Opt. Lett.26(3), 145–147 (2001).
    [CrossRef] [PubMed]
  17. M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd: YLF and Nd: YAG,” Appl. Phys. Lett.58, 16076–16092 (1998).
  18. K. Y. Wu, J. B. Cui, X. X. Kong, and Y. J. Wang, “Temperature dependent upconversion luminescence of Yb/Er codoped NaYF4 nanocrystals,” J. Appl. Phys.110(5), 053510 (2011).
    [CrossRef]
  19. H. Berthou and C. K. Jörgensen, “Optical-fiber temperature sensor based on upconversion-excited fluorescence,” Opt. Lett.15(19), 1100–1102 (1990).
    [CrossRef] [PubMed]
  20. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys.94(8), 4743–4756 (2003).
    [CrossRef]
  21. V. K. Rai, “Temperature sensor and optical sensors,” Appl. Phys. B88(2), 297–303 (2007).
    [CrossRef]
  22. V. Lavín, F. Lahoz, I. R. Martín, U. R. Rodríguze-Mendoza, and J. M. Cáceres, “Infrared-to-visible photon avalanche upconversion dynamics in Ho3+-doped fluorozirconate glasses at room temperature,” Opt. Mater.27(11), 1754–1761 (2005).
    [CrossRef]
  23. L. Gomes, L. C. Courrol, L. V. G. Tarelho, and I. M. Ranieri, “Cross-relaxation process between +3 rare-earth ions in LiYF4 crystals,” Phys. Rev. B Condens. Matter54(6), 3825–3829 (1996).
    [CrossRef] [PubMed]
  24. S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare earth ions in fluorophosphates glasses,” Phys. Rev.45(9), 4620–4625 (1992).
    [CrossRef]
  25. F. Lahoz, I. R. Matín, and J. Méndez-Ramos, “Dopant distribution in a Tm3+-Yb3+ codoped silica based glass ceramic: an infrared-laser induced upconversion study,” J. Appl. Phys.120, 6180–6190 (2004).
  26. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys.21(5), 836–850 (1953).
    [CrossRef]
  27. S. A. Wade, S. F. Collins, G. W. Baxter, and G. Monnom, “Effect of strain on temperature measurements using the fluorescence intensity ratio technique (with Nd3+ and Yb3+ doped silica fibers),” Rev. Sci. Instrum.72(8), 3180–3185 (2001).
    [CrossRef]
  28. P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+ codoped chalcogenide glass,” Appl. Phys. Lett.73(5), 578–580 (1998).
    [CrossRef]
  29. P. Haro-González, I. R. Martín, L. L. Martín, F. S. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater.33(5), 742–745 (2011).
    [CrossRef]
  30. V. K. Rai, D. K. Rai, and S. B. Rai, “Pr3+ doped lithium tellurite glass as a temperature sensor,” Sen. Actuators A128(1), 14–17 (2006).
    [CrossRef]
  31. S. A. Wade, J. C. Muscat, S. F. Collins, and G. W. Baxter, “Nd3+ doped optical temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum.70(11), 4279–4282 (1999).
    [CrossRef]
  32. E. Maurice, S. A. Wade, S. F. Collins, G. Monnom, and G. W. Baxter, “Self-referenced point temperature sensor based on a fluorescence intensity ratio in Yb3+ doped silica fiber,” Appl. Opt.36(31), 8264–8269 (1997).
    [CrossRef] [PubMed]
  33. B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er3+-Mo:Yb2Ti2O7 nanophosphor,” Sen. Actuators B159(1), 8–11 (2011).
    [CrossRef]
  34. S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sen. Actuators B158(1), 208–213 (2011).
    [CrossRef]
  35. R. K. Verma and S. B. Rai, “Laser induced optical heating from Yb3+/Ho3+: Ca12Al14O33 and its applicability as a thermal probe,” J. Quant. Spectrosc. Radiat. Transf.113(12), 1594–1600 (2012).
    [CrossRef]

2012 (1)

R. K. Verma and S. B. Rai, “Laser induced optical heating from Yb3+/Ho3+: Ca12Al14O33 and its applicability as a thermal probe,” J. Quant. Spectrosc. Radiat. Transf.113(12), 1594–1600 (2012).
[CrossRef]

2011 (5)

K. Y. Wu, J. B. Cui, X. X. Kong, and Y. J. Wang, “Temperature dependent upconversion luminescence of Yb/Er codoped NaYF4 nanocrystals,” J. Appl. Phys.110(5), 053510 (2011).
[CrossRef]

B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er3+-Mo:Yb2Ti2O7 nanophosphor,” Sen. Actuators B159(1), 8–11 (2011).
[CrossRef]

S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sen. Actuators B158(1), 208–213 (2011).
[CrossRef]

P. Haro-González, I. R. Martín, L. L. Martín, F. S. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater.33(5), 742–745 (2011).
[CrossRef]

G. J. Ding, F. Gao, G. H. Wu, and D. H. Bao, “Bright up-conversion green photoluminescence in Ho3+-Yb3+ co-doped Bi4Ti3O12 ferroelectric thin films,” J. Appl. Phys.109(12), 123101 (2011).
[CrossRef]

2010 (1)

2008 (1)

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipation method,” Appl. Phys. B93(4), 801–807 (2008).
[CrossRef]

2007 (3)

S. Sivakumar, F. C. J. M. van Veggel, and P. S. May, “Near-infrared (NIR) to red and green up-conversion emission from silica sol-gel thin films made with La0.45Yb0.50Er0.05F3 nanoparticles, hetero-looping-enhanced energy transfer (Hetero-LEET): a new up-conversion process,” J. Am. Chem. Soc.129(3), 620–625 (2007).
[CrossRef] [PubMed]

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+:beta-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett.91(5), 051920 (2007).
[CrossRef]

V. K. Rai, “Temperature sensor and optical sensors,” Appl. Phys. B88(2), 297–303 (2007).
[CrossRef]

2006 (1)

V. K. Rai, D. K. Rai, and S. B. Rai, “Pr3+ doped lithium tellurite glass as a temperature sensor,” Sen. Actuators A128(1), 14–17 (2006).
[CrossRef]

2005 (3)

V. Lavín, F. Lahoz, I. R. Martín, U. R. Rodríguze-Mendoza, and J. M. Cáceres, “Infrared-to-visible photon avalanche upconversion dynamics in Ho3+-doped fluorozirconate glasses at room temperature,” Opt. Mater.27(11), 1754–1761 (2005).
[CrossRef]

F. Lahoz, I. R. Martín, and J. M. Calvilla-Quintero, “Ultraviolet and white phonon avalanche upconversion in Ho3+ doped nanophase glass ceramic,” Appl. Phys. Lett.86(5), 051106 (2005).
[CrossRef]

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

2004 (3)

F. Lahoz, I. R. Martín, and A. Briones, “Infrared-laser induced photon avalanche upconversion in Ho3+–Yb3+ codoped fluoroindate glasses,” J. Appl. Phys.95(6), 2957–2962 (2004).
[CrossRef]

F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004).
[CrossRef] [PubMed]

F. Lahoz, I. R. Matín, and J. Méndez-Ramos, “Dopant distribution in a Tm3+-Yb3+ codoped silica based glass ceramic: an infrared-laser induced upconversion study,” J. Appl. Phys.120, 6180–6190 (2004).

2003 (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys.94(8), 4743–4756 (2003).
[CrossRef]

2002 (3)

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+: ZrO2 nanocrystals,” J. Phys. Chem. B106(8), 1909–1912 (2002).
[CrossRef]

J. A. Capobianco, J. C. Boyer, F. Vetrone, A. Speghini, and M. Bettinelli, “Optical spectroscopy and upconversion studies of Ho3+-doped bulk and nanocrystalline Y2O3,” Chem. Mater.14(7), 2915–2921 (2002).
[CrossRef]

S. Tanabe, H. Hayashi, T. Hanada, and N. Onodera, “Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals,” Opt. Mater.19(3), 343–349 (2002).
[CrossRef]

2001 (2)

B. N. Samson, P. A. Tick, and N. F. Borrelli, “Efficient neodymium-doped glass-ceramic fiber laser and amplifier,” Opt. Lett.26(3), 145–147 (2001).
[CrossRef] [PubMed]

S. A. Wade, S. F. Collins, G. W. Baxter, and G. Monnom, “Effect of strain on temperature measurements using the fluorescence intensity ratio technique (with Nd3+ and Yb3+ doped silica fibers),” Rev. Sci. Instrum.72(8), 3180–3185 (2001).
[CrossRef]

1999 (1)

S. A. Wade, J. C. Muscat, S. F. Collins, and G. W. Baxter, “Nd3+ doped optical temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum.70(11), 4279–4282 (1999).
[CrossRef]

1998 (3)

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd: YLF and Nd: YAG,” Appl. Phys. Lett.58, 16076–16092 (1998).

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+ codoped chalcogenide glass,” Appl. Phys. Lett.73(5), 578–580 (1998).
[CrossRef]

Y. Kawamoto, R. Kanno, and J. Qiu, “Upconversion luminescence of Er3+ in transparent SiO2-PbF2-ErF3 glass ceramic,” J. Mater. Sci.33(1), 63–67 (1998).
[CrossRef]

1997 (1)

1996 (3)

L. Gomes, L. C. Courrol, L. V. G. Tarelho, and I. M. Ranieri, “Cross-relaxation process between +3 rare-earth ions in LiYF4 crystals,” Phys. Rev. B Condens. Matter54(6), 3825–3829 (1996).
[CrossRef] [PubMed]

Y. Guyot, R. Moncorge, L. F. Merkle, A. Pinto, B. Mclntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater.5(1-2), 127–136 (1996).
[CrossRef]

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science273(5279), 1185–1189 (1996).
[CrossRef]

1992 (1)

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare earth ions in fluorophosphates glasses,” Phys. Rev.45(9), 4620–4625 (1992).
[CrossRef]

1990 (1)

1953 (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys.21(5), 836–850 (1953).
[CrossRef]

Aebischer, A.

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

Aghahadi, B.

Auzel, F.

F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004).
[CrossRef] [PubMed]

Bao, D. H.

G. J. Ding, F. Gao, G. H. Wu, and D. H. Bao, “Bright up-conversion green photoluminescence in Ho3+-Yb3+ co-doped Bi4Ti3O12 ferroelectric thin films,” J. Appl. Phys.109(12), 123101 (2011).
[CrossRef]

Baxter, G. W.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys.94(8), 4743–4756 (2003).
[CrossRef]

S. A. Wade, S. F. Collins, G. W. Baxter, and G. Monnom, “Effect of strain on temperature measurements using the fluorescence intensity ratio technique (with Nd3+ and Yb3+ doped silica fibers),” Rev. Sci. Instrum.72(8), 3180–3185 (2001).
[CrossRef]

S. A. Wade, J. C. Muscat, S. F. Collins, and G. W. Baxter, “Nd3+ doped optical temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum.70(11), 4279–4282 (1999).
[CrossRef]

E. Maurice, S. A. Wade, S. F. Collins, G. Monnom, and G. W. Baxter, “Self-referenced point temperature sensor based on a fluorescence intensity ratio in Yb3+ doped silica fiber,” Appl. Opt.36(31), 8264–8269 (1997).
[CrossRef] [PubMed]

Berthou, H.

Bettinelli, M.

J. A. Capobianco, J. C. Boyer, F. Vetrone, A. Speghini, and M. Bettinelli, “Optical spectroscopy and upconversion studies of Ho3+-doped bulk and nanocrystalline Y2O3,” Chem. Mater.14(7), 2915–2921 (2002).
[CrossRef]

Biner, D.

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

Borrelli, N. F.

Boyer, J. C.

J. A. Capobianco, J. C. Boyer, F. Vetrone, A. Speghini, and M. Bettinelli, “Optical spectroscopy and upconversion studies of Ho3+-doped bulk and nanocrystalline Y2O3,” Chem. Mater.14(7), 2915–2921 (2002).
[CrossRef]

Briones, A.

F. Lahoz, I. R. Martín, and A. Briones, “Infrared-laser induced photon avalanche upconversion in Ho3+–Yb3+ codoped fluoroindate glasses,” J. Appl. Phys.95(6), 2957–2962 (2004).
[CrossRef]

Bu, Y.

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipation method,” Appl. Phys. B93(4), 801–807 (2008).
[CrossRef]

Cáceres, J. M.

V. Lavín, F. Lahoz, I. R. Martín, U. R. Rodríguze-Mendoza, and J. M. Cáceres, “Infrared-to-visible photon avalanche upconversion dynamics in Ho3+-doped fluorozirconate glasses at room temperature,” Opt. Mater.27(11), 1754–1761 (2005).
[CrossRef]

Calvilla-Quintero, J. M.

F. Lahoz, I. R. Martín, and J. M. Calvilla-Quintero, “Ultraviolet and white phonon avalanche upconversion in Ho3+ doped nanophase glass ceramic,” Appl. Phys. Lett.86(5), 051106 (2005).
[CrossRef]

Cao, B. S.

B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er3+-Mo:Yb2Ti2O7 nanophosphor,” Sen. Actuators B159(1), 8–11 (2011).
[CrossRef]

Capobianco, J. A.

J. A. Capobianco, J. C. Boyer, F. Vetrone, A. Speghini, and M. Bettinelli, “Optical spectroscopy and upconversion studies of Ho3+-doped bulk and nanocrystalline Y2O3,” Chem. Mater.14(7), 2915–2921 (2002).
[CrossRef]

Chen, D. Q.

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+:beta-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett.91(5), 051920 (2007).
[CrossRef]

Chen, G. Y.

Clarkson, W. A.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd: YLF and Nd: YAG,” Appl. Phys. Lett.58, 16076–16092 (1998).

Collins, S. F.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys.94(8), 4743–4756 (2003).
[CrossRef]

S. A. Wade, S. F. Collins, G. W. Baxter, and G. Monnom, “Effect of strain on temperature measurements using the fluorescence intensity ratio technique (with Nd3+ and Yb3+ doped silica fibers),” Rev. Sci. Instrum.72(8), 3180–3185 (2001).
[CrossRef]

S. A. Wade, J. C. Muscat, S. F. Collins, and G. W. Baxter, “Nd3+ doped optical temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum.70(11), 4279–4282 (1999).
[CrossRef]

E. Maurice, S. A. Wade, S. F. Collins, G. Monnom, and G. W. Baxter, “Self-referenced point temperature sensor based on a fluorescence intensity ratio in Yb3+ doped silica fiber,” Appl. Opt.36(31), 8264–8269 (1997).
[CrossRef] [PubMed]

Courrol, L. C.

L. Gomes, L. C. Courrol, L. V. G. Tarelho, and I. M. Ranieri, “Cross-relaxation process between +3 rare-earth ions in LiYF4 crystals,” Phys. Rev. B Condens. Matter54(6), 3825–3829 (1996).
[CrossRef] [PubMed]

Cui, J. B.

K. Y. Wu, J. B. Cui, X. X. Kong, and Y. J. Wang, “Temperature dependent upconversion luminescence of Yb/Er codoped NaYF4 nanocrystals,” J. Appl. Phys.110(5), 053510 (2011).
[CrossRef]

de Araujo, M. T.

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+ codoped chalcogenide glass,” Appl. Phys. Lett.73(5), 578–580 (1998).
[CrossRef]

Dexter, D. L.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys.21(5), 836–850 (1953).
[CrossRef]

Ding, G. J.

G. J. Ding, F. Gao, G. H. Wu, and D. H. Bao, “Bright up-conversion green photoluminescence in Ho3+-Yb3+ co-doped Bi4Ti3O12 ferroelectric thin films,” J. Appl. Phys.109(12), 123101 (2011).
[CrossRef]

Ding, J. W.

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipation method,” Appl. Phys. B93(4), 801–807 (2008).
[CrossRef]

Dong, B.

B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er3+-Mo:Yb2Ti2O7 nanophosphor,” Sen. Actuators B159(1), 8–11 (2011).
[CrossRef]

dos Santos, P. V.

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+ codoped chalcogenide glass,” Appl. Phys. Lett.73(5), 578–580 (1998).
[CrossRef]

Downing, E.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science273(5279), 1185–1189 (1996).
[CrossRef]

Feng, Z. Q.

B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er3+-Mo:Yb2Ti2O7 nanophosphor,” Sen. Actuators B159(1), 8–11 (2011).
[CrossRef]

Friend, C. S.

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+: ZrO2 nanocrystals,” J. Phys. Chem. B106(8), 1909–1912 (2002).
[CrossRef]

Gao, F.

G. J. Ding, F. Gao, G. H. Wu, and D. H. Bao, “Bright up-conversion green photoluminescence in Ho3+-Yb3+ co-doped Bi4Ti3O12 ferroelectric thin films,” J. Appl. Phys.109(12), 123101 (2011).
[CrossRef]

Gerner, P.

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

Gomes, L.

L. Gomes, L. C. Courrol, L. V. G. Tarelho, and I. M. Ranieri, “Cross-relaxation process between +3 rare-earth ions in LiYF4 crystals,” Phys. Rev. B Condens. Matter54(6), 3825–3829 (1996).
[CrossRef] [PubMed]

Gouveia-Neto, A. S.

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+ codoped chalcogenide glass,” Appl. Phys. Lett.73(5), 578–580 (1998).
[CrossRef]

Grimm, J.

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

Güdel, H. U.

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

Guyot, Y.

Y. Guyot, R. Moncorge, L. F. Merkle, A. Pinto, B. Mclntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater.5(1-2), 127–136 (1996).
[CrossRef]

Hanada, T.

S. Tanabe, H. Hayashi, T. Hanada, and N. Onodera, “Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals,” Opt. Mater.19(3), 343–349 (2002).
[CrossRef]

Hanna, D. C.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd: YLF and Nd: YAG,” Appl. Phys. Lett.58, 16076–16092 (1998).

Hardman, P. J.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd: YLF and Nd: YAG,” Appl. Phys. Lett.58, 16076–16092 (1998).

Haro-González, P.

P. Haro-González, I. R. Martín, L. L. Martín, F. S. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater.33(5), 742–745 (2011).
[CrossRef]

Hayashi, H.

S. Tanabe, H. Hayashi, T. Hanada, and N. Onodera, “Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals,” Opt. Mater.19(3), 343–349 (2002).
[CrossRef]

He, Y. Y.

B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er3+-Mo:Yb2Ti2O7 nanophosphor,” Sen. Actuators B159(1), 8–11 (2011).
[CrossRef]

Heer, S.

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

Hesselink, L.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science273(5279), 1185–1189 (1996).
[CrossRef]

Hirao, K.

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare earth ions in fluorophosphates glasses,” Phys. Rev.45(9), 4620–4625 (1992).
[CrossRef]

Huang, P.

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+:beta-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett.91(5), 051920 (2007).
[CrossRef]

Jörgensen, C. K.

Kanno, R.

Y. Kawamoto, R. Kanno, and J. Qiu, “Upconversion luminescence of Er3+ in transparent SiO2-PbF2-ErF3 glass ceramic,” J. Mater. Sci.33(1), 63–67 (1998).
[CrossRef]

Kapoor, R.

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+: ZrO2 nanocrystals,” J. Phys. Chem. B106(8), 1909–1912 (2002).
[CrossRef]

Kawamoto, Y.

Y. Kawamoto, R. Kanno, and J. Qiu, “Upconversion luminescence of Er3+ in transparent SiO2-PbF2-ErF3 glass ceramic,” J. Mater. Sci.33(1), 63–67 (1998).
[CrossRef]

Kern, M. A.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd: YLF and Nd: YAG,” Appl. Phys. Lett.58, 16076–16092 (1998).

Kong, X. X.

K. Y. Wu, J. B. Cui, X. X. Kong, and Y. J. Wang, “Temperature dependent upconversion luminescence of Yb/Er codoped NaYF4 nanocrystals,” J. Appl. Phys.110(5), 053510 (2011).
[CrossRef]

Krämer, K. W.

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

Lahoz, F.

F. Lahoz, I. R. Martín, and J. M. Calvilla-Quintero, “Ultraviolet and white phonon avalanche upconversion in Ho3+ doped nanophase glass ceramic,” Appl. Phys. Lett.86(5), 051106 (2005).
[CrossRef]

V. Lavín, F. Lahoz, I. R. Martín, U. R. Rodríguze-Mendoza, and J. M. Cáceres, “Infrared-to-visible photon avalanche upconversion dynamics in Ho3+-doped fluorozirconate glasses at room temperature,” Opt. Mater.27(11), 1754–1761 (2005).
[CrossRef]

F. Lahoz, I. R. Matín, and J. Méndez-Ramos, “Dopant distribution in a Tm3+-Yb3+ codoped silica based glass ceramic: an infrared-laser induced upconversion study,” J. Appl. Phys.120, 6180–6190 (2004).

F. Lahoz, I. R. Martín, and A. Briones, “Infrared-laser induced photon avalanche upconversion in Ho3+–Yb3+ codoped fluoroindate glasses,” J. Appl. Phys.95(6), 2957–2962 (2004).
[CrossRef]

Lalla, E.

S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sen. Actuators B158(1), 208–213 (2011).
[CrossRef]

Lavín, V.

S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sen. Actuators B158(1), 208–213 (2011).
[CrossRef]

P. Haro-González, I. R. Martín, L. L. Martín, F. S. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater.33(5), 742–745 (2011).
[CrossRef]

V. Lavín, F. Lahoz, I. R. Martín, U. R. Rodríguze-Mendoza, and J. M. Cáceres, “Infrared-to-visible photon avalanche upconversion dynamics in Ho3+-doped fluorozirconate glasses at room temperature,” Opt. Mater.27(11), 1754–1761 (2005).
[CrossRef]

León-Luis, F. S.

P. Haro-González, I. R. Martín, L. L. Martín, F. S. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater.33(5), 742–745 (2011).
[CrossRef]

León-Luis, S. F.

S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sen. Actuators B158(1), 208–213 (2011).
[CrossRef]

Li, L.

Li, Y. S.

B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er3+-Mo:Yb2Ti2O7 nanophosphor,” Sen. Actuators B159(1), 8–11 (2011).
[CrossRef]

Liang, H. J.

Liu, Y.

Macfarlane, R.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science273(5279), 1185–1189 (1996).
[CrossRef]

Martín, I. R.

P. Haro-González, I. R. Martín, L. L. Martín, F. S. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater.33(5), 742–745 (2011).
[CrossRef]

F. Lahoz, I. R. Martín, and J. M. Calvilla-Quintero, “Ultraviolet and white phonon avalanche upconversion in Ho3+ doped nanophase glass ceramic,” Appl. Phys. Lett.86(5), 051106 (2005).
[CrossRef]

V. Lavín, F. Lahoz, I. R. Martín, U. R. Rodríguze-Mendoza, and J. M. Cáceres, “Infrared-to-visible photon avalanche upconversion dynamics in Ho3+-doped fluorozirconate glasses at room temperature,” Opt. Mater.27(11), 1754–1761 (2005).
[CrossRef]

F. Lahoz, I. R. Martín, and A. Briones, “Infrared-laser induced photon avalanche upconversion in Ho3+–Yb3+ codoped fluoroindate glasses,” J. Appl. Phys.95(6), 2957–2962 (2004).
[CrossRef]

Martín, L. L.

P. Haro-González, I. R. Martín, L. L. Martín, F. S. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater.33(5), 742–745 (2011).
[CrossRef]

Matín, I. R.

F. Lahoz, I. R. Matín, and J. Méndez-Ramos, “Dopant distribution in a Tm3+-Yb3+ codoped silica based glass ceramic: an infrared-laser induced upconversion study,” J. Appl. Phys.120, 6180–6190 (2004).

Maurice, E.

May, P. S.

S. Sivakumar, F. C. J. M. van Veggel, and P. S. May, “Near-infrared (NIR) to red and green up-conversion emission from silica sol-gel thin films made with La0.45Yb0.50Er0.05F3 nanoparticles, hetero-looping-enhanced energy transfer (Hetero-LEET): a new up-conversion process,” J. Am. Chem. Soc.129(3), 620–625 (2007).
[CrossRef] [PubMed]

Mclntosh, B.

Y. Guyot, R. Moncorge, L. F. Merkle, A. Pinto, B. Mclntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater.5(1-2), 127–136 (1996).
[CrossRef]

Medeiros Neto, J. A.

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+ codoped chalcogenide glass,” Appl. Phys. Lett.73(5), 578–580 (1998).
[CrossRef]

Méndez-Ramos, J.

F. Lahoz, I. R. Matín, and J. Méndez-Ramos, “Dopant distribution in a Tm3+-Yb3+ codoped silica based glass ceramic: an infrared-laser induced upconversion study,” J. Appl. Phys.120, 6180–6190 (2004).

Merkle, L. F.

Y. Guyot, R. Moncorge, L. F. Merkle, A. Pinto, B. Mclntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater.5(1-2), 127–136 (1996).
[CrossRef]

Moncorge, R.

Y. Guyot, R. Moncorge, L. F. Merkle, A. Pinto, B. Mclntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater.5(1-2), 127–136 (1996).
[CrossRef]

Monnom, G.

S. A. Wade, S. F. Collins, G. W. Baxter, and G. Monnom, “Effect of strain on temperature measurements using the fluorescence intensity ratio technique (with Nd3+ and Yb3+ doped silica fibers),” Rev. Sci. Instrum.72(8), 3180–3185 (2001).
[CrossRef]

E. Maurice, S. A. Wade, S. F. Collins, G. Monnom, and G. W. Baxter, “Self-referenced point temperature sensor based on a fluorescence intensity ratio in Yb3+ doped silica fiber,” Appl. Opt.36(31), 8264–8269 (1997).
[CrossRef] [PubMed]

Muscat, J. C.

S. A. Wade, J. C. Muscat, S. F. Collins, and G. W. Baxter, “Nd3+ doped optical temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum.70(11), 4279–4282 (1999).
[CrossRef]

Onodera, N.

S. Tanabe, H. Hayashi, T. Hanada, and N. Onodera, “Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals,” Opt. Mater.19(3), 343–349 (2002).
[CrossRef]

Patra, A.

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+: ZrO2 nanocrystals,” J. Phys. Chem. B106(8), 1909–1912 (2002).
[CrossRef]

Pérez-Rodríguez, C.

P. Haro-González, I. R. Martín, L. L. Martín, F. S. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater.33(5), 742–745 (2011).
[CrossRef]

Pinto, A.

Y. Guyot, R. Moncorge, L. F. Merkle, A. Pinto, B. Mclntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater.5(1-2), 127–136 (1996).
[CrossRef]

Pollnau, M.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd: YLF and Nd: YAG,” Appl. Phys. Lett.58, 16076–16092 (1998).

Prasad, P. N.

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+: ZrO2 nanocrystals,” J. Phys. Chem. B106(8), 1909–1912 (2002).
[CrossRef]

Qiu, J.

Y. Kawamoto, R. Kanno, and J. Qiu, “Upconversion luminescence of Er3+ in transparent SiO2-PbF2-ErF3 glass ceramic,” J. Mater. Sci.33(1), 63–67 (1998).
[CrossRef]

Rai, D. K.

V. K. Rai, D. K. Rai, and S. B. Rai, “Pr3+ doped lithium tellurite glass as a temperature sensor,” Sen. Actuators A128(1), 14–17 (2006).
[CrossRef]

Rai, S. B.

R. K. Verma and S. B. Rai, “Laser induced optical heating from Yb3+/Ho3+: Ca12Al14O33 and its applicability as a thermal probe,” J. Quant. Spectrosc. Radiat. Transf.113(12), 1594–1600 (2012).
[CrossRef]

V. K. Rai, D. K. Rai, and S. B. Rai, “Pr3+ doped lithium tellurite glass as a temperature sensor,” Sen. Actuators A128(1), 14–17 (2006).
[CrossRef]

Rai, V. K.

V. K. Rai, “Temperature sensor and optical sensors,” Appl. Phys. B88(2), 297–303 (2007).
[CrossRef]

V. K. Rai, D. K. Rai, and S. B. Rai, “Pr3+ doped lithium tellurite glass as a temperature sensor,” Sen. Actuators A128(1), 14–17 (2006).
[CrossRef]

Ralston, J.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science273(5279), 1185–1189 (1996).
[CrossRef]

Ranieri, I. M.

L. Gomes, L. C. Courrol, L. V. G. Tarelho, and I. M. Ranieri, “Cross-relaxation process between +3 rare-earth ions in LiYF4 crystals,” Phys. Rev. B Condens. Matter54(6), 3825–3829 (1996).
[CrossRef] [PubMed]

Reinhard, C.

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

Rodríguez-Mendoza, U. R.

S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sen. Actuators B158(1), 208–213 (2011).
[CrossRef]

Rodríguze-Mendoza, U. R.

V. Lavín, F. Lahoz, I. R. Martín, U. R. Rodríguze-Mendoza, and J. M. Cáceres, “Infrared-to-visible photon avalanche upconversion dynamics in Ho3+-doped fluorozirconate glasses at room temperature,” Opt. Mater.27(11), 1754–1761 (2005).
[CrossRef]

Samson, B. N.

Sivakumar, S.

S. Sivakumar, F. C. J. M. van Veggel, and P. S. May, “Near-infrared (NIR) to red and green up-conversion emission from silica sol-gel thin films made with La0.45Yb0.50Er0.05F3 nanoparticles, hetero-looping-enhanced energy transfer (Hetero-LEET): a new up-conversion process,” J. Am. Chem. Soc.129(3), 620–625 (2007).
[CrossRef] [PubMed]

Soga, N.

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare earth ions in fluorophosphates glasses,” Phys. Rev.45(9), 4620–4625 (1992).
[CrossRef]

Sombra, A. S. B.

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+ codoped chalcogenide glass,” Appl. Phys. Lett.73(5), 578–580 (1998).
[CrossRef]

Speghini, A.

J. A. Capobianco, J. C. Boyer, F. Vetrone, A. Speghini, and M. Bettinelli, “Optical spectroscopy and upconversion studies of Ho3+-doped bulk and nanocrystalline Y2O3,” Chem. Mater.14(7), 2915–2921 (2002).
[CrossRef]

Suyer, J. F.

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

Tanabe, S.

S. Tanabe, H. Hayashi, T. Hanada, and N. Onodera, “Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals,” Opt. Mater.19(3), 343–349 (2002).
[CrossRef]

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare earth ions in fluorophosphates glasses,” Phys. Rev.45(9), 4620–4625 (1992).
[CrossRef]

Tarelho, L. V. G.

L. Gomes, L. C. Courrol, L. V. G. Tarelho, and I. M. Ranieri, “Cross-relaxation process between +3 rare-earth ions in LiYF4 crystals,” Phys. Rev. B Condens. Matter54(6), 3825–3829 (1996).
[CrossRef] [PubMed]

Tick, P. A.

van Veggel, F. C. J. M.

S. Sivakumar, F. C. J. M. van Veggel, and P. S. May, “Near-infrared (NIR) to red and green up-conversion emission from silica sol-gel thin films made with La0.45Yb0.50Er0.05F3 nanoparticles, hetero-looping-enhanced energy transfer (Hetero-LEET): a new up-conversion process,” J. Am. Chem. Soc.129(3), 620–625 (2007).
[CrossRef] [PubMed]

Verdun, H.

Y. Guyot, R. Moncorge, L. F. Merkle, A. Pinto, B. Mclntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater.5(1-2), 127–136 (1996).
[CrossRef]

Verma, R. K.

R. K. Verma and S. B. Rai, “Laser induced optical heating from Yb3+/Ho3+: Ca12Al14O33 and its applicability as a thermal probe,” J. Quant. Spectrosc. Radiat. Transf.113(12), 1594–1600 (2012).
[CrossRef]

Vetrone, F.

J. A. Capobianco, J. C. Boyer, F. Vetrone, A. Speghini, and M. Bettinelli, “Optical spectroscopy and upconversion studies of Ho3+-doped bulk and nanocrystalline Y2O3,” Chem. Mater.14(7), 2915–2921 (2002).
[CrossRef]

Wade, S. A.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys.94(8), 4743–4756 (2003).
[CrossRef]

S. A. Wade, S. F. Collins, G. W. Baxter, and G. Monnom, “Effect of strain on temperature measurements using the fluorescence intensity ratio technique (with Nd3+ and Yb3+ doped silica fibers),” Rev. Sci. Instrum.72(8), 3180–3185 (2001).
[CrossRef]

S. A. Wade, J. C. Muscat, S. F. Collins, and G. W. Baxter, “Nd3+ doped optical temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum.70(11), 4279–4282 (1999).
[CrossRef]

E. Maurice, S. A. Wade, S. F. Collins, G. Monnom, and G. W. Baxter, “Self-referenced point temperature sensor based on a fluorescence intensity ratio in Yb3+ doped silica fiber,” Appl. Opt.36(31), 8264–8269 (1997).
[CrossRef] [PubMed]

Wang, X.

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipation method,” Appl. Phys. B93(4), 801–807 (2008).
[CrossRef]

Wang, Y. J.

K. Y. Wu, J. B. Cui, X. X. Kong, and Y. J. Wang, “Temperature dependent upconversion luminescence of Yb/Er codoped NaYF4 nanocrystals,” J. Appl. Phys.110(5), 053510 (2011).
[CrossRef]

Wang, Y. S.

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+:beta-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett.91(5), 051920 (2007).
[CrossRef]

Wu, G. H.

G. J. Ding, F. Gao, G. H. Wu, and D. H. Bao, “Bright up-conversion green photoluminescence in Ho3+-Yb3+ co-doped Bi4Ti3O12 ferroelectric thin films,” J. Appl. Phys.109(12), 123101 (2011).
[CrossRef]

Wu, K. Y.

K. Y. Wu, J. B. Cui, X. X. Kong, and Y. J. Wang, “Temperature dependent upconversion luminescence of Yb/Er codoped NaYF4 nanocrystals,” J. Appl. Phys.110(5), 053510 (2011).
[CrossRef]

Xiao, S.

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipation method,” Appl. Phys. B93(4), 801–807 (2008).
[CrossRef]

Yang, G. H.

Yang, X.

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipation method,” Appl. Phys. B93(4), 801–807 (2008).
[CrossRef]

Yoshii, S.

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare earth ions in fluorophosphates glasses,” Phys. Rev.45(9), 4620–4625 (1992).
[CrossRef]

Yu, Y. L.

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+:beta-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett.91(5), 051920 (2007).
[CrossRef]

Zhang, Z. G.

Appl. Opt. (1)

Appl. Phys. B (2)

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipation method,” Appl. Phys. B93(4), 801–807 (2008).
[CrossRef]

V. K. Rai, “Temperature sensor and optical sensors,” Appl. Phys. B88(2), 297–303 (2007).
[CrossRef]

Appl. Phys. Lett. (4)

F. Lahoz, I. R. Martín, and J. M. Calvilla-Quintero, “Ultraviolet and white phonon avalanche upconversion in Ho3+ doped nanophase glass ceramic,” Appl. Phys. Lett.86(5), 051106 (2005).
[CrossRef]

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+:beta-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett.91(5), 051920 (2007).
[CrossRef]

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+ codoped chalcogenide glass,” Appl. Phys. Lett.73(5), 578–580 (1998).
[CrossRef]

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd: YLF and Nd: YAG,” Appl. Phys. Lett.58, 16076–16092 (1998).

Chem. Mater. (1)

J. A. Capobianco, J. C. Boyer, F. Vetrone, A. Speghini, and M. Bettinelli, “Optical spectroscopy and upconversion studies of Ho3+-doped bulk and nanocrystalline Y2O3,” Chem. Mater.14(7), 2915–2921 (2002).
[CrossRef]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

S. Sivakumar, F. C. J. M. van Veggel, and P. S. May, “Near-infrared (NIR) to red and green up-conversion emission from silica sol-gel thin films made with La0.45Yb0.50Er0.05F3 nanoparticles, hetero-looping-enhanced energy transfer (Hetero-LEET): a new up-conversion process,” J. Am. Chem. Soc.129(3), 620–625 (2007).
[CrossRef] [PubMed]

J. Appl. Phys. (5)

F. Lahoz, I. R. Martín, and A. Briones, “Infrared-laser induced photon avalanche upconversion in Ho3+–Yb3+ codoped fluoroindate glasses,” J. Appl. Phys.95(6), 2957–2962 (2004).
[CrossRef]

G. J. Ding, F. Gao, G. H. Wu, and D. H. Bao, “Bright up-conversion green photoluminescence in Ho3+-Yb3+ co-doped Bi4Ti3O12 ferroelectric thin films,” J. Appl. Phys.109(12), 123101 (2011).
[CrossRef]

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys.94(8), 4743–4756 (2003).
[CrossRef]

K. Y. Wu, J. B. Cui, X. X. Kong, and Y. J. Wang, “Temperature dependent upconversion luminescence of Yb/Er codoped NaYF4 nanocrystals,” J. Appl. Phys.110(5), 053510 (2011).
[CrossRef]

F. Lahoz, I. R. Matín, and J. Méndez-Ramos, “Dopant distribution in a Tm3+-Yb3+ codoped silica based glass ceramic: an infrared-laser induced upconversion study,” J. Appl. Phys.120, 6180–6190 (2004).

J. Chem. Phys. (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys.21(5), 836–850 (1953).
[CrossRef]

J. Mater. Sci. (1)

Y. Kawamoto, R. Kanno, and J. Qiu, “Upconversion luminescence of Er3+ in transparent SiO2-PbF2-ErF3 glass ceramic,” J. Mater. Sci.33(1), 63–67 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+: ZrO2 nanocrystals,” J. Phys. Chem. B106(8), 1909–1912 (2002).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (1)

R. K. Verma and S. B. Rai, “Laser induced optical heating from Yb3+/Ho3+: Ca12Al14O33 and its applicability as a thermal probe,” J. Quant. Spectrosc. Radiat. Transf.113(12), 1594–1600 (2012).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. (5)

P. Haro-González, I. R. Martín, L. L. Martín, F. S. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater.33(5), 742–745 (2011).
[CrossRef]

Y. Guyot, R. Moncorge, L. F. Merkle, A. Pinto, B. Mclntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater.5(1-2), 127–136 (1996).
[CrossRef]

J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

V. Lavín, F. Lahoz, I. R. Martín, U. R. Rodríguze-Mendoza, and J. M. Cáceres, “Infrared-to-visible photon avalanche upconversion dynamics in Ho3+-doped fluorozirconate glasses at room temperature,” Opt. Mater.27(11), 1754–1761 (2005).
[CrossRef]

S. Tanabe, H. Hayashi, T. Hanada, and N. Onodera, “Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals,” Opt. Mater.19(3), 343–349 (2002).
[CrossRef]

Phys. Rev. (1)

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare earth ions in fluorophosphates glasses,” Phys. Rev.45(9), 4620–4625 (1992).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

L. Gomes, L. C. Courrol, L. V. G. Tarelho, and I. M. Ranieri, “Cross-relaxation process between +3 rare-earth ions in LiYF4 crystals,” Phys. Rev. B Condens. Matter54(6), 3825–3829 (1996).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

S. A. Wade, J. C. Muscat, S. F. Collins, and G. W. Baxter, “Nd3+ doped optical temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum.70(11), 4279–4282 (1999).
[CrossRef]

S. A. Wade, S. F. Collins, G. W. Baxter, and G. Monnom, “Effect of strain on temperature measurements using the fluorescence intensity ratio technique (with Nd3+ and Yb3+ doped silica fibers),” Rev. Sci. Instrum.72(8), 3180–3185 (2001).
[CrossRef]

Science (1)

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science273(5279), 1185–1189 (1996).
[CrossRef]

Sen. Actuators A (1)

V. K. Rai, D. K. Rai, and S. B. Rai, “Pr3+ doped lithium tellurite glass as a temperature sensor,” Sen. Actuators A128(1), 14–17 (2006).
[CrossRef]

Sen. Actuators B (2)

B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er3+-Mo:Yb2Ti2O7 nanophosphor,” Sen. Actuators B159(1), 8–11 (2011).
[CrossRef]

S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sen. Actuators B158(1), 208–213 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

DTA curve for the SiO2-PbF2-Ho2O3-Yb2O3 glass.

Fig. 2
Fig. 2

XRD patterns for Ho3+/Yb3+ codoped glass and glass ceramic.

Fig. 3
Fig. 3

Upconversion emissions for the Ho3+/Yb3+ codoped precursor glass and glass ceramic

Fig. 4
Fig. 4

Log-log plot of the upconversion emission intensity versus the pumping power.

Fig. 5
Fig. 5

Energy level diagram of Yb3+ and Ho3+ ions as well as the proposed upconversion mechanisms.

Fig. 6
Fig. 6

Luminescence decay curves for the energy levels of Ho3+ ions in the glass and the glass ceramic.

Fig. 7
Fig. 7

Temperature dependent blue upconversion emissions in Ho3+/Yb3+ codoped glass ceramic.

Fig. 8
Fig. 8

Fluorescence intensity ratio between the blue emissions from Ho3+/Yb3+ codoped glass ceramic as a function of temperature.

Fig. 9
Fig. 9

Relative sensitivity of Ho3+/Yb3+codoped glass ceramic for optical thermometry as a function of temperature.

Tables (1)

Tables Icon

Table 1 The Absolute Sensitivities SA and the Theoretical Maximum Value of the Relative Sensitivity SR-MAX as well as the Temperature T for SR-MAX in Optical Temperature Sensors Based on the Fluorescence of Materials with Rare Earth Ions.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I UP P n ,
W NR [ 1exp( w/ k B T ) ] P ,
P=ΔE/w,
W YbHo = 1 τ YbHo 1 τ Yb .
S ΔE k B T 2 .
FIR I i I j = A i g i σ i w i A j g j σ j w j exp( ΔE k B T )+B=Cexp( ΔE k B T )+B,
S R dFIR dT =FIR× ΔE k B T 2 .

Metrics