Abstract

A simple linear photonic technique is proposed to achieve fixed or time varying radio-frequency (RF) phase shifts which can be used in applications such as radar signal manipulation. The technique is based on fixing or tuning the wavelength of an RF modulated optical signal within the reflection band of a fiber Bragg grating (FBG) filter with a step group delay profile. The scheme is verified in a realistic simulation to achieve a Doppler shift in a pulsed CW signal return.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Vilcot, B. Cabon, and J. Chazels, eds., Microwave Photonics (Kluwer Academic Publishers, 2003).
  2. S. T. Winnall, A. C. Lindsay, and G. A. Knight, “A wide-band microwave photonic phase and frequency shifter,” IEEE Trans. Microw. Theory Tech.45(6), 1003–1006 (1997).
    [CrossRef]
  3. J. F. Coward, C. H. Chalfant, and P. H. Chang, “A photonic integrated-optic RF phase shifter for phased array antenna beam-forming applications,” J. Lightwave Technol.11(12), 2201–2205 (1993).
    [CrossRef]
  4. S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, W. H. Steier, L. R. Dalton, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.9(3), 357–359 (1999).
  5. L. A. Bui, A. Mitchell, K. Ghorbani, and T.-H. Chio, “Wideband RF photonic vector sum phase shifter,” Electron. Lett.39(6), 536–537 (2003).
    [CrossRef]
  6. A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on btimulated Brillouin bcattering and single-sideband modulation,” IEEE Photon. Technol. Lett.18(1), 208–210 (2006).
    [CrossRef]
  7. W. Xue, S. Sales, J. Capmany, and J. Mørk, “Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers,” Opt. Lett.34(7), 929–931 (2009).
    [CrossRef] [PubMed]
  8. X. Yi, T. X. H. Huang, and R. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photon. Technol. Lett.23(18), 1286–1288 (2011).
    [CrossRef]
  9. D. B. Adams and C. K. Madsen, “A novel broadband photonics RF phase shifter,” J. Lightwave Technol.26(15), 2712–2717 (2008).
    [CrossRef]
  10. M. Sagues, A. Loayssa, J. Capmany, D. Benito, S. Sales, and R. Garcia-Olcina, “Tunable complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow-band optical filtering,” in Proceedings of OFC 07, paper OWU5 (2007).
  11. C. Wang and J. Yao, “Chirped microwave pulse compression using a photonic microwave filter with a nonlinear phase response,” IEEE Trans. Microw. Theory Tech.57(2), 496–504 (2009).
    [CrossRef]
  12. R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of no uniform fiber Bragg grating,” IEEE J. Quantum Electron.35(8), 1105–1115 (1999).
    [CrossRef]
  13. Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett.23(11), 712–714 (2011).
    [CrossRef]
  14. P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol.30(11), 1638–1644 (2012).
    [CrossRef]

2012 (1)

2011 (2)

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett.23(11), 712–714 (2011).
[CrossRef]

X. Yi, T. X. H. Huang, and R. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photon. Technol. Lett.23(18), 1286–1288 (2011).
[CrossRef]

2009 (2)

C. Wang and J. Yao, “Chirped microwave pulse compression using a photonic microwave filter with a nonlinear phase response,” IEEE Trans. Microw. Theory Tech.57(2), 496–504 (2009).
[CrossRef]

W. Xue, S. Sales, J. Capmany, and J. Mørk, “Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers,” Opt. Lett.34(7), 929–931 (2009).
[CrossRef] [PubMed]

2008 (1)

2006 (1)

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on btimulated Brillouin bcattering and single-sideband modulation,” IEEE Photon. Technol. Lett.18(1), 208–210 (2006).
[CrossRef]

2003 (1)

L. A. Bui, A. Mitchell, K. Ghorbani, and T.-H. Chio, “Wideband RF photonic vector sum phase shifter,” Electron. Lett.39(6), 536–537 (2003).
[CrossRef]

1999 (2)

S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, W. H. Steier, L. R. Dalton, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.9(3), 357–359 (1999).

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of no uniform fiber Bragg grating,” IEEE J. Quantum Electron.35(8), 1105–1115 (1999).
[CrossRef]

1997 (1)

S. T. Winnall, A. C. Lindsay, and G. A. Knight, “A wide-band microwave photonic phase and frequency shifter,” IEEE Trans. Microw. Theory Tech.45(6), 1003–1006 (1997).
[CrossRef]

1993 (1)

J. F. Coward, C. H. Chalfant, and P. H. Chang, “A photonic integrated-optic RF phase shifter for phased array antenna beam-forming applications,” J. Lightwave Technol.11(12), 2201–2205 (1993).
[CrossRef]

Adams, D. B.

Bhattacharya, D.

S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, W. H. Steier, L. R. Dalton, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.9(3), 357–359 (1999).

Bogoni, A.

Bui, L. A.

L. A. Bui, A. Mitchell, K. Ghorbani, and T.-H. Chio, “Wideband RF photonic vector sum phase shifter,” Electron. Lett.39(6), 536–537 (2003).
[CrossRef]

Capmany, J.

Chalfant, C. H.

J. F. Coward, C. H. Chalfant, and P. H. Chang, “A photonic integrated-optic RF phase shifter for phased array antenna beam-forming applications,” J. Lightwave Technol.11(12), 2201–2205 (1993).
[CrossRef]

Chang, D. H.

S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, W. H. Steier, L. R. Dalton, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.9(3), 357–359 (1999).

Chang, P. H.

J. F. Coward, C. H. Chalfant, and P. H. Chang, “A photonic integrated-optic RF phase shifter for phased array antenna beam-forming applications,” J. Lightwave Technol.11(12), 2201–2205 (1993).
[CrossRef]

Chang, Y.

S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, W. H. Steier, L. R. Dalton, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.9(3), 357–359 (1999).

Chi, H.

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett.23(11), 712–714 (2011).
[CrossRef]

Chio, T.-H.

L. A. Bui, A. Mitchell, K. Ghorbani, and T.-H. Chio, “Wideband RF photonic vector sum phase shifter,” Electron. Lett.39(6), 536–537 (2003).
[CrossRef]

Coward, J. F.

J. F. Coward, C. H. Chalfant, and P. H. Chang, “A photonic integrated-optic RF phase shifter for phased array antenna beam-forming applications,” J. Lightwave Technol.11(12), 2201–2205 (1993).
[CrossRef]

Dalton, L. R.

S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, W. H. Steier, L. R. Dalton, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.9(3), 357–359 (1999).

Erlig, H.

S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, W. H. Steier, L. R. Dalton, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.9(3), 357–359 (1999).

Feced, R.

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of no uniform fiber Bragg grating,” IEEE J. Quantum Electron.35(8), 1105–1115 (1999).
[CrossRef]

Fetterman, H. R.

S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, W. H. Steier, L. R. Dalton, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.9(3), 357–359 (1999).

Ghelfi, P.

Ghorbani, K.

L. A. Bui, A. Mitchell, K. Ghorbani, and T.-H. Chio, “Wideband RF photonic vector sum phase shifter,” Electron. Lett.39(6), 536–537 (2003).
[CrossRef]

Huang, T. X. H.

X. Yi, T. X. H. Huang, and R. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photon. Technol. Lett.23(18), 1286–1288 (2011).
[CrossRef]

Knight, G. A.

S. T. Winnall, A. C. Lindsay, and G. A. Knight, “A wide-band microwave photonic phase and frequency shifter,” IEEE Trans. Microw. Theory Tech.45(6), 1003–1006 (1997).
[CrossRef]

Laghezza, F.

Lahoz, F. J.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on btimulated Brillouin bcattering and single-sideband modulation,” IEEE Photon. Technol. Lett.18(1), 208–210 (2006).
[CrossRef]

Lee, S. S.

S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, W. H. Steier, L. R. Dalton, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.9(3), 357–359 (1999).

Li, W.

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett.23(11), 712–714 (2011).
[CrossRef]

Li, Z.

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett.23(11), 712–714 (2011).
[CrossRef]

Lindsay, A. C.

S. T. Winnall, A. C. Lindsay, and G. A. Knight, “A wide-band microwave photonic phase and frequency shifter,” IEEE Trans. Microw. Theory Tech.45(6), 1003–1006 (1997).
[CrossRef]

Loayssa, A.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on btimulated Brillouin bcattering and single-sideband modulation,” IEEE Photon. Technol. Lett.18(1), 208–210 (2006).
[CrossRef]

Madsen, C. K.

Minasian, R.

X. Yi, T. X. H. Huang, and R. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photon. Technol. Lett.23(18), 1286–1288 (2011).
[CrossRef]

Mitchell, A.

L. A. Bui, A. Mitchell, K. Ghorbani, and T.-H. Chio, “Wideband RF photonic vector sum phase shifter,” Electron. Lett.39(6), 536–537 (2003).
[CrossRef]

Mørk, J.

Muriel, M. A.

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of no uniform fiber Bragg grating,” IEEE J. Quantum Electron.35(8), 1105–1115 (1999).
[CrossRef]

Sales, S.

Scotti, F.

Steier, W. H.

S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, W. H. Steier, L. R. Dalton, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.9(3), 357–359 (1999).

Tsap, B.

S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, W. H. Steier, L. R. Dalton, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.9(3), 357–359 (1999).

Udupa, A. H.

S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, W. H. Steier, L. R. Dalton, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.9(3), 357–359 (1999).

Wang, C.

C. Wang and J. Yao, “Chirped microwave pulse compression using a photonic microwave filter with a nonlinear phase response,” IEEE Trans. Microw. Theory Tech.57(2), 496–504 (2009).
[CrossRef]

Winnall, S. T.

S. T. Winnall, A. C. Lindsay, and G. A. Knight, “A wide-band microwave photonic phase and frequency shifter,” IEEE Trans. Microw. Theory Tech.45(6), 1003–1006 (1997).
[CrossRef]

Xue, W.

Yao, J.

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett.23(11), 712–714 (2011).
[CrossRef]

C. Wang and J. Yao, “Chirped microwave pulse compression using a photonic microwave filter with a nonlinear phase response,” IEEE Trans. Microw. Theory Tech.57(2), 496–504 (2009).
[CrossRef]

Yi, X.

X. Yi, T. X. H. Huang, and R. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photon. Technol. Lett.23(18), 1286–1288 (2011).
[CrossRef]

Zervas, M. N.

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of no uniform fiber Bragg grating,” IEEE J. Quantum Electron.35(8), 1105–1115 (1999).
[CrossRef]

Zhang, C.

S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, W. H. Steier, L. R. Dalton, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.9(3), 357–359 (1999).

Zhang, H.

S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, W. H. Steier, L. R. Dalton, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.9(3), 357–359 (1999).

Zhang, X.

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett.23(11), 712–714 (2011).
[CrossRef]

Electron. Lett. (1)

L. A. Bui, A. Mitchell, K. Ghorbani, and T.-H. Chio, “Wideband RF photonic vector sum phase shifter,” Electron. Lett.39(6), 536–537 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of no uniform fiber Bragg grating,” IEEE J. Quantum Electron.35(8), 1105–1115 (1999).
[CrossRef]

IEEE Microw. Guided Wave Lett. (1)

S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, W. H. Steier, L. R. Dalton, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.9(3), 357–359 (1999).

IEEE Photon. Technol. Lett. (3)

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett.23(11), 712–714 (2011).
[CrossRef]

X. Yi, T. X. H. Huang, and R. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photon. Technol. Lett.23(18), 1286–1288 (2011).
[CrossRef]

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on btimulated Brillouin bcattering and single-sideband modulation,” IEEE Photon. Technol. Lett.18(1), 208–210 (2006).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

C. Wang and J. Yao, “Chirped microwave pulse compression using a photonic microwave filter with a nonlinear phase response,” IEEE Trans. Microw. Theory Tech.57(2), 496–504 (2009).
[CrossRef]

S. T. Winnall, A. C. Lindsay, and G. A. Knight, “A wide-band microwave photonic phase and frequency shifter,” IEEE Trans. Microw. Theory Tech.45(6), 1003–1006 (1997).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Lett. (1)

Other (2)

A. Vilcot, B. Cabon, and J. Chazels, eds., Microwave Photonics (Kluwer Academic Publishers, 2003).

M. Sagues, A. Loayssa, J. Capmany, D. Benito, S. Sales, and R. Garcia-Olcina, “Tunable complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow-band optical filtering,” in Proceedings of OFC 07, paper OWU5 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic representation of manipulating RF phase using an FBG with step group delay, with illustration showing reflection (a) group delay (b) and phase (c) spectra of the grating response.

Fig. 2
Fig. 2

Reflection and group delay spectra (left), and grating coupling coefficient (right) of FBG designs with (a) 100ps, (b) 200 ps, (c) 400 ps group delay step.

Fig. 3
Fig. 3

(a) Phase shift versus carrier wavelength tuning given as frequency offset (GHz) for FBGs with 100, 200 and 400 ps group delay step. (b) Pulse evolution with carrier frequency offset for the FBG with 200 ps group delay step.

Fig. 4
Fig. 4

Photonic variable phase shifter for Doppler generation. Insets: (a) simulated optical spectrum showing the wavelength tuning of the generated OSSB + C signal after FBG and (b) the range-Doppler map generated for this scenario.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δφ( λ c ( t ) )=Δφ( λ c0 )+2π( 1 λ c ( t ) 1 λ c0 ) n eff 2L
Δφ( f c ( t ) )=Δφ( f c0 )+2π( f c ( t ) f c0 )( τ s τ c )
φ= BW dφ df df= BW dφ dω dω =2πc BW τ( λ ) λ 2 dλ
I PD = | E{ C e j ω c t +S e j[ ω s t+Δφ( t ) ] } | 2 S C * e j( Ωt+Δφ( t ) ) +cc =Acos( Ωt+Δφ( t )+θ )

Metrics