Abstract

Recent advances in optical coherence tomography (OCT) have led to higher-speed sources that support imaging over longer depth ranges. Limitations in the bandwidth of state-of-the-art acquisition electronics, however, prevent adoption of these advances into the clinical applications. Here, we introduce optical-domain subsampling as a method for imaging at high-speeds and over extended depth ranges but with a lower acquisition bandwidth than that required using conventional approaches. Optically subsampled laser sources utilize a discrete set of wavelengths to alias fringe signals along an extended depth range into a bandwidth limited frequency window. By detecting the complex fringe signals and under the assumption of a depth-constrained signal, optical-domain subsampling enables recovery of the depth-resolved scattering signal without overlapping artifacts from this bandwidth-limited window. We highlight key principles behind optical-domain subsampled imaging, and demonstrate this principle experimentally using a polygon-filter based swept-source laser that includes an intra-cavity Fabry-Perot (FP) etalon.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003).
    [CrossRef] [PubMed]
  2. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006).
    [CrossRef] [PubMed]
  3. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett.28(20), 1981–1983 (2003).
    [CrossRef] [PubMed]
  4. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett.30(23), 3159–3161 (2005).
    [CrossRef] [PubMed]
  5. W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
    [CrossRef] [PubMed]
  6. V. Jayaraman, J. Jiang, H. Li, P. J. S. Heim, G. D. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-mode 1310nm MEMS-tunable VCSELs with >100nm tuning range,” in Lasers and Electro-Optics (CLEO), (Optical Society of America, 2011), pp. 1–2.
  7. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 G Voxels per second,” Opt. Express18(14), 14685–14704 (2010).
    [CrossRef] [PubMed]
  8. T.-H. Tsai, C. Zhou, D. C. Adler, and J. G. Fujimoto, “Frequency comb swept lasers,” Opt. Express17(23), 21257–21270 (2009).
    [CrossRef] [PubMed]
  9. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express16(6), 4163–4176 (2008).
    [CrossRef] [PubMed]
  10. E. J. Jung, J.-S. Park, M. Y. Jeong, C.-S. Kim, T. J. Eom, B.-A. Yu, S. Gee, J. Lee, and M. K. Kim, “Spectrally-sampled OCT for sensitivity improvement from limited optical power,” Opt. Express16(22), 17457–17467 (2008).
    [CrossRef] [PubMed]
  11. G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-Dimensional Coronary Artery Microscopy by Intracoronary Optical Frequency Domain Imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
    [CrossRef] [PubMed]
  12. B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency, Äìdomain imaging (with video),” Gastrointest. Endosc.65(6), 898–905 (2007).
    [CrossRef] [PubMed]
  13. R. G. Vaughan, N. L. Scott, and D. R. White, “The theory of bandpass sampling,” IEEE Trans. Signal Process.39, 1973–1984 (1991).
  14. D. M. Akos, M. Stockmaster, J. B. Y. Tsui, and J. Caschera, “Direct bandpass sampling of multiple distinct RF signals,” IEEE Trans. Commun.47(7), 983–988 (1999).
    [CrossRef]
  15. A. J. Coulson, R. G. Vaughan, and M. A. Poletti, “Frequency-shifting using bandpass sampling,” IEEE Trans. Signal Process.42, 1556–1559 (1994).
  16. S. Yun, G. Tearney, J. de Boer, and B. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express12(20), 4822–4828 (2004).
    [CrossRef] [PubMed]
  17. B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation,” Opt. Lett.31(3), 362–364 (2006).
    [CrossRef] [PubMed]
  18. A.-H. Dhalla, D. Nankivil, and J. A. Izatt, “Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival,” Biomed. Opt. Express3(3), 633–649 (2012).
    [CrossRef] [PubMed]
  19. B. Otis, Bocock, R., “Downconversion Subsampling of RF Signals,” EECS 247 (2000).
  20. Y. Poberezhskiy and G. Poberezhskiy, “Sample-and-hold amplifiers performing internal antialiasing filtering and their applications in digital receivers,”in The 2000 IEEE International Symposium on Circuits and Systems,(ISCAS, Geneva, 2000), pp. 439–442.
  21. J. Xi, L. Huo, J. Li, and X. Li, “Generic real-time uniform K-space sampling method for high-speed swept-Source optical coherence tomography,” Opt. Express18(9), 9511–9517 (2010).
    [CrossRef] [PubMed]
  22. T.-J. Ahn and D. Y. Kim, “Nonlinear frequency chirp measurement of frequency sweeping lasers for FD-OCT applications,” in Conference Proceedings - SPIE,N. Joseph, N. Stefan, H. Alexander, B.S. Christopher, eds. (SPIE, 2006), pp. 61081A.

2012 (1)

2010 (3)

2009 (1)

2008 (3)

2007 (1)

B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency, Äìdomain imaging (with video),” Gastrointest. Endosc.65(6), 898–905 (2007).
[CrossRef] [PubMed]

2006 (2)

2005 (1)

2004 (1)

2003 (2)

1999 (1)

D. M. Akos, M. Stockmaster, J. B. Y. Tsui, and J. Caschera, “Direct bandpass sampling of multiple distinct RF signals,” IEEE Trans. Commun.47(7), 983–988 (1999).
[CrossRef]

1994 (1)

A. J. Coulson, R. G. Vaughan, and M. A. Poletti, “Frequency-shifting using bandpass sampling,” IEEE Trans. Signal Process.42, 1556–1559 (1994).

1991 (1)

R. G. Vaughan, N. L. Scott, and D. R. White, “The theory of bandpass sampling,” IEEE Trans. Signal Process.39, 1973–1984 (1991).

Adler, D. C.

Akos, D. M.

D. M. Akos, M. Stockmaster, J. B. Y. Tsui, and J. Caschera, “Direct bandpass sampling of multiple distinct RF signals,” IEEE Trans. Commun.47(7), 983–988 (1999).
[CrossRef]

Bajraszewski, T.

Bartlett, L. A.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-Dimensional Coronary Artery Microscopy by Intracoronary Optical Frequency Domain Imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Biedermann, B. R.

Boudoux, C.

Bouma, B.

Bouma, B. E.

W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
[CrossRef] [PubMed]

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-Dimensional Coronary Artery Microscopy by Intracoronary Optical Frequency Domain Imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency, Äìdomain imaging (with video),” Gastrointest. Endosc.65(6), 898–905 (2007).
[CrossRef] [PubMed]

B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation,” Opt. Lett.31(3), 362–364 (2006).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett.30(23), 3159–3161 (2005).
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett.28(20), 1981–1983 (2003).
[CrossRef] [PubMed]

Caschera, J.

D. M. Akos, M. Stockmaster, J. B. Y. Tsui, and J. Caschera, “Direct bandpass sampling of multiple distinct RF signals,” IEEE Trans. Commun.47(7), 983–988 (1999).
[CrossRef]

Coulson, A. J.

A. J. Coulson, R. G. Vaughan, and M. A. Poletti, “Frequency-shifting using bandpass sampling,” IEEE Trans. Signal Process.42, 1556–1559 (1994).

de Boer, J.

Desjardins, A. E.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-Dimensional Coronary Artery Microscopy by Intracoronary Optical Frequency Domain Imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency, Äìdomain imaging (with video),” Gastrointest. Endosc.65(6), 898–905 (2007).
[CrossRef] [PubMed]

Dhalla, A.-H.

Eigenwillig, C. M.

Eom, T. J.

Evans, J. A.

B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency, Äìdomain imaging (with video),” Gastrointest. Endosc.65(6), 898–905 (2007).
[CrossRef] [PubMed]

Freilich, M. I.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-Dimensional Coronary Artery Microscopy by Intracoronary Optical Frequency Domain Imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gee, S.

Huber, R.

Huo, L.

Iftimia, N.

Izatt, J. A.

Jeong, M. Y.

Jung, E. J.

Kim, C.-S.

Kim, M. K.

Klein, T.

Kowalczyk, A.

Lee, J.

Li, J.

Li, X.

Nankivil, D.

Nishioka, N. S.

B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency, Äìdomain imaging (with video),” Gastrointest. Endosc.65(6), 898–905 (2007).
[CrossRef] [PubMed]

Oh, W. Y.

Oh, W.-Y.

W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
[CrossRef] [PubMed]

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-Dimensional Coronary Artery Microscopy by Intracoronary Optical Frequency Domain Imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency, Äìdomain imaging (with video),” Gastrointest. Endosc.65(6), 898–905 (2007).
[CrossRef] [PubMed]

Park, J.-S.

Poletti, M. A.

A. J. Coulson, R. G. Vaughan, and M. A. Poletti, “Frequency-shifting using bandpass sampling,” IEEE Trans. Signal Process.42, 1556–1559 (1994).

Rosenberg, M.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-Dimensional Coronary Artery Microscopy by Intracoronary Optical Frequency Domain Imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Scott, N. L.

R. G. Vaughan, N. L. Scott, and D. R. White, “The theory of bandpass sampling,” IEEE Trans. Signal Process.39, 1973–1984 (1991).

Shishko, M.

B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency, Äìdomain imaging (with video),” Gastrointest. Endosc.65(6), 898–905 (2007).
[CrossRef] [PubMed]

Shishkov, M.

W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
[CrossRef] [PubMed]

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-Dimensional Coronary Artery Microscopy by Intracoronary Optical Frequency Domain Imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Stockmaster, M.

D. M. Akos, M. Stockmaster, J. B. Y. Tsui, and J. Caschera, “Direct bandpass sampling of multiple distinct RF signals,” IEEE Trans. Commun.47(7), 983–988 (1999).
[CrossRef]

Suter, M. J.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-Dimensional Coronary Artery Microscopy by Intracoronary Optical Frequency Domain Imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency, Äìdomain imaging (with video),” Gastrointest. Endosc.65(6), 898–905 (2007).
[CrossRef] [PubMed]

Szkulmowska, A.

Szkulmowski, M.

Tearney, G.

Tearney, G. J.

W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
[CrossRef] [PubMed]

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-Dimensional Coronary Artery Microscopy by Intracoronary Optical Frequency Domain Imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency, Äìdomain imaging (with video),” Gastrointest. Endosc.65(6), 898–905 (2007).
[CrossRef] [PubMed]

B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation,” Opt. Lett.31(3), 362–364 (2006).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett.30(23), 3159–3161 (2005).
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett.28(20), 1981–1983 (2003).
[CrossRef] [PubMed]

Tsai, T.-H.

Tsui, J. B. Y.

D. M. Akos, M. Stockmaster, J. B. Y. Tsui, and J. Caschera, “Direct bandpass sampling of multiple distinct RF signals,” IEEE Trans. Commun.47(7), 983–988 (1999).
[CrossRef]

Vakoc, B. J.

W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
[CrossRef] [PubMed]

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-Dimensional Coronary Artery Microscopy by Intracoronary Optical Frequency Domain Imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency, Äìdomain imaging (with video),” Gastrointest. Endosc.65(6), 898–905 (2007).
[CrossRef] [PubMed]

B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation,” Opt. Lett.31(3), 362–364 (2006).
[CrossRef] [PubMed]

Vaughan, R. G.

A. J. Coulson, R. G. Vaughan, and M. A. Poletti, “Frequency-shifting using bandpass sampling,” IEEE Trans. Signal Process.42, 1556–1559 (1994).

R. G. Vaughan, N. L. Scott, and D. R. White, “The theory of bandpass sampling,” IEEE Trans. Signal Process.39, 1973–1984 (1991).

Waxman, S.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-Dimensional Coronary Artery Microscopy by Intracoronary Optical Frequency Domain Imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

White, D. R.

R. G. Vaughan, N. L. Scott, and D. R. White, “The theory of bandpass sampling,” IEEE Trans. Signal Process.39, 1973–1984 (1991).

Wieser, W.

Wojtkowski, M.

Xi, J.

Yu, B.-A.

Yun, S.

Yun, S. H.

Zhou, C.

Biomed. Opt. Express (1)

Gastrointest. Endosc. (1)

B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency, Äìdomain imaging (with video),” Gastrointest. Endosc.65(6), 898–905 (2007).
[CrossRef] [PubMed]

IEEE Trans. Commun. (1)

D. M. Akos, M. Stockmaster, J. B. Y. Tsui, and J. Caschera, “Direct bandpass sampling of multiple distinct RF signals,” IEEE Trans. Commun.47(7), 983–988 (1999).
[CrossRef]

IEEE Trans. Signal Process. (2)

A. J. Coulson, R. G. Vaughan, and M. A. Poletti, “Frequency-shifting using bandpass sampling,” IEEE Trans. Signal Process.42, 1556–1559 (1994).

R. G. Vaughan, N. L. Scott, and D. R. White, “The theory of bandpass sampling,” IEEE Trans. Signal Process.39, 1973–1984 (1991).

JACC Cardiovasc. Imaging (1)

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-Dimensional Coronary Artery Microscopy by Intracoronary Optical Frequency Domain Imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Opt. Express (8)

S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003).
[CrossRef] [PubMed]

S. Yun, G. Tearney, J. de Boer, and B. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express12(20), 4822–4828 (2004).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express16(6), 4163–4176 (2008).
[CrossRef] [PubMed]

E. J. Jung, J.-S. Park, M. Y. Jeong, C.-S. Kim, T. J. Eom, B.-A. Yu, S. Gee, J. Lee, and M. K. Kim, “Spectrally-sampled OCT for sensitivity improvement from limited optical power,” Opt. Express16(22), 17457–17467 (2008).
[CrossRef] [PubMed]

T.-H. Tsai, C. Zhou, D. C. Adler, and J. G. Fujimoto, “Frequency comb swept lasers,” Opt. Express17(23), 21257–21270 (2009).
[CrossRef] [PubMed]

J. Xi, L. Huo, J. Li, and X. Li, “Generic real-time uniform K-space sampling method for high-speed swept-Source optical coherence tomography,” Opt. Express18(9), 9511–9517 (2010).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 G Voxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

Opt. Lett. (4)

Other (4)

V. Jayaraman, J. Jiang, H. Li, P. J. S. Heim, G. D. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-mode 1310nm MEMS-tunable VCSELs with >100nm tuning range,” in Lasers and Electro-Optics (CLEO), (Optical Society of America, 2011), pp. 1–2.

B. Otis, Bocock, R., “Downconversion Subsampling of RF Signals,” EECS 247 (2000).

Y. Poberezhskiy and G. Poberezhskiy, “Sample-and-hold amplifiers performing internal antialiasing filtering and their applications in digital receivers,”in The 2000 IEEE International Symposium on Circuits and Systems,(ISCAS, Geneva, 2000), pp. 439–442.

T.-J. Ahn and D. Y. Kim, “Nonlinear frequency chirp measurement of frequency sweeping lasers for FD-OCT applications,” in Conference Proceedings - SPIE,N. Joseph, N. Stefan, H. Alexander, B.S. Christopher, eds. (SPIE, 2006), pp. 61081A.

Supplementary Material (1)

» Media 1: AVI (23149 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

An illustrative A-line from an extended depth range (DE). The OCT A-line contains limited regions of signal (tissue, from DT to DT + DI) surrounded by signal-absent regions (a scattering and attenuated).

Fig. 2
Fig. 2

Subsampling of bandwidth limited signals. (a,b) A bandwidth limited signal sampled at twice its highest frequency content (2fU) yields the full frequency content. However this is data inefficient because non-aliased sampling frequencies increase with signal frequency. (c-e) Direct subsampling of the signal at twice its bandwidth (2B) captures its information content by repeated aliasing of the original frequency space to the baseband window.

Fig. 3
Fig. 3

Real-valued and complex-valued signals are mapped differently into the aliased frequency space. For real-valued signals, signals located at varying locations (A) can induce distortions due to non-circular wrapping in the aliased image (B). For complex signals, wrapping is circular and overlap is avoided as long as the baseband window is large enough to contain the depth extent of the signal (C).

Fig. 4
Fig. 4

Electrical-domain subsampled receiver designs. An electrical-domain subsampling receiver (B) must retain the full RF bandwidth of the conventional fully sampled received (A), but it utilizes a lower digitization clock rate (2B vs. 2Fa). The resulting digital acquisition bandwidth is reduced by the factor of (Fa/B) and the noise is increased by the same factor (assuming white noise).

Fig. 5
Fig. 5

An illustration of wavelength evolution and fringe signals generated from a continuously wavelength swept laser (left) and an optical-domain subsampled laser source (right).

Fig. 6
Fig. 6

An optical-domain subsampling receiver can operate with lower analog bandwidth than its electrical-domain counterpart (see Fig. 6), and can in principle eliminate the noise penalty associated with electrical-domain subsampling.

Fig. 7
Fig. 7

Optical-domain subsampling induces a small periodic loss in baseband signal strength due to its stepwise nature and the resulting placement of signal power into higher orders. The signal variation is limited to 3.8 dB over the aliased baseband depth window. m is an integer and Ds is the baseband window depth.

Fig. 8
Fig. 8

Laser chirping in optical-domain subsampled sources. A subsampled source can be chirped either in time (A) or k-space (B). In time, interpolation and/or k-clocking can be used to correct the nonlinearity. A nonlinear-in-k chirp, however, distorts the optical aliasing properties, and cannot trivially be corrected. Linear in k subsampled sources are a necessary technology to enable optical-domain subsampling.

Fig. 9
Fig. 9

Sample figure of a free space wavelength swept laser with a Fabry-Perot (FP) etalon inserted in the cavity. PMF = polarization maintaining fiber; FR = Faraday rotator; BBS = broadband beam splitter; FP = Fabry-Perot; G = grating; PBS = polarization beam splitter; λ/2 = half wave plate

Fig. 10
Fig. 10

Interference fringe signals at two depths demonstrate optical-domain generation of baseband signals.

Fig. 11
Fig. 11

The measured coherence length of the optical-domain subsampled laser incorporating an intra-cavity FP etalon exceeded 7 cm.

Fig. 12
Fig. 12

Experimental demonstration of optical-domain subsampled OCT. Interference fringes were acquired of a fixed sample while translating the reference arm mirror. The frequency content of the interference fringes demonstrates the wrapping of the mirror signal in the baseband window and presence of higher order powers.

Fig. 13
Fig. 13

Microscope used in the subsampled OCT system. Focal length of lens = 10 cm; θ = 30° FOV; d = distance between galvo and sample (finger: d ~ 7.2 cm; rubber phantom: d ~ 6.2 cm – 8.2 cm)

Fig. 14
Fig. 14

Cross-sectional images of a finger resting on a small breadboard, imaged with the subsampled OCT set-up. (A) Baseband window cross-section of the skin. Curvature of the sample causes wrapping of the surface at the location of the arrows. Scale bar: 500 μm.(B) Tiling the baseband window (outlined in yellow) allows for continuous visualization of the sample. Arrow: fixed frequency noise resulting from laser (C) En face view of the cropped/tiled image. Bar: location of longitudinal cross section in (A). Arrow: junction between the finger and the nail.

Fig. 15
Fig. 15

(A) Rubber phantom resting against a metal post on a small optical breadboard. The tilted rubber phantom spans 2 cm in depth. (B) An en face cross section of the rubber, post, and breadboard (Media 1). Aliases of the tilted rubber phantom from different depth planes into this one make it possible to visualize numerous surface reflections.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

FSR= c 2n D s

Metrics