Abstract

The analytical expression for the propagation of guided optical vortices through free space is derived and used to study the dynamic evolution of guided optical vortices after passing through the free space, and the dependence of guided optical vortices on the control parameters where the effect of propagation distance is stressed. It is shown that the motion, pair creation and annihilation of guided optical vortices may take place. In particular, the creation and annihilation of a pair of guided optical vortices do not take place by varying fiber length.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci.336(1605), 165–190 (1974).
    [CrossRef]
  2. J. F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations (Institute of Physics Publishing, 1999).
  3. M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt.42, 219–276 (2001).
    [CrossRef]
  4. M. R. Dennis, K. O'Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” Prog. Opt.53, 293–363 (2009).
    [CrossRef]
  5. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).
  6. D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  7. V. V. Butkovskaya, A. V. Volyar, and T. A. Fadeeva, “Vortex optical Magnus effect in multimode fibers,” Tech. Phys. Lett.23(8), 649–650 (1997).
    [CrossRef]
  8. K. N. Alekseev and M. A. Yavorskii, “Twisted optical fibers sustaining propagation of optical vortices,” Opt. Spectrosc.98(1), 53–60 (2005).
    [CrossRef]
  9. N. Shibata, K. Okamoto, K. Suzuki, and Y. Ishida, “Polarization-mode properties of elliptical-core fibers and stress-induced birefringent fibers,” J. Opt. Soc. Am.73(12), 1792–1798 (1983).
    [CrossRef]
  10. K. N. Alekseev, A. V. Volyar, and T. A. Fadeeva, “Spin-orbit interaction and evolution of optical eddies in perturbed weakly directing optical fibers,” Opt. Spectrosc.93(4), 588–597 (2002).
    [CrossRef]
  11. D. S. Lim and E. H. Lee, “Structural characteristics and properties of phase singularities in optical fibers,” J. Opt. Soc. Korea1(2), 81–89 (1997).
    [CrossRef]
  12. A. V. Volyar and T. A. Fadeeva, “Optics of singularities of the field of a low-mode fiber: I. circular disclinations,” Opt. Spectrosc.85, 264–271 (1998).
  13. A. V. Volyar and T. A. Fadeeva, “Optics of singularities of a low-mode fiber: II. optical vortices,” Opt. Spectrosc.85, 272–280 (1998).
  14. A. V. Volyar, V. Z. Zhilaitis, and T. A. Fadeeva, “Optical vortices in low-mode fibers: III. dislocation reactions, phase transitions, and topological birefringence,” Opt. Spectrosc.88(3), 397–405 (2000).
    [CrossRef]
  15. A. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron.1, 82–89 (1998).
  16. A. V. Volyar and T. A. Fadeeva, “Dynamics of dislocations and disclinations of the field of a few-order optical fiber: I. creation and annihilation of C± disclinations,” Tech. Phys. Lett.23(1), 57–60 (1997).
    [CrossRef]
  17. A. V. Volyar and T. A. Fadeeva, “Dynamics of field dislocations and disclinations in a few-mode waveguide: II. pure types of singularities,” Tech. Phys. Lett.23(2), 91–93 (1997).
    [CrossRef]
  18. A. V. Volyar, T. A. Fadeeva, and Kh. M. Reshitova, “Dynamics of field dislocations and disclinations in a few-mode optical fiber. III. circularly polarized CP11 modes and L disclinations,” Tech. Phys. Lett.23(3), 175–177 (1997).
    [CrossRef]
  19. A. V. Volyar, T. A. Fadeeva, and Kh. M. Reshitova, “Dynamics of field dislocations and disclinations in a few-mode fiber. IV. formation of an optical vortex,” Tech. Phys. Lett.23(3), 198–200 (1997).
    [CrossRef]
  20. A. V. Volyar and T. A. Fadeeva, “Angular momentum of the fields of a few-mode fiber: I. a perturbed optical vortex,” Tech. Phys. Lett.23(11), 848–851 (1997).
    [CrossRef]
  21. A. V. Volyar and T. A. Fadeeva, “A few-mode optical fiber retaining optical vortices,” Tech. Phys. Lett.28(2), 102–104 (2002).
    [CrossRef]
  22. Y. V. Egorov, A. N. Alexeyev, O. A. Shipulin, A. V. Volyar, and M. S. Soskin, “Birth and death events in topological multipole fields after emissions from an optical fiber,” Proc. SPIE4607, 66–70 (2002).
    [CrossRef]
  23. R. Kumar, D. Singh Mehta, A. Sachdeva, A. Garg, P. Senthilkumaran, and C. Shakher, “Generation and detection of optical vortices using all fiber-optic system,” Opt. Commun.281(13), 3414–3420 (2008).
    [CrossRef]
  24. N. K. Viswanathan and V. V. G. Inavalli, “Generation of optical vector beams using a two-mode fiber,” Opt. Lett.34(8), 1189–1191 (2009).
    [CrossRef] [PubMed]
  25. P. K. Choudhury and T. Yoshino, “A rigorous analysis of the power distribution in plastic clad annular core optical fibers,” Optik (Stuttg.)113(11), 481–488 (2002).
    [CrossRef]
  26. U. K. Singh, P. Khastgir, and O. N. Singh, “Weak guidance modal cutoff analysis of a waveguide having a core cross section bounded by nonconcentric circles,” Microw. Opt. Technol. Lett.15(3), 179–184 (1997).
    [CrossRef]
  27. U. K. Singh, P. Khastgir, and O. N. Singh, “Sustained modes in a waveguide having an annular core cross-section with nonconcentric circular boundaries,” Optik (Stuttg.)107, 109–114 (1998).
  28. B. C. Sarkar, P. K. Choudhury, and T. Yoshino, “On the analysis of a weakly guiding doubly clad dieletric optical fiber with annular core,” Microw. Opt. Technol. Lett.31(6), 435–439 (2001).
    [CrossRef]
  29. J. Marcou and S. Février, “Comments on “On the analysis of a weakly guiding doubly clad dielectric optical fiber with an annular core”,” Microw. Opt. Technol. Lett.38, 249–254 (2003).
    [CrossRef]
  30. D. Gloge, “Weakly guiding fibers,” Appl. Opt.10(10), 2252–2258 (1971).
    [CrossRef] [PubMed]
  31. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  32. G. P. Karman, M. W. Beijersbergen, A. van Duijl, D. Bouwmeester, and J. P. Woerdman, “Airy pattern reorganization and subwavelength structure in a focus,” J. Opt. Soc. Am. A15(4), 884–899 (1998).
    [CrossRef]

2009 (2)

M. R. Dennis, K. O'Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” Prog. Opt.53, 293–363 (2009).
[CrossRef]

N. K. Viswanathan and V. V. G. Inavalli, “Generation of optical vector beams using a two-mode fiber,” Opt. Lett.34(8), 1189–1191 (2009).
[CrossRef] [PubMed]

2008 (1)

R. Kumar, D. Singh Mehta, A. Sachdeva, A. Garg, P. Senthilkumaran, and C. Shakher, “Generation and detection of optical vortices using all fiber-optic system,” Opt. Commun.281(13), 3414–3420 (2008).
[CrossRef]

2005 (1)

K. N. Alekseev and M. A. Yavorskii, “Twisted optical fibers sustaining propagation of optical vortices,” Opt. Spectrosc.98(1), 53–60 (2005).
[CrossRef]

2003 (2)

D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

J. Marcou and S. Février, “Comments on “On the analysis of a weakly guiding doubly clad dielectric optical fiber with an annular core”,” Microw. Opt. Technol. Lett.38, 249–254 (2003).
[CrossRef]

2002 (4)

K. N. Alekseev, A. V. Volyar, and T. A. Fadeeva, “Spin-orbit interaction and evolution of optical eddies in perturbed weakly directing optical fibers,” Opt. Spectrosc.93(4), 588–597 (2002).
[CrossRef]

P. K. Choudhury and T. Yoshino, “A rigorous analysis of the power distribution in plastic clad annular core optical fibers,” Optik (Stuttg.)113(11), 481–488 (2002).
[CrossRef]

A. V. Volyar and T. A. Fadeeva, “A few-mode optical fiber retaining optical vortices,” Tech. Phys. Lett.28(2), 102–104 (2002).
[CrossRef]

Y. V. Egorov, A. N. Alexeyev, O. A. Shipulin, A. V. Volyar, and M. S. Soskin, “Birth and death events in topological multipole fields after emissions from an optical fiber,” Proc. SPIE4607, 66–70 (2002).
[CrossRef]

2001 (2)

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt.42, 219–276 (2001).
[CrossRef]

B. C. Sarkar, P. K. Choudhury, and T. Yoshino, “On the analysis of a weakly guiding doubly clad dieletric optical fiber with annular core,” Microw. Opt. Technol. Lett.31(6), 435–439 (2001).
[CrossRef]

2000 (1)

A. V. Volyar, V. Z. Zhilaitis, and T. A. Fadeeva, “Optical vortices in low-mode fibers: III. dislocation reactions, phase transitions, and topological birefringence,” Opt. Spectrosc.88(3), 397–405 (2000).
[CrossRef]

1998 (5)

A. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron.1, 82–89 (1998).

A. V. Volyar and T. A. Fadeeva, “Optics of singularities of the field of a low-mode fiber: I. circular disclinations,” Opt. Spectrosc.85, 264–271 (1998).

A. V. Volyar and T. A. Fadeeva, “Optics of singularities of a low-mode fiber: II. optical vortices,” Opt. Spectrosc.85, 272–280 (1998).

U. K. Singh, P. Khastgir, and O. N. Singh, “Sustained modes in a waveguide having an annular core cross-section with nonconcentric circular boundaries,” Optik (Stuttg.)107, 109–114 (1998).

G. P. Karman, M. W. Beijersbergen, A. van Duijl, D. Bouwmeester, and J. P. Woerdman, “Airy pattern reorganization and subwavelength structure in a focus,” J. Opt. Soc. Am. A15(4), 884–899 (1998).
[CrossRef]

1997 (8)

D. S. Lim and E. H. Lee, “Structural characteristics and properties of phase singularities in optical fibers,” J. Opt. Soc. Korea1(2), 81–89 (1997).
[CrossRef]

U. K. Singh, P. Khastgir, and O. N. Singh, “Weak guidance modal cutoff analysis of a waveguide having a core cross section bounded by nonconcentric circles,” Microw. Opt. Technol. Lett.15(3), 179–184 (1997).
[CrossRef]

V. V. Butkovskaya, A. V. Volyar, and T. A. Fadeeva, “Vortex optical Magnus effect in multimode fibers,” Tech. Phys. Lett.23(8), 649–650 (1997).
[CrossRef]

A. V. Volyar and T. A. Fadeeva, “Dynamics of dislocations and disclinations of the field of a few-order optical fiber: I. creation and annihilation of C± disclinations,” Tech. Phys. Lett.23(1), 57–60 (1997).
[CrossRef]

A. V. Volyar and T. A. Fadeeva, “Dynamics of field dislocations and disclinations in a few-mode waveguide: II. pure types of singularities,” Tech. Phys. Lett.23(2), 91–93 (1997).
[CrossRef]

A. V. Volyar, T. A. Fadeeva, and Kh. M. Reshitova, “Dynamics of field dislocations and disclinations in a few-mode optical fiber. III. circularly polarized CP11 modes and L disclinations,” Tech. Phys. Lett.23(3), 175–177 (1997).
[CrossRef]

A. V. Volyar, T. A. Fadeeva, and Kh. M. Reshitova, “Dynamics of field dislocations and disclinations in a few-mode fiber. IV. formation of an optical vortex,” Tech. Phys. Lett.23(3), 198–200 (1997).
[CrossRef]

A. V. Volyar and T. A. Fadeeva, “Angular momentum of the fields of a few-mode fiber: I. a perturbed optical vortex,” Tech. Phys. Lett.23(11), 848–851 (1997).
[CrossRef]

1983 (1)

1974 (1)

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci.336(1605), 165–190 (1974).
[CrossRef]

1971 (1)

Alekseev, K. N.

K. N. Alekseev and M. A. Yavorskii, “Twisted optical fibers sustaining propagation of optical vortices,” Opt. Spectrosc.98(1), 53–60 (2005).
[CrossRef]

K. N. Alekseev, A. V. Volyar, and T. A. Fadeeva, “Spin-orbit interaction and evolution of optical eddies in perturbed weakly directing optical fibers,” Opt. Spectrosc.93(4), 588–597 (2002).
[CrossRef]

Alexeyev, A. N.

Y. V. Egorov, A. N. Alexeyev, O. A. Shipulin, A. V. Volyar, and M. S. Soskin, “Birth and death events in topological multipole fields after emissions from an optical fiber,” Proc. SPIE4607, 66–70 (2002).
[CrossRef]

A. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron.1, 82–89 (1998).

Beijersbergen, M. W.

Berry, M. V.

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci.336(1605), 165–190 (1974).
[CrossRef]

Bouwmeester, D.

Butkovskaya, V. V.

V. V. Butkovskaya, A. V. Volyar, and T. A. Fadeeva, “Vortex optical Magnus effect in multimode fibers,” Tech. Phys. Lett.23(8), 649–650 (1997).
[CrossRef]

Choudhury, P. K.

P. K. Choudhury and T. Yoshino, “A rigorous analysis of the power distribution in plastic clad annular core optical fibers,” Optik (Stuttg.)113(11), 481–488 (2002).
[CrossRef]

B. C. Sarkar, P. K. Choudhury, and T. Yoshino, “On the analysis of a weakly guiding doubly clad dieletric optical fiber with annular core,” Microw. Opt. Technol. Lett.31(6), 435–439 (2001).
[CrossRef]

Dennis, M. R.

M. R. Dennis, K. O'Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” Prog. Opt.53, 293–363 (2009).
[CrossRef]

Egorov, Y. V.

Y. V. Egorov, A. N. Alexeyev, O. A. Shipulin, A. V. Volyar, and M. S. Soskin, “Birth and death events in topological multipole fields after emissions from an optical fiber,” Proc. SPIE4607, 66–70 (2002).
[CrossRef]

Fadeeva, T. A.

A. V. Volyar and T. A. Fadeeva, “A few-mode optical fiber retaining optical vortices,” Tech. Phys. Lett.28(2), 102–104 (2002).
[CrossRef]

K. N. Alekseev, A. V. Volyar, and T. A. Fadeeva, “Spin-orbit interaction and evolution of optical eddies in perturbed weakly directing optical fibers,” Opt. Spectrosc.93(4), 588–597 (2002).
[CrossRef]

A. V. Volyar, V. Z. Zhilaitis, and T. A. Fadeeva, “Optical vortices in low-mode fibers: III. dislocation reactions, phase transitions, and topological birefringence,” Opt. Spectrosc.88(3), 397–405 (2000).
[CrossRef]

A. V. Volyar and T. A. Fadeeva, “Optics of singularities of the field of a low-mode fiber: I. circular disclinations,” Opt. Spectrosc.85, 264–271 (1998).

A. V. Volyar and T. A. Fadeeva, “Optics of singularities of a low-mode fiber: II. optical vortices,” Opt. Spectrosc.85, 272–280 (1998).

A. V. Volyar and T. A. Fadeeva, “Dynamics of field dislocations and disclinations in a few-mode waveguide: II. pure types of singularities,” Tech. Phys. Lett.23(2), 91–93 (1997).
[CrossRef]

A. V. Volyar, T. A. Fadeeva, and Kh. M. Reshitova, “Dynamics of field dislocations and disclinations in a few-mode fiber. IV. formation of an optical vortex,” Tech. Phys. Lett.23(3), 198–200 (1997).
[CrossRef]

A. V. Volyar and T. A. Fadeeva, “Dynamics of dislocations and disclinations of the field of a few-order optical fiber: I. creation and annihilation of C± disclinations,” Tech. Phys. Lett.23(1), 57–60 (1997).
[CrossRef]

A. V. Volyar and T. A. Fadeeva, “Angular momentum of the fields of a few-mode fiber: I. a perturbed optical vortex,” Tech. Phys. Lett.23(11), 848–851 (1997).
[CrossRef]

V. V. Butkovskaya, A. V. Volyar, and T. A. Fadeeva, “Vortex optical Magnus effect in multimode fibers,” Tech. Phys. Lett.23(8), 649–650 (1997).
[CrossRef]

A. V. Volyar, T. A. Fadeeva, and Kh. M. Reshitova, “Dynamics of field dislocations and disclinations in a few-mode optical fiber. III. circularly polarized CP11 modes and L disclinations,” Tech. Phys. Lett.23(3), 175–177 (1997).
[CrossRef]

Fadeyeva, T. A.

A. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron.1, 82–89 (1998).

Février, S.

J. Marcou and S. Février, “Comments on “On the analysis of a weakly guiding doubly clad dielectric optical fiber with an annular core”,” Microw. Opt. Technol. Lett.38, 249–254 (2003).
[CrossRef]

Garg, A.

R. Kumar, D. Singh Mehta, A. Sachdeva, A. Garg, P. Senthilkumaran, and C. Shakher, “Generation and detection of optical vortices using all fiber-optic system,” Opt. Commun.281(13), 3414–3420 (2008).
[CrossRef]

Gloge, D.

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Inavalli, V. V. G.

Ishida, Y.

Karman, G. P.

Khastgir, P.

U. K. Singh, P. Khastgir, and O. N. Singh, “Sustained modes in a waveguide having an annular core cross-section with nonconcentric circular boundaries,” Optik (Stuttg.)107, 109–114 (1998).

U. K. Singh, P. Khastgir, and O. N. Singh, “Weak guidance modal cutoff analysis of a waveguide having a core cross section bounded by nonconcentric circles,” Microw. Opt. Technol. Lett.15(3), 179–184 (1997).
[CrossRef]

Kumar, R.

R. Kumar, D. Singh Mehta, A. Sachdeva, A. Garg, P. Senthilkumaran, and C. Shakher, “Generation and detection of optical vortices using all fiber-optic system,” Opt. Commun.281(13), 3414–3420 (2008).
[CrossRef]

Lee, E. H.

Lim, D. S.

Marcou, J.

J. Marcou and S. Février, “Comments on “On the analysis of a weakly guiding doubly clad dielectric optical fiber with an annular core”,” Microw. Opt. Technol. Lett.38, 249–254 (2003).
[CrossRef]

Nye, J. F.

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci.336(1605), 165–190 (1974).
[CrossRef]

O'Holleran, K.

M. R. Dennis, K. O'Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” Prog. Opt.53, 293–363 (2009).
[CrossRef]

Okamoto, K.

Padgett, M. J.

M. R. Dennis, K. O'Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” Prog. Opt.53, 293–363 (2009).
[CrossRef]

Reshitova, Kh. M.

A. V. Volyar, T. A. Fadeeva, and Kh. M. Reshitova, “Dynamics of field dislocations and disclinations in a few-mode optical fiber. III. circularly polarized CP11 modes and L disclinations,” Tech. Phys. Lett.23(3), 175–177 (1997).
[CrossRef]

A. V. Volyar, T. A. Fadeeva, and Kh. M. Reshitova, “Dynamics of field dislocations and disclinations in a few-mode fiber. IV. formation of an optical vortex,” Tech. Phys. Lett.23(3), 198–200 (1997).
[CrossRef]

Sachdeva, A.

R. Kumar, D. Singh Mehta, A. Sachdeva, A. Garg, P. Senthilkumaran, and C. Shakher, “Generation and detection of optical vortices using all fiber-optic system,” Opt. Commun.281(13), 3414–3420 (2008).
[CrossRef]

Sarkar, B. C.

B. C. Sarkar, P. K. Choudhury, and T. Yoshino, “On the analysis of a weakly guiding doubly clad dieletric optical fiber with annular core,” Microw. Opt. Technol. Lett.31(6), 435–439 (2001).
[CrossRef]

Senthilkumaran, P.

R. Kumar, D. Singh Mehta, A. Sachdeva, A. Garg, P. Senthilkumaran, and C. Shakher, “Generation and detection of optical vortices using all fiber-optic system,” Opt. Commun.281(13), 3414–3420 (2008).
[CrossRef]

Shakher, C.

R. Kumar, D. Singh Mehta, A. Sachdeva, A. Garg, P. Senthilkumaran, and C. Shakher, “Generation and detection of optical vortices using all fiber-optic system,” Opt. Commun.281(13), 3414–3420 (2008).
[CrossRef]

Shibata, N.

Shipulin, O. A.

Y. V. Egorov, A. N. Alexeyev, O. A. Shipulin, A. V. Volyar, and M. S. Soskin, “Birth and death events in topological multipole fields after emissions from an optical fiber,” Proc. SPIE4607, 66–70 (2002).
[CrossRef]

Singh, O. N.

U. K. Singh, P. Khastgir, and O. N. Singh, “Sustained modes in a waveguide having an annular core cross-section with nonconcentric circular boundaries,” Optik (Stuttg.)107, 109–114 (1998).

U. K. Singh, P. Khastgir, and O. N. Singh, “Weak guidance modal cutoff analysis of a waveguide having a core cross section bounded by nonconcentric circles,” Microw. Opt. Technol. Lett.15(3), 179–184 (1997).
[CrossRef]

Singh, U. K.

U. K. Singh, P. Khastgir, and O. N. Singh, “Sustained modes in a waveguide having an annular core cross-section with nonconcentric circular boundaries,” Optik (Stuttg.)107, 109–114 (1998).

U. K. Singh, P. Khastgir, and O. N. Singh, “Weak guidance modal cutoff analysis of a waveguide having a core cross section bounded by nonconcentric circles,” Microw. Opt. Technol. Lett.15(3), 179–184 (1997).
[CrossRef]

Singh Mehta, D.

R. Kumar, D. Singh Mehta, A. Sachdeva, A. Garg, P. Senthilkumaran, and C. Shakher, “Generation and detection of optical vortices using all fiber-optic system,” Opt. Commun.281(13), 3414–3420 (2008).
[CrossRef]

Soskin, M. S.

Y. V. Egorov, A. N. Alexeyev, O. A. Shipulin, A. V. Volyar, and M. S. Soskin, “Birth and death events in topological multipole fields after emissions from an optical fiber,” Proc. SPIE4607, 66–70 (2002).
[CrossRef]

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt.42, 219–276 (2001).
[CrossRef]

A. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron.1, 82–89 (1998).

Suzuki, K.

van Duijl, A.

Vasnetsov, M. V.

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt.42, 219–276 (2001).
[CrossRef]

Viswanathan, N. K.

Volyar, A. V.

A. V. Volyar and T. A. Fadeeva, “A few-mode optical fiber retaining optical vortices,” Tech. Phys. Lett.28(2), 102–104 (2002).
[CrossRef]

Y. V. Egorov, A. N. Alexeyev, O. A. Shipulin, A. V. Volyar, and M. S. Soskin, “Birth and death events in topological multipole fields after emissions from an optical fiber,” Proc. SPIE4607, 66–70 (2002).
[CrossRef]

K. N. Alekseev, A. V. Volyar, and T. A. Fadeeva, “Spin-orbit interaction and evolution of optical eddies in perturbed weakly directing optical fibers,” Opt. Spectrosc.93(4), 588–597 (2002).
[CrossRef]

A. V. Volyar, V. Z. Zhilaitis, and T. A. Fadeeva, “Optical vortices in low-mode fibers: III. dislocation reactions, phase transitions, and topological birefringence,” Opt. Spectrosc.88(3), 397–405 (2000).
[CrossRef]

A. V. Volyar and T. A. Fadeeva, “Optics of singularities of the field of a low-mode fiber: I. circular disclinations,” Opt. Spectrosc.85, 264–271 (1998).

A. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron.1, 82–89 (1998).

A. V. Volyar and T. A. Fadeeva, “Optics of singularities of a low-mode fiber: II. optical vortices,” Opt. Spectrosc.85, 272–280 (1998).

A. V. Volyar, T. A. Fadeeva, and Kh. M. Reshitova, “Dynamics of field dislocations and disclinations in a few-mode fiber. IV. formation of an optical vortex,” Tech. Phys. Lett.23(3), 198–200 (1997).
[CrossRef]

A. V. Volyar and T. A. Fadeeva, “Dynamics of field dislocations and disclinations in a few-mode waveguide: II. pure types of singularities,” Tech. Phys. Lett.23(2), 91–93 (1997).
[CrossRef]

A. V. Volyar and T. A. Fadeeva, “Dynamics of dislocations and disclinations of the field of a few-order optical fiber: I. creation and annihilation of C± disclinations,” Tech. Phys. Lett.23(1), 57–60 (1997).
[CrossRef]

A. V. Volyar and T. A. Fadeeva, “Angular momentum of the fields of a few-mode fiber: I. a perturbed optical vortex,” Tech. Phys. Lett.23(11), 848–851 (1997).
[CrossRef]

A. V. Volyar, T. A. Fadeeva, and Kh. M. Reshitova, “Dynamics of field dislocations and disclinations in a few-mode optical fiber. III. circularly polarized CP11 modes and L disclinations,” Tech. Phys. Lett.23(3), 175–177 (1997).
[CrossRef]

V. V. Butkovskaya, A. V. Volyar, and T. A. Fadeeva, “Vortex optical Magnus effect in multimode fibers,” Tech. Phys. Lett.23(8), 649–650 (1997).
[CrossRef]

Woerdman, J. P.

Yavorskii, M. A.

K. N. Alekseev and M. A. Yavorskii, “Twisted optical fibers sustaining propagation of optical vortices,” Opt. Spectrosc.98(1), 53–60 (2005).
[CrossRef]

Yoshino, T.

P. K. Choudhury and T. Yoshino, “A rigorous analysis of the power distribution in plastic clad annular core optical fibers,” Optik (Stuttg.)113(11), 481–488 (2002).
[CrossRef]

B. C. Sarkar, P. K. Choudhury, and T. Yoshino, “On the analysis of a weakly guiding doubly clad dieletric optical fiber with annular core,” Microw. Opt. Technol. Lett.31(6), 435–439 (2001).
[CrossRef]

Zhilaitis, V. Z.

A. V. Volyar, V. Z. Zhilaitis, and T. A. Fadeeva, “Optical vortices in low-mode fibers: III. dislocation reactions, phase transitions, and topological birefringence,” Opt. Spectrosc.88(3), 397–405 (2000).
[CrossRef]

Appl. Opt. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Korea (1)

Microw. Opt. Technol. Lett. (3)

U. K. Singh, P. Khastgir, and O. N. Singh, “Weak guidance modal cutoff analysis of a waveguide having a core cross section bounded by nonconcentric circles,” Microw. Opt. Technol. Lett.15(3), 179–184 (1997).
[CrossRef]

B. C. Sarkar, P. K. Choudhury, and T. Yoshino, “On the analysis of a weakly guiding doubly clad dieletric optical fiber with annular core,” Microw. Opt. Technol. Lett.31(6), 435–439 (2001).
[CrossRef]

J. Marcou and S. Février, “Comments on “On the analysis of a weakly guiding doubly clad dielectric optical fiber with an annular core”,” Microw. Opt. Technol. Lett.38, 249–254 (2003).
[CrossRef]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

R. Kumar, D. Singh Mehta, A. Sachdeva, A. Garg, P. Senthilkumaran, and C. Shakher, “Generation and detection of optical vortices using all fiber-optic system,” Opt. Commun.281(13), 3414–3420 (2008).
[CrossRef]

Opt. Lett. (1)

Opt. Spectrosc. (5)

K. N. Alekseev, A. V. Volyar, and T. A. Fadeeva, “Spin-orbit interaction and evolution of optical eddies in perturbed weakly directing optical fibers,” Opt. Spectrosc.93(4), 588–597 (2002).
[CrossRef]

K. N. Alekseev and M. A. Yavorskii, “Twisted optical fibers sustaining propagation of optical vortices,” Opt. Spectrosc.98(1), 53–60 (2005).
[CrossRef]

A. V. Volyar and T. A. Fadeeva, “Optics of singularities of the field of a low-mode fiber: I. circular disclinations,” Opt. Spectrosc.85, 264–271 (1998).

A. V. Volyar and T. A. Fadeeva, “Optics of singularities of a low-mode fiber: II. optical vortices,” Opt. Spectrosc.85, 272–280 (1998).

A. V. Volyar, V. Z. Zhilaitis, and T. A. Fadeeva, “Optical vortices in low-mode fibers: III. dislocation reactions, phase transitions, and topological birefringence,” Opt. Spectrosc.88(3), 397–405 (2000).
[CrossRef]

Optik (Stuttg.) (2)

P. K. Choudhury and T. Yoshino, “A rigorous analysis of the power distribution in plastic clad annular core optical fibers,” Optik (Stuttg.)113(11), 481–488 (2002).
[CrossRef]

U. K. Singh, P. Khastgir, and O. N. Singh, “Sustained modes in a waveguide having an annular core cross-section with nonconcentric circular boundaries,” Optik (Stuttg.)107, 109–114 (1998).

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci.336(1605), 165–190 (1974).
[CrossRef]

Proc. SPIE (1)

Y. V. Egorov, A. N. Alexeyev, O. A. Shipulin, A. V. Volyar, and M. S. Soskin, “Birth and death events in topological multipole fields after emissions from an optical fiber,” Proc. SPIE4607, 66–70 (2002).
[CrossRef]

Prog. Opt. (2)

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt.42, 219–276 (2001).
[CrossRef]

M. R. Dennis, K. O'Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” Prog. Opt.53, 293–363 (2009).
[CrossRef]

Semicond. Phys. Quantum Electron. Optoelectron. (1)

A. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron.1, 82–89 (1998).

Tech. Phys. Lett. (7)

A. V. Volyar and T. A. Fadeeva, “Dynamics of dislocations and disclinations of the field of a few-order optical fiber: I. creation and annihilation of C± disclinations,” Tech. Phys. Lett.23(1), 57–60 (1997).
[CrossRef]

A. V. Volyar and T. A. Fadeeva, “Dynamics of field dislocations and disclinations in a few-mode waveguide: II. pure types of singularities,” Tech. Phys. Lett.23(2), 91–93 (1997).
[CrossRef]

A. V. Volyar, T. A. Fadeeva, and Kh. M. Reshitova, “Dynamics of field dislocations and disclinations in a few-mode optical fiber. III. circularly polarized CP11 modes and L disclinations,” Tech. Phys. Lett.23(3), 175–177 (1997).
[CrossRef]

A. V. Volyar, T. A. Fadeeva, and Kh. M. Reshitova, “Dynamics of field dislocations and disclinations in a few-mode fiber. IV. formation of an optical vortex,” Tech. Phys. Lett.23(3), 198–200 (1997).
[CrossRef]

A. V. Volyar and T. A. Fadeeva, “Angular momentum of the fields of a few-mode fiber: I. a perturbed optical vortex,” Tech. Phys. Lett.23(11), 848–851 (1997).
[CrossRef]

A. V. Volyar and T. A. Fadeeva, “A few-mode optical fiber retaining optical vortices,” Tech. Phys. Lett.28(2), 102–104 (2002).
[CrossRef]

V. V. Butkovskaya, A. V. Volyar, and T. A. Fadeeva, “Vortex optical Magnus effect in multimode fibers,” Tech. Phys. Lett.23(8), 649–650 (1997).
[CrossRef]

Other (3)

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).

J. F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations (Institute of Physics Publishing, 1999).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The refractive index profile of the annular core fiber.

Fig. 2
Fig. 2

Contour lines of phase (a), (c), (e), (g), (i) and intensity patterns (b), (d), (f), (h), (j) in the z plane, (a) and (b) z = 80 µm, (c) and (d) z = 965 um, (e) and (f) z = 1040 um, (g) and (h) z = 1060 um, (i) and (j) z = 104 um. Positive (negative) guided optical vortices are marked by filled black (white) circles. The calculation parameters are seen in the text.

Fig. 3
Fig. 3

Distance Δ/λ between a pair of vortices B and C versus the propagation distance z.

Fig. 4
Fig. 4

Contour lines of phase and intensity patterns in the plane z = 1040 µm for selected values of amplitude factor (a) and (b) η = 0, (c) and (d) η = 0.21, (e) and (f) η = 0.22.

Fig. 5
Fig. 5

The contour lines of phase and intensity patterns in the plane z = 1040 µm for different fiber length (a) and (b) z0 = 1 × 105 µm, (c) and (d) z0 = 4.89 × 105 µm, (e) and (f) z0 = 4.95 × 105 µm, (g) and (h) z0 = 6 × 105 µm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

F m ( r 0 )={ C 1 I m ( w r 0 ) ( r 0 <a) C 2 J m ( u r 0 )+ C 3 Y m ( u r 0 ) ( a r 0 b ), C 4 K m ( w r 0 ) ( r 0 >b )
I m ' ( w r 1 ) J m ( u r 1 ) J m ' ( u r 1 ) I m ( w r 1 ) I m ' ( w r 1 ) Y m ( u r 1 ) Y m ' ( u r 1 ) I m ( w r 1 ) = K m ' ( w r 2 ) J m ( u r 2 ) J m ' ( u r 2 ) K m ( w r 2 ) K m ' ( w r 2 ) Y m ( u r 2 ) Y m ' ( u r 2 ) K m ( w r 2 ) ,
I m ' ( w r 1 )= d I m ( w r 1 ) d r 1 , J m ' ( u r 1,2 )= d J m ( u r 1,2 ) d r 1,2 , Y m ' ( u r 1,2 )= d Y m ( u r 1,2 ) d r 1,2 , K m ' ( w r 2 )= d K m ( w r 2 ) d r 2 .
J m ' ( u r 2 ) J m ( u r 2 ) = k m ' ( w r 2 ) K m ( w r 2 ) .
e t = e +1 [ F 1 ( r 0 )exp( i θ 0 +i β 1 1 z 0 )+η F 0 ( r 0 )exp( i β 0 z 0 ) ],
e t ( x,y,z )=2iπexp( i β 1 1 z 0 )M x+iy r 0 r 0 F 1 ( r 0 ) exp( ik r 0 2 2z ) J 1 ( k r 0 r z )d r 0 +2ηπexp( i β 0 z 0 )M 0 r 0 F 0 ( r 0 ) exp( ik r 0 2 2z ) J 0 ( k r 0 r z )d r 0 ,
{ Re[ e t ( x,y,z )]=0 Im[ e t ( x,y,z )]=0 ,

Metrics