Abstract

We demonstrate stable, single-frequency output from single, as-fabricated GaN nanowire lasers operating far above lasing threshold. Each laser is a linear, double-facet GaN nanowire functioning as gain medium and optical resonator, fabricated by a top-down technique that exploits a tunable dry etch plus anisotropic wet etch for precise control of the nanowire dimensions and high material gain. A single-mode linewidth of ~0.12 nm and >18dB side-mode suppression ratio are measured. Numerical simulations indicate that single-mode lasing arises from strong mode competition and narrow gain bandwidth.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater.1(2), 106–110 (2002).
    [CrossRef] [PubMed]
  2. S. Gradecak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett.87(17), 173111 (2005).
    [CrossRef]
  3. F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater.7(9), 701–706 (2008).
    [CrossRef] [PubMed]
  4. J. Heo, W. Guo, and P. Bhattacharya, “Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon,” Appl. Phys. Lett.98(2), 021110 (2011).
    [CrossRef]
  5. J. B. Schlager, N. A. Sanford, K. A. Bertness, and A. Roshko, “Injection-level-dependent internal quantum efficiency and lasing in low-defect GaN nanowires,” J. Appl. Phys.109(4), 044312 (2011).
    [CrossRef]
  6. P. C. Upadhya, Q. M. Li, G. T. Wang, A. J. Fischer, A. J. Taylor, and R. P. Prasankumar, “The influence of defect states on non-equilibrium carrier dynamics in GaN nanowires,” Semicond. Sci. Technol.25(2), 024017 (2010).
    [CrossRef]
  7. B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, “Single GaAs/GaAsP coaxial core-shell nanowire lasers,” Nano Lett.9(1), 112–116 (2009).
    [CrossRef] [PubMed]
  8. R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics5(3), 170–175 (2011).
    [CrossRef]
  9. X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature421(6920), 241–245 (2003).
    [CrossRef] [PubMed]
  10. M. A. Zimmler, F. Capasso, S. Muller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol.25(2), 024001 (2010).
    [CrossRef]
  11. Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-Nanowire Single-Mode Laser,” Nano Lett.11(3), 1122–1126 (2011).
    [CrossRef] [PubMed]
  12. A. C. Scofield, S. H. Kim, J. N. Shapiro, A. Lin, B. L. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up Photonic Crystal Lasers,” Nano Lett.11(12), 5387–5390 (2011).
    [CrossRef] [PubMed]
  13. Q. M. Li, K. R. Westlake, M. H. Crawford, S. R. Lee, D. D. Koleske, J. J. Figiel, K. C. Cross, S. Fathololoumi, Z. T. Mi, and G. T. Wang, “Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays,” Opt. Express19(25), 25528–25534 (2011).
    [CrossRef] [PubMed]
  14. S. Reculusa and S. Ravaine, “Synthesis of colloidal crystals of controllable thickness through the Langmuir-Blodgett technique,” Chem. Mater.15(2), 598–605 (2003).
    [CrossRef]
  15. M. Sargent, W. E. Lamb, and R. L. Fork, “Theory of a Zeeman Laser. I,” Phys. Rev.164(2), 436–449 (1967).
    [CrossRef]
  16. A. J. Lotka, “Contribution to the theory of periodic reactions,” J. Phys. Chem.14(3), 271–274 (1910).
    [CrossRef]
  17. W. W. Chow, “Theory of emission from an active photonic lattice,” Phys. Rev. A73(1), 013821 (2006).
    [CrossRef]
  18. W. W. Chow, A. Knorr, and S. W. Koch, “Theory of Laser Gain in Group-III Nitrides,” Appl. Phys. Lett.67(6), 754–756 (1995).
    [CrossRef]
  19. L. K. van Vugt, S. Rühle, and D. Vanmaekelbergh, “Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire,” Nano Lett.6(12), 2707–2711 (2006).
    [CrossRef] [PubMed]

2011 (6)

J. Heo, W. Guo, and P. Bhattacharya, “Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon,” Appl. Phys. Lett.98(2), 021110 (2011).
[CrossRef]

J. B. Schlager, N. A. Sanford, K. A. Bertness, and A. Roshko, “Injection-level-dependent internal quantum efficiency and lasing in low-defect GaN nanowires,” J. Appl. Phys.109(4), 044312 (2011).
[CrossRef]

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics5(3), 170–175 (2011).
[CrossRef]

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-Nanowire Single-Mode Laser,” Nano Lett.11(3), 1122–1126 (2011).
[CrossRef] [PubMed]

A. C. Scofield, S. H. Kim, J. N. Shapiro, A. Lin, B. L. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up Photonic Crystal Lasers,” Nano Lett.11(12), 5387–5390 (2011).
[CrossRef] [PubMed]

Q. M. Li, K. R. Westlake, M. H. Crawford, S. R. Lee, D. D. Koleske, J. J. Figiel, K. C. Cross, S. Fathololoumi, Z. T. Mi, and G. T. Wang, “Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays,” Opt. Express19(25), 25528–25534 (2011).
[CrossRef] [PubMed]

2010 (2)

M. A. Zimmler, F. Capasso, S. Muller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol.25(2), 024001 (2010).
[CrossRef]

P. C. Upadhya, Q. M. Li, G. T. Wang, A. J. Fischer, A. J. Taylor, and R. P. Prasankumar, “The influence of defect states on non-equilibrium carrier dynamics in GaN nanowires,” Semicond. Sci. Technol.25(2), 024017 (2010).
[CrossRef]

2009 (1)

B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, “Single GaAs/GaAsP coaxial core-shell nanowire lasers,” Nano Lett.9(1), 112–116 (2009).
[CrossRef] [PubMed]

2008 (1)

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater.7(9), 701–706 (2008).
[CrossRef] [PubMed]

2006 (2)

W. W. Chow, “Theory of emission from an active photonic lattice,” Phys. Rev. A73(1), 013821 (2006).
[CrossRef]

L. K. van Vugt, S. Rühle, and D. Vanmaekelbergh, “Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire,” Nano Lett.6(12), 2707–2711 (2006).
[CrossRef] [PubMed]

2005 (1)

S. Gradecak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett.87(17), 173111 (2005).
[CrossRef]

2003 (2)

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature421(6920), 241–245 (2003).
[CrossRef] [PubMed]

S. Reculusa and S. Ravaine, “Synthesis of colloidal crystals of controllable thickness through the Langmuir-Blodgett technique,” Chem. Mater.15(2), 598–605 (2003).
[CrossRef]

2002 (1)

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater.1(2), 106–110 (2002).
[CrossRef] [PubMed]

1995 (1)

W. W. Chow, A. Knorr, and S. W. Koch, “Theory of Laser Gain in Group-III Nitrides,” Appl. Phys. Lett.67(6), 754–756 (1995).
[CrossRef]

1967 (1)

M. Sargent, W. E. Lamb, and R. L. Fork, “Theory of a Zeeman Laser. I,” Phys. Rev.164(2), 436–449 (1967).
[CrossRef]

1910 (1)

A. J. Lotka, “Contribution to the theory of periodic reactions,” J. Phys. Chem.14(3), 271–274 (1910).
[CrossRef]

Agarwal, R.

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature421(6920), 241–245 (2003).
[CrossRef] [PubMed]

Bertness, K. A.

J. B. Schlager, N. A. Sanford, K. A. Bertness, and A. Roshko, “Injection-level-dependent internal quantum efficiency and lasing in low-defect GaN nanowires,” J. Appl. Phys.109(4), 044312 (2011).
[CrossRef]

Bhattacharya, P.

J. Heo, W. Guo, and P. Bhattacharya, “Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon,” Appl. Phys. Lett.98(2), 021110 (2011).
[CrossRef]

Capasso, F.

M. A. Zimmler, F. Capasso, S. Muller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol.25(2), 024001 (2010).
[CrossRef]

Chang-Hasnain, C.

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics5(3), 170–175 (2011).
[CrossRef]

Chen, R.

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics5(3), 170–175 (2011).
[CrossRef]

Choi, H. J.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater.1(2), 106–110 (2002).
[CrossRef] [PubMed]

Chow, W. W.

W. W. Chow, “Theory of emission from an active photonic lattice,” Phys. Rev. A73(1), 013821 (2006).
[CrossRef]

W. W. Chow, A. Knorr, and S. W. Koch, “Theory of Laser Gain in Group-III Nitrides,” Appl. Phys. Lett.67(6), 754–756 (1995).
[CrossRef]

Chuang, L. C.

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics5(3), 170–175 (2011).
[CrossRef]

Crawford, M. H.

Cross, K. C.

Dai, L.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-Nanowire Single-Mode Laser,” Nano Lett.11(3), 1122–1126 (2011).
[CrossRef] [PubMed]

Ding, Y.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater.7(9), 701–706 (2008).
[CrossRef] [PubMed]

Dong, Y.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater.7(9), 701–706 (2008).
[CrossRef] [PubMed]

Duan, X. F.

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature421(6920), 241–245 (2003).
[CrossRef] [PubMed]

Fathololoumi, S.

Figiel, J. J.

Fischer, A. J.

P. C. Upadhya, Q. M. Li, G. T. Wang, A. J. Fischer, A. J. Taylor, and R. P. Prasankumar, “The influence of defect states on non-equilibrium carrier dynamics in GaN nanowires,” Semicond. Sci. Technol.25(2), 024017 (2010).
[CrossRef]

Fork, R. L.

M. Sargent, W. E. Lamb, and R. L. Fork, “Theory of a Zeeman Laser. I,” Phys. Rev.164(2), 436–449 (1967).
[CrossRef]

Fukui, T.

B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, “Single GaAs/GaAsP coaxial core-shell nanowire lasers,” Nano Lett.9(1), 112–116 (2009).
[CrossRef] [PubMed]

Gradecak, S.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater.7(9), 701–706 (2008).
[CrossRef] [PubMed]

S. Gradecak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett.87(17), 173111 (2005).
[CrossRef]

Gu, F. X.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-Nanowire Single-Mode Laser,” Nano Lett.11(3), 1122–1126 (2011).
[CrossRef] [PubMed]

Guo, W.

J. Heo, W. Guo, and P. Bhattacharya, “Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon,” Appl. Phys. Lett.98(2), 021110 (2011).
[CrossRef]

Hara, S.

B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, “Single GaAs/GaAsP coaxial core-shell nanowire lasers,” Nano Lett.9(1), 112–116 (2009).
[CrossRef] [PubMed]

Heo, J.

J. Heo, W. Guo, and P. Bhattacharya, “Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon,” Appl. Phys. Lett.98(2), 021110 (2011).
[CrossRef]

Hua, B.

B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, “Single GaAs/GaAsP coaxial core-shell nanowire lasers,” Nano Lett.9(1), 112–116 (2009).
[CrossRef] [PubMed]

Huang, Y.

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature421(6920), 241–245 (2003).
[CrossRef] [PubMed]

Huffaker, D. L.

A. C. Scofield, S. H. Kim, J. N. Shapiro, A. Lin, B. L. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up Photonic Crystal Lasers,” Nano Lett.11(12), 5387–5390 (2011).
[CrossRef] [PubMed]

Johnson, J. C.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater.1(2), 106–110 (2002).
[CrossRef] [PubMed]

Kim, S. H.

A. C. Scofield, S. H. Kim, J. N. Shapiro, A. Lin, B. L. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up Photonic Crystal Lasers,” Nano Lett.11(12), 5387–5390 (2011).
[CrossRef] [PubMed]

Knorr, A.

W. W. Chow, A. Knorr, and S. W. Koch, “Theory of Laser Gain in Group-III Nitrides,” Appl. Phys. Lett.67(6), 754–756 (1995).
[CrossRef]

Knutsen, K. P.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater.1(2), 106–110 (2002).
[CrossRef] [PubMed]

Ko, W. S.

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics5(3), 170–175 (2011).
[CrossRef]

Kobayashi, Y.

B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, “Single GaAs/GaAsP coaxial core-shell nanowire lasers,” Nano Lett.9(1), 112–116 (2009).
[CrossRef] [PubMed]

Koch, S. W.

W. W. Chow, A. Knorr, and S. W. Koch, “Theory of Laser Gain in Group-III Nitrides,” Appl. Phys. Lett.67(6), 754–756 (1995).
[CrossRef]

Koleske, D. D.

Lamb, W. E.

M. Sargent, W. E. Lamb, and R. L. Fork, “Theory of a Zeeman Laser. I,” Phys. Rev.164(2), 436–449 (1967).
[CrossRef]

Lee, S. R.

Li, Q. M.

Q. M. Li, K. R. Westlake, M. H. Crawford, S. R. Lee, D. D. Koleske, J. J. Figiel, K. C. Cross, S. Fathololoumi, Z. T. Mi, and G. T. Wang, “Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays,” Opt. Express19(25), 25528–25534 (2011).
[CrossRef] [PubMed]

P. C. Upadhya, Q. M. Li, G. T. Wang, A. J. Fischer, A. J. Taylor, and R. P. Prasankumar, “The influence of defect states on non-equilibrium carrier dynamics in GaN nanowires,” Semicond. Sci. Technol.25(2), 024017 (2010).
[CrossRef]

Li, Y.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater.7(9), 701–706 (2008).
[CrossRef] [PubMed]

S. Gradecak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett.87(17), 173111 (2005).
[CrossRef]

Liang, B. L.

A. C. Scofield, S. H. Kim, J. N. Shapiro, A. Lin, B. L. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up Photonic Crystal Lasers,” Nano Lett.11(12), 5387–5390 (2011).
[CrossRef] [PubMed]

Lieber, C. M.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater.7(9), 701–706 (2008).
[CrossRef] [PubMed]

S. Gradecak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett.87(17), 173111 (2005).
[CrossRef]

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature421(6920), 241–245 (2003).
[CrossRef] [PubMed]

Lin, A.

A. C. Scofield, S. H. Kim, J. N. Shapiro, A. Lin, B. L. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up Photonic Crystal Lasers,” Nano Lett.11(12), 5387–5390 (2011).
[CrossRef] [PubMed]

Lotka, A. J.

A. J. Lotka, “Contribution to the theory of periodic reactions,” J. Phys. Chem.14(3), 271–274 (1910).
[CrossRef]

Meng, C.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-Nanowire Single-Mode Laser,” Nano Lett.11(3), 1122–1126 (2011).
[CrossRef] [PubMed]

Mi, Z. T.

Motohisa, J.

B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, “Single GaAs/GaAsP coaxial core-shell nanowire lasers,” Nano Lett.9(1), 112–116 (2009).
[CrossRef] [PubMed]

Muller, S.

M. A. Zimmler, F. Capasso, S. Muller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol.25(2), 024001 (2010).
[CrossRef]

Ng, K. W.

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics5(3), 170–175 (2011).
[CrossRef]

Park, H. G.

S. Gradecak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett.87(17), 173111 (2005).
[CrossRef]

Park, H.-G.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater.7(9), 701–706 (2008).
[CrossRef] [PubMed]

Prasankumar, R. P.

P. C. Upadhya, Q. M. Li, G. T. Wang, A. J. Fischer, A. J. Taylor, and R. P. Prasankumar, “The influence of defect states on non-equilibrium carrier dynamics in GaN nanowires,” Semicond. Sci. Technol.25(2), 024017 (2010).
[CrossRef]

Qian, F.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater.7(9), 701–706 (2008).
[CrossRef] [PubMed]

S. Gradecak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett.87(17), 173111 (2005).
[CrossRef]

Ravaine, S.

S. Reculusa and S. Ravaine, “Synthesis of colloidal crystals of controllable thickness through the Langmuir-Blodgett technique,” Chem. Mater.15(2), 598–605 (2003).
[CrossRef]

Reculusa, S.

S. Reculusa and S. Ravaine, “Synthesis of colloidal crystals of controllable thickness through the Langmuir-Blodgett technique,” Chem. Mater.15(2), 598–605 (2003).
[CrossRef]

Ronning, C.

M. A. Zimmler, F. Capasso, S. Muller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol.25(2), 024001 (2010).
[CrossRef]

Roshko, A.

J. B. Schlager, N. A. Sanford, K. A. Bertness, and A. Roshko, “Injection-level-dependent internal quantum efficiency and lasing in low-defect GaN nanowires,” J. Appl. Phys.109(4), 044312 (2011).
[CrossRef]

Rühle, S.

L. K. van Vugt, S. Rühle, and D. Vanmaekelbergh, “Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire,” Nano Lett.6(12), 2707–2711 (2006).
[CrossRef] [PubMed]

Sanford, N. A.

J. B. Schlager, N. A. Sanford, K. A. Bertness, and A. Roshko, “Injection-level-dependent internal quantum efficiency and lasing in low-defect GaN nanowires,” J. Appl. Phys.109(4), 044312 (2011).
[CrossRef]

Sargent, M.

M. Sargent, W. E. Lamb, and R. L. Fork, “Theory of a Zeeman Laser. I,” Phys. Rev.164(2), 436–449 (1967).
[CrossRef]

Saykally, R. J.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater.1(2), 106–110 (2002).
[CrossRef] [PubMed]

Schaller, R. D.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater.1(2), 106–110 (2002).
[CrossRef] [PubMed]

Scherer, A.

A. C. Scofield, S. H. Kim, J. N. Shapiro, A. Lin, B. L. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up Photonic Crystal Lasers,” Nano Lett.11(12), 5387–5390 (2011).
[CrossRef] [PubMed]

Schlager, J. B.

J. B. Schlager, N. A. Sanford, K. A. Bertness, and A. Roshko, “Injection-level-dependent internal quantum efficiency and lasing in low-defect GaN nanowires,” J. Appl. Phys.109(4), 044312 (2011).
[CrossRef]

Scofield, A. C.

A. C. Scofield, S. H. Kim, J. N. Shapiro, A. Lin, B. L. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up Photonic Crystal Lasers,” Nano Lett.11(12), 5387–5390 (2011).
[CrossRef] [PubMed]

Sedgwick, F. G.

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics5(3), 170–175 (2011).
[CrossRef]

Shapiro, J. N.

A. C. Scofield, S. H. Kim, J. N. Shapiro, A. Lin, B. L. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up Photonic Crystal Lasers,” Nano Lett.11(12), 5387–5390 (2011).
[CrossRef] [PubMed]

Taylor, A. J.

P. C. Upadhya, Q. M. Li, G. T. Wang, A. J. Fischer, A. J. Taylor, and R. P. Prasankumar, “The influence of defect states on non-equilibrium carrier dynamics in GaN nanowires,” Semicond. Sci. Technol.25(2), 024017 (2010).
[CrossRef]

Tong, L. M.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-Nanowire Single-Mode Laser,” Nano Lett.11(3), 1122–1126 (2011).
[CrossRef] [PubMed]

Tran, T. T. D.

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics5(3), 170–175 (2011).
[CrossRef]

Upadhya, P. C.

P. C. Upadhya, Q. M. Li, G. T. Wang, A. J. Fischer, A. J. Taylor, and R. P. Prasankumar, “The influence of defect states on non-equilibrium carrier dynamics in GaN nanowires,” Semicond. Sci. Technol.25(2), 024017 (2010).
[CrossRef]

van Vugt, L. K.

L. K. van Vugt, S. Rühle, and D. Vanmaekelbergh, “Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire,” Nano Lett.6(12), 2707–2711 (2006).
[CrossRef] [PubMed]

Vanmaekelbergh, D.

L. K. van Vugt, S. Rühle, and D. Vanmaekelbergh, “Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire,” Nano Lett.6(12), 2707–2711 (2006).
[CrossRef] [PubMed]

Wang, G. T.

Q. M. Li, K. R. Westlake, M. H. Crawford, S. R. Lee, D. D. Koleske, J. J. Figiel, K. C. Cross, S. Fathololoumi, Z. T. Mi, and G. T. Wang, “Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays,” Opt. Express19(25), 25528–25534 (2011).
[CrossRef] [PubMed]

P. C. Upadhya, Q. M. Li, G. T. Wang, A. J. Fischer, A. J. Taylor, and R. P. Prasankumar, “The influence of defect states on non-equilibrium carrier dynamics in GaN nanowires,” Semicond. Sci. Technol.25(2), 024017 (2010).
[CrossRef]

Wang, P.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-Nanowire Single-Mode Laser,” Nano Lett.11(3), 1122–1126 (2011).
[CrossRef] [PubMed]

Wang, S. S.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-Nanowire Single-Mode Laser,” Nano Lett.11(3), 1122–1126 (2011).
[CrossRef] [PubMed]

Wang, Z. L.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater.7(9), 701–706 (2008).
[CrossRef] [PubMed]

Westlake, K. R.

Xiao, Y.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-Nanowire Single-Mode Laser,” Nano Lett.11(3), 1122–1126 (2011).
[CrossRef] [PubMed]

Yang, P. D.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater.1(2), 106–110 (2002).
[CrossRef] [PubMed]

Ye, Y.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-Nanowire Single-Mode Laser,” Nano Lett.11(3), 1122–1126 (2011).
[CrossRef] [PubMed]

Yu, H. K.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-Nanowire Single-Mode Laser,” Nano Lett.11(3), 1122–1126 (2011).
[CrossRef] [PubMed]

Zimmler, M. A.

M. A. Zimmler, F. Capasso, S. Muller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol.25(2), 024001 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

S. Gradecak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett.87(17), 173111 (2005).
[CrossRef]

J. Heo, W. Guo, and P. Bhattacharya, “Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon,” Appl. Phys. Lett.98(2), 021110 (2011).
[CrossRef]

W. W. Chow, A. Knorr, and S. W. Koch, “Theory of Laser Gain in Group-III Nitrides,” Appl. Phys. Lett.67(6), 754–756 (1995).
[CrossRef]

Chem. Mater. (1)

S. Reculusa and S. Ravaine, “Synthesis of colloidal crystals of controllable thickness through the Langmuir-Blodgett technique,” Chem. Mater.15(2), 598–605 (2003).
[CrossRef]

J. Appl. Phys. (1)

J. B. Schlager, N. A. Sanford, K. A. Bertness, and A. Roshko, “Injection-level-dependent internal quantum efficiency and lasing in low-defect GaN nanowires,” J. Appl. Phys.109(4), 044312 (2011).
[CrossRef]

J. Phys. Chem. (1)

A. J. Lotka, “Contribution to the theory of periodic reactions,” J. Phys. Chem.14(3), 271–274 (1910).
[CrossRef]

Nano Lett. (4)

L. K. van Vugt, S. Rühle, and D. Vanmaekelbergh, “Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire,” Nano Lett.6(12), 2707–2711 (2006).
[CrossRef] [PubMed]

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-Nanowire Single-Mode Laser,” Nano Lett.11(3), 1122–1126 (2011).
[CrossRef] [PubMed]

A. C. Scofield, S. H. Kim, J. N. Shapiro, A. Lin, B. L. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up Photonic Crystal Lasers,” Nano Lett.11(12), 5387–5390 (2011).
[CrossRef] [PubMed]

B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, “Single GaAs/GaAsP coaxial core-shell nanowire lasers,” Nano Lett.9(1), 112–116 (2009).
[CrossRef] [PubMed]

Nat. Mater. (2)

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater.7(9), 701–706 (2008).
[CrossRef] [PubMed]

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater.1(2), 106–110 (2002).
[CrossRef] [PubMed]

Nat. Photonics (1)

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics5(3), 170–175 (2011).
[CrossRef]

Nature (1)

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature421(6920), 241–245 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. (1)

M. Sargent, W. E. Lamb, and R. L. Fork, “Theory of a Zeeman Laser. I,” Phys. Rev.164(2), 436–449 (1967).
[CrossRef]

Phys. Rev. A (1)

W. W. Chow, “Theory of emission from an active photonic lattice,” Phys. Rev. A73(1), 013821 (2006).
[CrossRef]

Semicond. Sci. Technol. (2)

M. A. Zimmler, F. Capasso, S. Muller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol.25(2), 024001 (2010).
[CrossRef]

P. C. Upadhya, Q. M. Li, G. T. Wang, A. J. Fischer, A. J. Taylor, and R. P. Prasankumar, “The influence of defect states on non-equilibrium carrier dynamics in GaN nanowires,” Semicond. Sci. Technol.25(2), 024017 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Cross sectional SEM images showing GaN posts morphology transiting into GaN nanowires (a) before wet etch, (b) after 2 hours, (c) after 6 hours and (d) after 9 hours from start of wet etch. All images have the same magnification. Scale bars are 2 μm.

Fig. 2
Fig. 2

Schematic of the GaN nanowire optical pumping and measurement setup.

Fig. 3
Fig. 3

CCD images of a GaN nanowire pumped below (a) and above (b) lasing threshold, respectively. The nanowire laser emits a highly divergent beam from the facets, some of which is collected by the objective lens. The objective lens also collects radiation emitted from the facets that is scattered by the SiN substrate surface, as well as spontaneous emission exiting perpendicular to the nanowire axis. Scale bars are 2 µm.

Fig. 4
Fig. 4

(a, d) Nanowire laser intensity versus pump laser intensity, for two different nanowires with lengths of 4.7 µm and 7.2 µm (top and bottom, respectively). (c,f) Photoluminescence spectra from the nanowire lasers under uniform excitation for pump intensities as indicated in the figures. (b,e) Scanning electron micrographs of the GaN nanowire lasers. (b) shows the smaller dimensioned nanowire with a width of 135 nm and length of 4.7 µm (e) shows the larger dimensioned nanowire with a width of 145 nm and length of 7.2 µm.

Fig. 5
Fig. 5

Emission spectra for 4.5 μm (a) and 7.3 μm (b) long nanowire lasers and different excitation, α11 as indicated. The results are obtained using F = 0.05 and θnm1 = 1 for all n and m. Laser intensity is in dimensionless units, I = (µE/ħ)2T1T2 where µ,E,T1, and T2 are the dipole matrix element, electric field amplitude, population lifetime and dephasing decay time, respectively

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I n ˙ =( α n β n I n mn θ nm I m ) I n +F

Metrics