Abstract

Shack-Hartmann wave-front sensing has been successfully applied to many fields of optical testing including the human eye itself. We propose wave-front measurement for testing protective eye wear for production control and investigation of aberrations. Refractive power data is derived from the wave-front data and compared to a subjective measurement technique based on a focimeter. Additional image quality classification was performed with a multivariate model using objective parameters to resample a subjectively determined visual quality. Wave-front measurement advances optical testing of protective eye wear and may be used for objective quality control.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. International Standard, “Personal eye-protectors – Specifications,” ISO 4849–1981 (1981
  2. American National Standard, “Occupational and Educational Personal Eye and Face Protection Devices,” ANSI Z87.1–2003 (2003).
  3. European Standard, “Personal eye-protection – Specifications,” EN 166:2001 (2002).
  4. S. J. Dain, “Materials for occupational eye protectors,” Clin. Exp. Optom.95(2), 129–139 (2012).
    [CrossRef] [PubMed]
  5. International Standard, “Ophthalmic optics – Uncut finished spectacle lenses – Part 1: Specifications for single-vision and multifocal lenses,” ISO 8980–1 (1996).
  6. D. A. Lombardi, S. K. Verma, M. J. Brennan, and M. J. Perry, “Factors influencing worker use of personal protective eyewear,” Accid. Anal. Prev.41(4), 755–762 (2009).
    [CrossRef] [PubMed]
  7. International Standard, “Personal eye-protectors – Optical test methods,” ISO 4854–1981 (1981).
  8. European Standard, “Personal eye-protection – Optical test methods,” EN 167:2001 (2002).
  9. A. Awwal and S. Olivier, “Design and Testing of a Liquid Crystal Adaptive Optics Phoropter,” in Adaptive Optics for Vision Science, J. Porter, H. M. Queener, J. E. Lin, K. Thorn, A. Awwal, eds. (Wiley Interscience, 2006), Chap. 18.
  10. Nidek Co, Ltd., “Auto Lensmeter LM-1800PD/1800P,” (2012), http://www.nidek-intl.com/products/examination/lm-1800pd.html .
  11. J. Pfund, N. Lindlein, and J. Schwider, “Dynamic range expansion of a Shack-Hartmann sensor by use of a modified unwrapping algorithm,” Opt. Lett.23(13), 995–997 (1998).
    [CrossRef] [PubMed]
  12. V. Fernández-Sánchez, M. E. Ponce, F. Lara, R. Montés-Micó, J. F. Castejón-Mochón, and N. López-Gil, “Effect of 3rd-order aberrations on human vision,” J. Cataract Refract. Surg.34(8), 1339–1344 (2008).
    [CrossRef] [PubMed]
  13. L. K. Young, S. P. Liversedge, G. D. Love, R. M. Myers, and H. E. Smithson, “Not all aberrations are equal: Reading impairment depends on aberration type and magnitude,” J. Vis.11(13), 20 (2011).
    [CrossRef] [PubMed]

2012

S. J. Dain, “Materials for occupational eye protectors,” Clin. Exp. Optom.95(2), 129–139 (2012).
[CrossRef] [PubMed]

2011

L. K. Young, S. P. Liversedge, G. D. Love, R. M. Myers, and H. E. Smithson, “Not all aberrations are equal: Reading impairment depends on aberration type and magnitude,” J. Vis.11(13), 20 (2011).
[CrossRef] [PubMed]

2009

D. A. Lombardi, S. K. Verma, M. J. Brennan, and M. J. Perry, “Factors influencing worker use of personal protective eyewear,” Accid. Anal. Prev.41(4), 755–762 (2009).
[CrossRef] [PubMed]

2008

V. Fernández-Sánchez, M. E. Ponce, F. Lara, R. Montés-Micó, J. F. Castejón-Mochón, and N. López-Gil, “Effect of 3rd-order aberrations on human vision,” J. Cataract Refract. Surg.34(8), 1339–1344 (2008).
[CrossRef] [PubMed]

1998

Brennan, M. J.

D. A. Lombardi, S. K. Verma, M. J. Brennan, and M. J. Perry, “Factors influencing worker use of personal protective eyewear,” Accid. Anal. Prev.41(4), 755–762 (2009).
[CrossRef] [PubMed]

Castejón-Mochón, J. F.

V. Fernández-Sánchez, M. E. Ponce, F. Lara, R. Montés-Micó, J. F. Castejón-Mochón, and N. López-Gil, “Effect of 3rd-order aberrations on human vision,” J. Cataract Refract. Surg.34(8), 1339–1344 (2008).
[CrossRef] [PubMed]

Dain, S. J.

S. J. Dain, “Materials for occupational eye protectors,” Clin. Exp. Optom.95(2), 129–139 (2012).
[CrossRef] [PubMed]

Fernández-Sánchez, V.

V. Fernández-Sánchez, M. E. Ponce, F. Lara, R. Montés-Micó, J. F. Castejón-Mochón, and N. López-Gil, “Effect of 3rd-order aberrations on human vision,” J. Cataract Refract. Surg.34(8), 1339–1344 (2008).
[CrossRef] [PubMed]

Lara, F.

V. Fernández-Sánchez, M. E. Ponce, F. Lara, R. Montés-Micó, J. F. Castejón-Mochón, and N. López-Gil, “Effect of 3rd-order aberrations on human vision,” J. Cataract Refract. Surg.34(8), 1339–1344 (2008).
[CrossRef] [PubMed]

Lindlein, N.

Liversedge, S. P.

L. K. Young, S. P. Liversedge, G. D. Love, R. M. Myers, and H. E. Smithson, “Not all aberrations are equal: Reading impairment depends on aberration type and magnitude,” J. Vis.11(13), 20 (2011).
[CrossRef] [PubMed]

Lombardi, D. A.

D. A. Lombardi, S. K. Verma, M. J. Brennan, and M. J. Perry, “Factors influencing worker use of personal protective eyewear,” Accid. Anal. Prev.41(4), 755–762 (2009).
[CrossRef] [PubMed]

López-Gil, N.

V. Fernández-Sánchez, M. E. Ponce, F. Lara, R. Montés-Micó, J. F. Castejón-Mochón, and N. López-Gil, “Effect of 3rd-order aberrations on human vision,” J. Cataract Refract. Surg.34(8), 1339–1344 (2008).
[CrossRef] [PubMed]

Love, G. D.

L. K. Young, S. P. Liversedge, G. D. Love, R. M. Myers, and H. E. Smithson, “Not all aberrations are equal: Reading impairment depends on aberration type and magnitude,” J. Vis.11(13), 20 (2011).
[CrossRef] [PubMed]

Montés-Micó, R.

V. Fernández-Sánchez, M. E. Ponce, F. Lara, R. Montés-Micó, J. F. Castejón-Mochón, and N. López-Gil, “Effect of 3rd-order aberrations on human vision,” J. Cataract Refract. Surg.34(8), 1339–1344 (2008).
[CrossRef] [PubMed]

Myers, R. M.

L. K. Young, S. P. Liversedge, G. D. Love, R. M. Myers, and H. E. Smithson, “Not all aberrations are equal: Reading impairment depends on aberration type and magnitude,” J. Vis.11(13), 20 (2011).
[CrossRef] [PubMed]

Perry, M. J.

D. A. Lombardi, S. K. Verma, M. J. Brennan, and M. J. Perry, “Factors influencing worker use of personal protective eyewear,” Accid. Anal. Prev.41(4), 755–762 (2009).
[CrossRef] [PubMed]

Pfund, J.

Ponce, M. E.

V. Fernández-Sánchez, M. E. Ponce, F. Lara, R. Montés-Micó, J. F. Castejón-Mochón, and N. López-Gil, “Effect of 3rd-order aberrations on human vision,” J. Cataract Refract. Surg.34(8), 1339–1344 (2008).
[CrossRef] [PubMed]

Schwider, J.

Smithson, H. E.

L. K. Young, S. P. Liversedge, G. D. Love, R. M. Myers, and H. E. Smithson, “Not all aberrations are equal: Reading impairment depends on aberration type and magnitude,” J. Vis.11(13), 20 (2011).
[CrossRef] [PubMed]

Verma, S. K.

D. A. Lombardi, S. K. Verma, M. J. Brennan, and M. J. Perry, “Factors influencing worker use of personal protective eyewear,” Accid. Anal. Prev.41(4), 755–762 (2009).
[CrossRef] [PubMed]

Young, L. K.

L. K. Young, S. P. Liversedge, G. D. Love, R. M. Myers, and H. E. Smithson, “Not all aberrations are equal: Reading impairment depends on aberration type and magnitude,” J. Vis.11(13), 20 (2011).
[CrossRef] [PubMed]

Accid. Anal. Prev.

D. A. Lombardi, S. K. Verma, M. J. Brennan, and M. J. Perry, “Factors influencing worker use of personal protective eyewear,” Accid. Anal. Prev.41(4), 755–762 (2009).
[CrossRef] [PubMed]

Clin. Exp. Optom.

S. J. Dain, “Materials for occupational eye protectors,” Clin. Exp. Optom.95(2), 129–139 (2012).
[CrossRef] [PubMed]

J. Cataract Refract. Surg.

V. Fernández-Sánchez, M. E. Ponce, F. Lara, R. Montés-Micó, J. F. Castejón-Mochón, and N. López-Gil, “Effect of 3rd-order aberrations on human vision,” J. Cataract Refract. Surg.34(8), 1339–1344 (2008).
[CrossRef] [PubMed]

J. Vis.

L. K. Young, S. P. Liversedge, G. D. Love, R. M. Myers, and H. E. Smithson, “Not all aberrations are equal: Reading impairment depends on aberration type and magnitude,” J. Vis.11(13), 20 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Other

International Standard, “Ophthalmic optics – Uncut finished spectacle lenses – Part 1: Specifications for single-vision and multifocal lenses,” ISO 8980–1 (1996).

International Standard, “Personal eye-protectors – Specifications,” ISO 4849–1981 (1981

American National Standard, “Occupational and Educational Personal Eye and Face Protection Devices,” ANSI Z87.1–2003 (2003).

European Standard, “Personal eye-protection – Specifications,” EN 166:2001 (2002).

International Standard, “Personal eye-protectors – Optical test methods,” ISO 4854–1981 (1981).

European Standard, “Personal eye-protection – Optical test methods,” EN 167:2001 (2002).

A. Awwal and S. Olivier, “Design and Testing of a Liquid Crystal Adaptive Optics Phoropter,” in Adaptive Optics for Vision Science, J. Porter, H. M. Queener, J. E. Lin, K. Thorn, A. Awwal, eds. (Wiley Interscience, 2006), Chap. 18.

Nidek Co, Ltd., “Auto Lensmeter LM-1800PD/1800P,” (2012), http://www.nidek-intl.com/products/examination/lm-1800pd.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The measurement principle of the optical bench setup follows the principle of a focimeter. The observer focuses on the rotatable target to determine the power of defocus (sphere) and power and axis of astigmatism. Left: the standardized test target used for power measurement and image quality classification [7,8]. The image on the right shows an example of a blurred test target with a subjective image quality (SI) grade of > 3.

Fig. 2
Fig. 2

Schematic layout of the measurement setup used for characterizing the eye protector lenses and mounted goggles. The plane wave-front passes the eye protector lens and is imaged on the Shack-Hartmann sensor (SHS) by a telescope (the solid and dashed green lines show the conjugated planes).

Fig. 3
Fig. 3

a) Simplified head model with variable nose bar (green) and head width (red). The standard head width was set to 155 mm. b) Example of an eye protector in the wave-front device.

Fig. 4
Fig. 4

Absolute magnitude of aberration in microns among the image quality (SI) groups. Error bars specify the 95% confidence limits for each aberration type.

Fig. 5
Fig. 5

Comparison of spherical equivalent measurement between optical bench and wave-front sensor. The scatterplot (a) shows the perfect angle bisector (solid line) along with the range of measurement inaccuracy of ± 0.01 D (dashed lines). The histogram (b) shows the relative frequencies of the differences between the two measurement systems along with a normal distribution curve.

Fig. 6
Fig. 6

Comparison of absolute astigmatism measurement between optical bench and wave-front sensor. The scatterplot (a) shows the perfect angle bisector (solid line) along with the range of measurement inaccuracy of ± 0.01 D (dashed lines). The histogram (b) shows the relative frequencies of the differences between the two measurement systems along with a normal distribution curve.

Fig. 7
Fig. 7

Correlation of the objective classifier (OI) with the subjective classifier (SI) including the limits of the 95% interval of confidence.

Tables (1)

Tables Icon

Table 1 Descriptive data of the eye protectors. Refractive power data and subjective image quality (SI) were measured on the optical bench and is provided in 10−2 D units as spherical equivalent power (SEQ) and absolute astigmatism (AST). SI is given in classes (1 = excellent, 2 = good, 3 = slight errors, 4 = unacceptable).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

OI = 2.432 + 0 .073·Z 3 + 0 .310·Z 4 - 0 .138·Z 5 - 0 .455·Z 6 + 0 .672·Z 7 - 1 .389·Z 8 - 0 .116·Z 9 - 0 .037·Z 10 + 1 .738·Z 11 - 0 .848·Z 12 - 0 .261·Z 13 + 3 .354·Z 14 - 9 .057·Z 15 - 1.643·SR.

Metrics