Abstract
With the evolving technology in CMOS integration, new classes of 2Dimaging detectors have recently become available. In particular, single photon avalanche diode (SPAD) arrays allow detection of single photons at high acquisition rates (≥ 100kfps), which is about two orders of magnitude higher than with currently available cameras. Here we demonstrate the use of a SPAD array for imaging fluorescence correlation spectroscopy (imFCS), a tool to create 2D maps of the dynamics of fluorescent molecules inside living cells. Timedependent fluorescence fluctuations, due to fluorophores entering and leaving the observed pixels, are evaluated by means of autocorrelation analysis. The multiτ correlation algorithm is an appropriate choice, as it does not rely on the full data set to be held in memory. Thus, this algorithm can be efficiently implemented in custom logic. We describe a new implementation for massively parallel multiτ correlation hardware. Our current implementation can calculate 1024 correlation functions at a resolution of 10μs in realtime and therefore correlate realtime image streams from high speed single photon cameras with thousands of pixels.
© 2012 OSA
Full Article  PDF ArticleOSA Recommended Articles
Emmanuel Schaub
Opt. Express 21(20) 2354323555 (2013)
Ryan A. Colyer, Giuseppe Scalia, Ivan Rech, Angelo Gulinatti, Massimo Ghioni, Sergio Cova, Shimon Weiss, and Xavier Michalet
Biomed. Opt. Express 1(5) 14081431 (2010)
Anand Pratap Singh, Jan Wolfgang Krieger, Jan Buchholz, Edoardo Charbon, Jörg Langowski, and Thorsten Wohland
Opt. Express 21(7) 86528668 (2013)
References
 View by:
 Article Order
 
 Year
 
 Author
 
 Publication
 D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy i: conceptual basis and theory,” Biopolymers 13, 1–27 (1974).
[Crossref]  D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. ii. an experimental realization,” Biopolymers 13, 29–61 (1974).
[Crossref] [PubMed]  O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–297 (2002).
[Crossref]  M. Engels, B. Hoppe, H. Meuth, and R. Peters, “A single chip 200 MHz digital correlation system for laser spectroscopy with 512 correlation channels,” in “ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, 1999,”, vol. 5 (IEEE, 1999), vol. 5, pp. 160–163.
 B. Hoppe, H. Meuth, M. Engels, and R. Peters, “Design of digital correlation systems for lowintensity precision photon spectroscopic measurements,” in “IEEE Proceedings Circuits, Devices and Systems,”, vol. 148 (IET, 2001), vol. 148, pp. 267–271.
 M. Engels, B. Hoppe, H. Meuth, and R. Peters, “Fast digital photon correlation system with high dynamic range,” in “Proceedings of the 13th Annual IEEE International ASIC/SOC Conference, 2000,” (IEEE, 2000), pp. 18–22.

M. Wahl, I. Gregor, M. Patting, and J. Enderlein, “Fast calculation of fluorescence correlation data with asynchronous timecorrelated singlephoton counting,” Opt. Express 11, 3583–3591 (2003).
[Crossref] [PubMed] 
T. Laurence, S. Fore, and T. Huser, “A fast, flexible algorithm for calculating correlations in fluorescence correlation spectroscopy,” Opt. Lett. 31, 829–31 (2006).
[Crossref] [PubMed] 
E. Schaub, “F2cor: fast 2stage correlation algorithm for FCS and DLS,” Opt. Express 20, 2184–2195 (2012).
[Crossref] [PubMed] 
D. Magatti and F. Ferri, “Fast multitau realtime software correlator for dynamic light scattering,” Appl. Opt. 40, 4011–4021 (2001).
[Crossref]  D. Magatti and F. Ferri, “25 ns software correlator for photon and fluorescence correlation spectroscopy,” Rev. Sci. Instrum. 74, 1135–1144 (2003).
[Crossref]  M. Culbertson and D. Burden, “A distributed algorithm for multitau autocorrelation,” Rev. Sci. Instrum. 78, 044102 (2007).
[Crossref] [PubMed]  B. Tieman, S. Narayanan, A. Sandy, and M. Sikorski, “Mpicorrelator: a parallel code for performing time correlations,” Nucl. Inst. Meth. A 649, 240–242 (2011).
[Crossref]  C. Jakob, A. Schwarzbacher, B. Hoppe, and R. Peters, “The development of a digital multichannel correlator system for light scattering experiments,” in “Irish Signals and Systems Conference, 2006. IET,” (IET, 2006), pp. 99–103.
 C. Jakob, A. T. Schwarzbacher, B. Hoppe, and R. Peters, “A FPGA optimised digital realtime mutichannel correlator architecture,” in “10th Euromicro Conference on Digital System Design Architectures, Methods and Tools, 2007. DSD 2007,” (IEEE, 2007).
 C. Jakob, A. Schwarzbacher, B. Hoppe, and R. Peters, “A multichannel digital realtime correlator as single FPGA implementation,” in “15th International Conference on Digital Signal Processing, 2007,” (2007), pp. 276–279.
 Y. Yang, J. Shen, W. Liu, and Y. Cheng, “Digital realtime correlator implemented by field programmable gate array,” in “CISP’08. Congress on Image and Signal Processing, 2008,”, vol. 1 (IEEE, 2008), vol. 1, pp. 149–151.
 W. Liu, J. Shen, and X. Sun, “Design of multipletau photon correlation system implemented by FPGA,” in “ICESS’08. International Conference on Embedded Software and Systems, 2008,” (IEEE, 2008), pp. 410–414.
 G. Mocsar, B. Kreith, J. Buchholz, J. W. Krieger, J. Langowski, and G. Vamosi, “Note: multiplexed multipletau auto and crosscorrelators on a single field programmable gate array,” Rev. Sci. Instrum. 83, 046101 (2012).
[Crossref] [PubMed] 
M. Burkhardt and P. Schwille, “Electron multiplying ccd based detection for spatially resolved fluorescence correlation spectroscopy,” Opt. Express 14, 5013–5020 (2006).
[Crossref] [PubMed] 
R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “Highthroughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1, 1408–1431 (2010).
[Crossref]  R. Colyer, G. Scalia, F. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra highthroughput single molecule spectroscopy with a 1024 pixel SPAD,” in “Proc. SPIE,” 7905, 790503–1 (2011).
 G. Heuvelman, F. Erdel, M. Wachsmuth, and K. Rippe, “Analysis of protein mobilities and interactions in living cells by multifocal fluorescence fluctuation microscopy,” Eur. Biophys. J. 38, 813–828 (2009).
[Crossref] [PubMed] 
F. Bestvater, Z. Seghiri, M. S. Kang, N. Gröner, J. Y. Lee, I. KangBin, and M. Wachsmuth, “EMCCDbased spectrally resolved fluorescence correlation spectroscopy,” Opt. Express 18, 23818–23828 (2010).
[Crossref] [PubMed]  D. J. Needleman, Y. Xu, and T. J. Mitchison, “Pinhole array correlation imaging: highly parallel fluorescence correlation spectroscopy,” Biophys. J. 96, 5050–5059 (2009).
[Crossref] [PubMed]  B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying chargecoupled device camera,” Anal. Chem. 79, 4463–4470 (2007).
[Crossref] [PubMed]  T. Wohland, X. Shi, J. Sankaran, and E. H. K. Stelzer, “Single plane illumination fluorescence correlation spectroscopy (SPIMFCS) probes inhomogeneous threedimensional environments,” Opt. Express 10, 10627–10641 (2010).
[Crossref]  J. Capoulade, M. Wachsmuth, L. Hufnagel, and M. Knop, “Quantitative fluorescence imaging of protein diffusion and interaction in living cells,” Nat. Biotechnol. 29, 835–839 (2011).
[Crossref] [PubMed]  L. Carrara, C. Niclass, N. Scheidegger, H. Shea, and E. Charbon, “A gamma, xray and high energy proton radiationtolerant CMOS image sensor for space applications,” in “ISSCC, IEEE International SolidState Circuits Conference,” (2009), pp. 40–41.
 M. Gösch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. Besse, R. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated singlephoton 2 × 2 CMOS detector array,” J. Biomed. Opt. 9, 913 (2004).
[Crossref] [PubMed]  R. Colyer, G. Scalia, T. Kim, I. Rech, D. Resnati, S. Marangoni, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “Highthroughput multispot singlemolecule spectroscopy,” in “ProceedingsSociety of PhotoOptical Instrumentation Engineers,”, vol. 7571 (NIH Public Access, 2010), vol. 7571, p. 75710G.
 C. Veerappan, J. A. Richardson, R. J. Walker, D.U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 singlephoton image sensor with onpixel 55ps 10b timetodigital converter.” in “ISSCC, IEEE International SolidState Circuits Conference,” (IEEE, 2011), pp. 312–314.
 C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35μm CMOS and based on an eventdriven readout for TCSPC experiments,” in “Proc. SPIE,” 6372, 63720S (2006).
[Crossref]  K. Schätzel, “Noise on photon correlation data: I. autocorrelation functions,” Quantum Opt. 2, 287–305 (1990).
[Crossref]  K. Schätzel, “New concepts in correlator design,” Inst. Phys. Conf. Ser. 77, 175–184 (1985).
 Z. Kojro, A. Riede, M. Schubert, and W. Grill, “Systematic and statistical errors in correlation estimators obtained from various digital correlators,” Rev. Sci. Instrum. 70, 4487–4496 (1999).
[Crossref] 
J. Sankaran, X. Shi, L. Ho, E. Stelzer, and T. Wohland, “ImFCS: a software for imaging FCS data analysis and visualization,” Opt. Express 18, 25468–25481 (2010).
[Crossref] [PubMed]  The diffusion coefficient was D = 20μm2/s (corresponding to an intermediately sized protein in water), the simulation timestep of the random walk, as well as the minimum lag time were Δtsim = τmin = 1μs. There were around 1.2 particles in the effective measurement volume Veff ≈ 0.4μm3 on average.
 T. Wocjan, J. Krieger, O. Krichevsky, and J. Langowski, “Dynamics of a fluorophore attached to superhelical DNA: FCS experiments simulated by brownian dynamics,” Phys. Chem. Chem. Phys. 11, 10671–10681 (2009).
[Crossref]  C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 singlephoton imager with onchip columnlevel 10b timetodigital converter array capable of 97ps resolution,” in “ISSCC, IEEE International SolidState Circuits Conference,” (IEEE, 2008), pp. 44–594.
 K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum. 78, 023705 (2007).
[Crossref] [PubMed]  Joachim Wuttke: lmfit  a C/C++ routine for LevenbergMarquardt minimization with wrapper for leastsquares curve fitting, based on work by B. S. Garbow, K. E. Hillstrom, J. J. Moré, and S. Moshier. Version 3.2, retrieved on 20110831 from http://www.messenunddeuten.de/lmfit/ .
 QuickFit 3.0 can be downloaded free of charge from http://www.dkfz.de/Macromol/quickfit/ . In addition to the fitting capabilities, it also contains software implementations of the correlators described in here.
 S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83, 2300–2317 (2002).
[Crossref] [PubMed]
2012 (2)
G. Mocsar, B. Kreith, J. Buchholz, J. W. Krieger, J. Langowski, and G. Vamosi, “Note: multiplexed multipletau auto and crosscorrelators on a single field programmable gate array,” Rev. Sci. Instrum. 83, 046101 (2012).
[Crossref]
[PubMed]
E. Schaub, “F2cor: fast 2stage correlation algorithm for FCS and DLS,” Opt. Express 20, 2184–2195 (2012).
[Crossref]
[PubMed]
2011 (3)
B. Tieman, S. Narayanan, A. Sandy, and M. Sikorski, “Mpicorrelator: a parallel code for performing time correlations,” Nucl. Inst. Meth. A 649, 240–242 (2011).
[Crossref]
J. Capoulade, M. Wachsmuth, L. Hufnagel, and M. Knop, “Quantitative fluorescence imaging of protein diffusion and interaction in living cells,” Nat. Biotechnol. 29, 835–839 (2011).
[Crossref]
[PubMed]
R. Colyer, G. Scalia, F. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra highthroughput single molecule spectroscopy with a 1024 pixel SPAD,” in “Proc. SPIE,” 7905, 790503–1 (2011).
2010 (4)
T. Wohland, X. Shi, J. Sankaran, and E. H. K. Stelzer, “Single plane illumination fluorescence correlation spectroscopy (SPIMFCS) probes inhomogeneous threedimensional environments,” Opt. Express 10, 10627–10641 (2010).
[Crossref]
F. Bestvater, Z. Seghiri, M. S. Kang, N. Gröner, J. Y. Lee, I. KangBin, and M. Wachsmuth, “EMCCDbased spectrally resolved fluorescence correlation spectroscopy,” Opt. Express 18, 23818–23828 (2010).
[Crossref]
[PubMed]
R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “Highthroughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1, 1408–1431 (2010).
[Crossref]
J. Sankaran, X. Shi, L. Ho, E. Stelzer, and T. Wohland, “ImFCS: a software for imaging FCS data analysis and visualization,” Opt. Express 18, 25468–25481 (2010).
[Crossref]
[PubMed]
2009 (3)
G. Heuvelman, F. Erdel, M. Wachsmuth, and K. Rippe, “Analysis of protein mobilities and interactions in living cells by multifocal fluorescence fluctuation microscopy,” Eur. Biophys. J. 38, 813–828 (2009).
[Crossref]
[PubMed]
T. Wocjan, J. Krieger, O. Krichevsky, and J. Langowski, “Dynamics of a fluorophore attached to superhelical DNA: FCS experiments simulated by brownian dynamics,” Phys. Chem. Chem. Phys. 11, 10671–10681 (2009).
[Crossref]
D. J. Needleman, Y. Xu, and T. J. Mitchison, “Pinhole array correlation imaging: highly parallel fluorescence correlation spectroscopy,” Biophys. J. 96, 5050–5059 (2009).
[Crossref]
[PubMed]
2007 (3)
B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying chargecoupled device camera,” Anal. Chem. 79, 4463–4470 (2007).
[Crossref]
[PubMed]
M. Culbertson and D. Burden, “A distributed algorithm for multitau autocorrelation,” Rev. Sci. Instrum. 78, 044102 (2007).
[Crossref]
[PubMed]
K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum. 78, 023705 (2007).
[Crossref]
[PubMed]
2006 (3)
T. Laurence, S. Fore, and T. Huser, “A fast, flexible algorithm for calculating correlations in fluorescence correlation spectroscopy,” Opt. Lett. 31, 829–31 (2006).
[Crossref]
[PubMed]
M. Burkhardt and P. Schwille, “Electron multiplying ccd based detection for spatially resolved fluorescence correlation spectroscopy,” Opt. Express 14, 5013–5020 (2006).
[Crossref]
[PubMed]
C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35μm CMOS and based on an eventdriven readout for TCSPC experiments,” in “Proc. SPIE,” 6372, 63720S (2006).
[Crossref]
2004 (1)
M. Gösch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. Besse, R. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated singlephoton 2 × 2 CMOS detector array,” J. Biomed. Opt. 9, 913 (2004).
[Crossref]
[PubMed]
2003 (2)
D. Magatti and F. Ferri, “25 ns software correlator for photon and fluorescence correlation spectroscopy,” Rev. Sci. Instrum. 74, 1135–1144 (2003).
[Crossref]
M. Wahl, I. Gregor, M. Patting, and J. Enderlein, “Fast calculation of fluorescence correlation data with asynchronous timecorrelated singlephoton counting,” Opt. Express 11, 3583–3591 (2003).
[Crossref]
[PubMed]
2002 (2)
O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–297 (2002).
[Crossref]
S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83, 2300–2317 (2002).
[Crossref]
[PubMed]
2001 (1)
D. Magatti and F. Ferri, “Fast multitau realtime software correlator for dynamic light scattering,” Appl. Opt. 40, 4011–4021 (2001).
[Crossref]
1999 (2)
M. Engels, B. Hoppe, H. Meuth, and R. Peters, “A single chip 200 MHz digital correlation system for laser spectroscopy with 512 correlation channels,” in “ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, 1999,”, vol. 5 (IEEE, 1999), vol. 5, pp. 160–163.
Z. Kojro, A. Riede, M. Schubert, and W. Grill, “Systematic and statistical errors in correlation estimators obtained from various digital correlators,” Rev. Sci. Instrum. 70, 4487–4496 (1999).
[Crossref]
1990 (1)
K. Schätzel, “Noise on photon correlation data: I. autocorrelation functions,” Quantum Opt. 2, 287–305 (1990).
[Crossref]
1985 (1)
K. Schätzel, “New concepts in correlator design,” Inst. Phys. Conf. Ser. 77, 175–184 (1985).
1974 (2)
D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy i: conceptual basis and theory,” Biopolymers 13, 1–27 (1974).
[Crossref]
D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. ii. an experimental realization,” Biopolymers 13, 29–61 (1974).
[Crossref]
[PubMed]
Ahmed, S.
B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying chargecoupled device camera,” Anal. Chem. 79, 4463–4470 (2007).
[Crossref]
[PubMed]
Anhut, T.
M. Gösch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. Besse, R. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated singlephoton 2 × 2 CMOS detector array,” J. Biomed. Opt. 9, 913 (2004).
[Crossref]
[PubMed]
Besse, P.
M. Gösch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. Besse, R. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated singlephoton 2 × 2 CMOS detector array,” J. Biomed. Opt. 9, 913 (2004).
[Crossref]
[PubMed]
Bestvater, F.
F. Bestvater, Z. Seghiri, M. S. Kang, N. Gröner, J. Y. Lee, I. KangBin, and M. Wachsmuth, “EMCCDbased spectrally resolved fluorescence correlation spectroscopy,” Opt. Express 18, 23818–23828 (2010).
[Crossref]
[PubMed]
Blom, H.
M. Gösch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. Besse, R. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated singlephoton 2 × 2 CMOS detector array,” J. Biomed. Opt. 9, 913 (2004).
[Crossref]
[PubMed]
Bonnet, G.
O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–297 (2002).
[Crossref]
Borghetti, F.
C. Veerappan, J. A. Richardson, R. J. Walker, D.U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 singlephoton image sensor with onpixel 55ps 10b timetodigital converter.” in “ISSCC, IEEE International SolidState Circuits Conference,” (IEEE, 2011), pp. 312–314.
Buchholz, J.
G. Mocsar, B. Kreith, J. Buchholz, J. W. Krieger, J. Langowski, and G. Vamosi, “Note: multiplexed multipletau auto and crosscorrelators on a single field programmable gate array,” Rev. Sci. Instrum. 83, 046101 (2012).
[Crossref]
[PubMed]
Burden, D.
M. Culbertson and D. Burden, “A distributed algorithm for multitau autocorrelation,” Rev. Sci. Instrum. 78, 044102 (2007).
[Crossref]
[PubMed]
Burkhardt, M.
M. Burkhardt and P. Schwille, “Electron multiplying ccd based detection for spatially resolved fluorescence correlation spectroscopy,” Opt. Express 14, 5013–5020 (2006).
[Crossref]
[PubMed]
Capoulade, J.
J. Capoulade, M. Wachsmuth, L. Hufnagel, and M. Knop, “Quantitative fluorescence imaging of protein diffusion and interaction in living cells,” Nat. Biotechnol. 29, 835–839 (2011).
[Crossref]
[PubMed]
Carrara, L.
L. Carrara, C. Niclass, N. Scheidegger, H. Shea, and E. Charbon, “A gamma, xray and high energy proton radiationtolerant CMOS image sensor for space applications,” in “ISSCC, IEEE International SolidState Circuits Conference,” (2009), pp. 40–41.
Charbon, E.
C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35μm CMOS and based on an eventdriven readout for TCSPC experiments,” in “Proc. SPIE,” 6372, 63720S (2006).
[Crossref]
C. Veerappan, J. A. Richardson, R. J. Walker, D.U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 singlephoton image sensor with onpixel 55ps 10b timetodigital converter.” in “ISSCC, IEEE International SolidState Circuits Conference,” (IEEE, 2011), pp. 312–314.
C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 singlephoton imager with onchip columnlevel 10b timetodigital converter array capable of 97ps resolution,” in “ISSCC, IEEE International SolidState Circuits Conference,” (IEEE, 2008), pp. 44–594.
L. Carrara, C. Niclass, N. Scheidegger, H. Shea, and E. Charbon, “A gamma, xray and high energy proton radiationtolerant CMOS image sensor for space applications,” in “ISSCC, IEEE International SolidState Circuits Conference,” (2009), pp. 40–41.
Cheng, Y.
Y. Yang, J. Shen, W. Liu, and Y. Cheng, “Digital realtime correlator implemented by field programmable gate array,” in “CISP’08. Congress on Image and Signal Processing, 2008,”, vol. 1 (IEEE, 2008), vol. 1, pp. 149–151.
Colyer, R.
R. Colyer, G. Scalia, F. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra highthroughput single molecule spectroscopy with a 1024 pixel SPAD,” in “Proc. SPIE,” 7905, 790503–1 (2011).
R. Colyer, G. Scalia, T. Kim, I. Rech, D. Resnati, S. Marangoni, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “Highthroughput multispot singlemolecule spectroscopy,” in “ProceedingsSociety of PhotoOptical Instrumentation Engineers,”, vol. 7571 (NIH Public Access, 2010), vol. 7571, p. 75710G.
Colyer, R. A.
R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “Highthroughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1, 1408–1431 (2010).
[Crossref]
Cova, S.
R. Colyer, G. Scalia, F. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra highthroughput single molecule spectroscopy with a 1024 pixel SPAD,” in “Proc. SPIE,” 7905, 790503–1 (2011).
R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “Highthroughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1, 1408–1431 (2010).
[Crossref]
R. Colyer, G. Scalia, T. Kim, I. Rech, D. Resnati, S. Marangoni, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “Highthroughput multispot singlemolecule spectroscopy,” in “ProceedingsSociety of PhotoOptical Instrumentation Engineers,”, vol. 7571 (NIH Public Access, 2010), vol. 7571, p. 75710G.
Culbertson, M.
M. Culbertson and D. Burden, “A distributed algorithm for multitau autocorrelation,” Rev. Sci. Instrum. 78, 044102 (2007).
[Crossref]
[PubMed]
Elson, E. L.
D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy i: conceptual basis and theory,” Biopolymers 13, 1–27 (1974).
[Crossref]
D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. ii. an experimental realization,” Biopolymers 13, 29–61 (1974).
[Crossref]
[PubMed]
Enderlein, J.
M. Wahl, I. Gregor, M. Patting, and J. Enderlein, “Fast calculation of fluorescence correlation data with asynchronous timecorrelated singlephoton counting,” Opt. Express 11, 3583–3591 (2003).
[Crossref]
[PubMed]
Engels, M.
M. Engels, B. Hoppe, H. Meuth, and R. Peters, “A single chip 200 MHz digital correlation system for laser spectroscopy with 512 correlation channels,” in “ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, 1999,”, vol. 5 (IEEE, 1999), vol. 5, pp. 160–163.
M. Engels, B. Hoppe, H. Meuth, and R. Peters, “Fast digital photon correlation system with high dynamic range,” in “Proceedings of the 13th Annual IEEE International ASIC/SOC Conference, 2000,” (IEEE, 2000), pp. 18–22.
B. Hoppe, H. Meuth, M. Engels, and R. Peters, “Design of digital correlation systems for lowintensity precision photon spectroscopic measurements,” in “IEEE Proceedings Circuits, Devices and Systems,”, vol. 148 (IET, 2001), vol. 148, pp. 267–271.
Erdel, F.
G. Heuvelman, F. Erdel, M. Wachsmuth, and K. Rippe, “Analysis of protein mobilities and interactions in living cells by multifocal fluorescence fluctuation microscopy,” Eur. Biophys. J. 38, 813–828 (2009).
[Crossref]
[PubMed]
Favi, C.
C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 singlephoton imager with onchip columnlevel 10b timetodigital converter array capable of 97ps resolution,” in “ISSCC, IEEE International SolidState Circuits Conference,” (IEEE, 2008), pp. 44–594.
Ferri, F.
D. Magatti and F. Ferri, “25 ns software correlator for photon and fluorescence correlation spectroscopy,” Rev. Sci. Instrum. 74, 1135–1144 (2003).
[Crossref]
D. Magatti and F. Ferri, “Fast multitau realtime software correlator for dynamic light scattering,” Appl. Opt. 40, 4011–4021 (2001).
[Crossref]
Fishburn, M. W.
C. Veerappan, J. A. Richardson, R. J. Walker, D.U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 singlephoton image sensor with onpixel 55ps 10b timetodigital converter.” in “ISSCC, IEEE International SolidState Circuits Conference,” (IEEE, 2011), pp. 312–314.
Fore, S.
T. Laurence, S. Fore, and T. Huser, “A fast, flexible algorithm for calculating correlations in fluorescence correlation spectroscopy,” Opt. Lett. 31, 829–31 (2006).
[Crossref]
[PubMed]
Gersbach, M.
C. Veerappan, J. A. Richardson, R. J. Walker, D.U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 singlephoton image sensor with onpixel 55ps 10b timetodigital converter.” in “ISSCC, IEEE International SolidState Circuits Conference,” (IEEE, 2011), pp. 312–314.
C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 singlephoton imager with onchip columnlevel 10b timetodigital converter array capable of 97ps resolution,” in “ISSCC, IEEE International SolidState Circuits Conference,” (IEEE, 2008), pp. 44–594.
Ghioni, M.
R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “Highthroughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1, 1408–1431 (2010).
[Crossref]
R. Colyer, G. Scalia, T. Kim, I. Rech, D. Resnati, S. Marangoni, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “Highthroughput multispot singlemolecule spectroscopy,” in “ProceedingsSociety of PhotoOptical Instrumentation Engineers,”, vol. 7571 (NIH Public Access, 2010), vol. 7571, p. 75710G.
Gösch, M.
M. Gösch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. Besse, R. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated singlephoton 2 × 2 CMOS detector array,” J. Biomed. Opt. 9, 913 (2004).
[Crossref]
[PubMed]
Greger, K.
K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum. 78, 023705 (2007).
[Crossref]
[PubMed]
Gregor, I.
M. Wahl, I. Gregor, M. Patting, and J. Enderlein, “Fast calculation of fluorescence correlation data with asynchronous timecorrelated singlephoton counting,” Opt. Express 11, 3583–3591 (2003).
[Crossref]
[PubMed]
Grill, W.
Z. Kojro, A. Riede, M. Schubert, and W. Grill, “Systematic and statistical errors in correlation estimators obtained from various digital correlators,” Rev. Sci. Instrum. 70, 4487–4496 (1999).
[Crossref]
Gröner, N.
F. Bestvater, Z. Seghiri, M. S. Kang, N. Gröner, J. Y. Lee, I. KangBin, and M. Wachsmuth, “EMCCDbased spectrally resolved fluorescence correlation spectroscopy,” Opt. Express 18, 23818–23828 (2010).
[Crossref]
[PubMed]
Guerrieri, F.
R. Colyer, G. Scalia, F. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra highthroughput single molecule spectroscopy with a 1024 pixel SPAD,” in “Proc. SPIE,” 7905, 790503–1 (2011).
Gulinatti, A.
R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “Highthroughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1, 1408–1431 (2010).
[Crossref]
Guo, L.
B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying chargecoupled device camera,” Anal. Chem. 79, 4463–4470 (2007).
[Crossref]
[PubMed]
Henderson, R. K.
C. Veerappan, J. A. Richardson, R. J. Walker, D.U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 singlephoton image sensor with onpixel 55ps 10b timetodigital converter.” in “ISSCC, IEEE International SolidState Circuits Conference,” (IEEE, 2011), pp. 312–314.
Hess, S. T.
S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83, 2300–2317 (2002).
[Crossref]
[PubMed]
Heuvelman, G.
G. Heuvelman, F. Erdel, M. Wachsmuth, and K. Rippe, “Analysis of protein mobilities and interactions in living cells by multifocal fluorescence fluctuation microscopy,” Eur. Biophys. J. 38, 813–828 (2009).
[Crossref]
[PubMed]
Ho, L.
J. Sankaran, X. Shi, L. Ho, E. Stelzer, and T. Wohland, “ImFCS: a software for imaging FCS data analysis and visualization,” Opt. Express 18, 25468–25481 (2010).
[Crossref]
[PubMed]
Hoppe, B.
M. Engels, B. Hoppe, H. Meuth, and R. Peters, “A single chip 200 MHz digital correlation system for laser spectroscopy with 512 correlation channels,” in “ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, 1999,”, vol. 5 (IEEE, 1999), vol. 5, pp. 160–163.
M. Engels, B. Hoppe, H. Meuth, and R. Peters, “Fast digital photon correlation system with high dynamic range,” in “Proceedings of the 13th Annual IEEE International ASIC/SOC Conference, 2000,” (IEEE, 2000), pp. 18–22.
B. Hoppe, H. Meuth, M. Engels, and R. Peters, “Design of digital correlation systems for lowintensity precision photon spectroscopic measurements,” in “IEEE Proceedings Circuits, Devices and Systems,”, vol. 148 (IET, 2001), vol. 148, pp. 267–271.
C. Jakob, A. Schwarzbacher, B. Hoppe, and R. Peters, “The development of a digital multichannel correlator system for light scattering experiments,” in “Irish Signals and Systems Conference, 2006. IET,” (IET, 2006), pp. 99–103.
C. Jakob, A. T. Schwarzbacher, B. Hoppe, and R. Peters, “A FPGA optimised digital realtime mutichannel correlator architecture,” in “10th Euromicro Conference on Digital System Design Architectures, Methods and Tools, 2007. DSD 2007,” (IEEE, 2007).
C. Jakob, A. Schwarzbacher, B. Hoppe, and R. Peters, “A multichannel digital realtime correlator as single FPGA implementation,” in “15th International Conference on Digital Signal Processing, 2007,” (2007), pp. 276–279.
Hufnagel, L.
J. Capoulade, M. Wachsmuth, L. Hufnagel, and M. Knop, “Quantitative fluorescence imaging of protein diffusion and interaction in living cells,” Nat. Biotechnol. 29, 835–839 (2011).
[Crossref]
[PubMed]
Huser, T.
T. Laurence, S. Fore, and T. Huser, “A fast, flexible algorithm for calculating correlations in fluorescence correlation spectroscopy,” Opt. Lett. 31, 829–31 (2006).
[Crossref]
[PubMed]
Jakob, C.
C. Jakob, A. Schwarzbacher, B. Hoppe, and R. Peters, “A multichannel digital realtime correlator as single FPGA implementation,” in “15th International Conference on Digital Signal Processing, 2007,” (2007), pp. 276–279.
C. Jakob, A. T. Schwarzbacher, B. Hoppe, and R. Peters, “A FPGA optimised digital realtime mutichannel correlator architecture,” in “10th Euromicro Conference on Digital System Design Architectures, Methods and Tools, 2007. DSD 2007,” (IEEE, 2007).
C. Jakob, A. Schwarzbacher, B. Hoppe, and R. Peters, “The development of a digital multichannel correlator system for light scattering experiments,” in “Irish Signals and Systems Conference, 2006. IET,” (IET, 2006), pp. 99–103.
Kang, M. S.
F. Bestvater, Z. Seghiri, M. S. Kang, N. Gröner, J. Y. Lee, I. KangBin, and M. Wachsmuth, “EMCCDbased spectrally resolved fluorescence correlation spectroscopy,” Opt. Express 18, 23818–23828 (2010).
[Crossref]
[PubMed]
KangBin, I.
F. Bestvater, Z. Seghiri, M. S. Kang, N. Gröner, J. Y. Lee, I. KangBin, and M. Wachsmuth, “EMCCDbased spectrally resolved fluorescence correlation spectroscopy,” Opt. Express 18, 23818–23828 (2010).
[Crossref]
[PubMed]
Kannan, B.
B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying chargecoupled device camera,” Anal. Chem. 79, 4463–4470 (2007).
[Crossref]
[PubMed]
Kim, T.
R. Colyer, G. Scalia, T. Kim, I. Rech, D. Resnati, S. Marangoni, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “Highthroughput multispot singlemolecule spectroscopy,” in “ProceedingsSociety of PhotoOptical Instrumentation Engineers,”, vol. 7571 (NIH Public Access, 2010), vol. 7571, p. 75710G.
Kluter, T.
C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 singlephoton imager with onchip columnlevel 10b timetodigital converter array capable of 97ps resolution,” in “ISSCC, IEEE International SolidState Circuits Conference,” (IEEE, 2008), pp. 44–594.
Knop, M.
J. Capoulade, M. Wachsmuth, L. Hufnagel, and M. Knop, “Quantitative fluorescence imaging of protein diffusion and interaction in living cells,” Nat. Biotechnol. 29, 835–839 (2011).
[Crossref]
[PubMed]
Kojro, Z.
Z. Kojro, A. Riede, M. Schubert, and W. Grill, “Systematic and statistical errors in correlation estimators obtained from various digital correlators,” Rev. Sci. Instrum. 70, 4487–4496 (1999).
[Crossref]
Kreith, B.
G. Mocsar, B. Kreith, J. Buchholz, J. W. Krieger, J. Langowski, and G. Vamosi, “Note: multiplexed multipletau auto and crosscorrelators on a single field programmable gate array,” Rev. Sci. Instrum. 83, 046101 (2012).
[Crossref]
[PubMed]
Krichevsky, O.
T. Wocjan, J. Krieger, O. Krichevsky, and J. Langowski, “Dynamics of a fluorophore attached to superhelical DNA: FCS experiments simulated by brownian dynamics,” Phys. Chem. Chem. Phys. 11, 10671–10681 (2009).
[Crossref]
O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–297 (2002).
[Crossref]
Krieger, J.
T. Wocjan, J. Krieger, O. Krichevsky, and J. Langowski, “Dynamics of a fluorophore attached to superhelical DNA: FCS experiments simulated by brownian dynamics,” Phys. Chem. Chem. Phys. 11, 10671–10681 (2009).
[Crossref]
Krieger, J. W.
G. Mocsar, B. Kreith, J. Buchholz, J. W. Krieger, J. Langowski, and G. Vamosi, “Note: multiplexed multipletau auto and crosscorrelators on a single field programmable gate array,” Rev. Sci. Instrum. 83, 046101 (2012).
[Crossref]
[PubMed]
Langowski, J.
G. Mocsar, B. Kreith, J. Buchholz, J. W. Krieger, J. Langowski, and G. Vamosi, “Note: multiplexed multipletau auto and crosscorrelators on a single field programmable gate array,” Rev. Sci. Instrum. 83, 046101 (2012).
[Crossref]
[PubMed]
T. Wocjan, J. Krieger, O. Krichevsky, and J. Langowski, “Dynamics of a fluorophore attached to superhelical DNA: FCS experiments simulated by brownian dynamics,” Phys. Chem. Chem. Phys. 11, 10671–10681 (2009).
[Crossref]
Lasser, T.
M. Gösch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. Besse, R. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated singlephoton 2 × 2 CMOS detector array,” J. Biomed. Opt. 9, 913 (2004).
[Crossref]
[PubMed]
Laurence, T.
T. Laurence, S. Fore, and T. Huser, “A fast, flexible algorithm for calculating correlations in fluorescence correlation spectroscopy,” Opt. Lett. 31, 829–31 (2006).
[Crossref]
[PubMed]
Lee, J. Y.
F. Bestvater, Z. Seghiri, M. S. Kang, N. Gröner, J. Y. Lee, I. KangBin, and M. Wachsmuth, “EMCCDbased spectrally resolved fluorescence correlation spectroscopy,” Opt. Express 18, 23818–23828 (2010).
[Crossref]
[PubMed]
Li, D.U.
C. Veerappan, J. A. Richardson, R. J. Walker, D.U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 singlephoton image sensor with onpixel 55ps 10b timetodigital converter.” in “ISSCC, IEEE International SolidState Circuits Conference,” (IEEE, 2011), pp. 312–314.
Liu, W.
Y. Yang, J. Shen, W. Liu, and Y. Cheng, “Digital realtime correlator implemented by field programmable gate array,” in “CISP’08. Congress on Image and Signal Processing, 2008,”, vol. 1 (IEEE, 2008), vol. 1, pp. 149–151.
W. Liu, J. Shen, and X. Sun, “Design of multipletau photon correlation system implemented by FPGA,” in “ICESS’08. International Conference on Embedded Software and Systems, 2008,” (IEEE, 2008), pp. 410–414.
Magatti, D.
D. Magatti and F. Ferri, “25 ns software correlator for photon and fluorescence correlation spectroscopy,” Rev. Sci. Instrum. 74, 1135–1144 (2003).
[Crossref]
D. Magatti and F. Ferri, “Fast multitau realtime software correlator for dynamic light scattering,” Appl. Opt. 40, 4011–4021 (2001).
[Crossref]
Magde, D.
D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy i: conceptual basis and theory,” Biopolymers 13, 1–27 (1974).
[Crossref]
D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. ii. an experimental realization,” Biopolymers 13, 29–61 (1974).
[Crossref]
[PubMed]
Marangoni, S.
R. Colyer, G. Scalia, T. Kim, I. Rech, D. Resnati, S. Marangoni, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “Highthroughput multispot singlemolecule spectroscopy,” in “ProceedingsSociety of PhotoOptical Instrumentation Engineers,”, vol. 7571 (NIH Public Access, 2010), vol. 7571, p. 75710G.
Maruyama, I.
B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying chargecoupled device camera,” Anal. Chem. 79, 4463–4470 (2007).
[Crossref]
[PubMed]
Maruyama, Y.
C. Veerappan, J. A. Richardson, R. J. Walker, D.U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 singlephoton image sensor with onpixel 55ps 10b timetodigital converter.” in “ISSCC, IEEE International SolidState Circuits Conference,” (IEEE, 2011), pp. 312–314.
Meuth, H.
M. Engels, B. Hoppe, H. Meuth, and R. Peters, “A single chip 200 MHz digital correlation system for laser spectroscopy with 512 correlation channels,” in “ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, 1999,”, vol. 5 (IEEE, 1999), vol. 5, pp. 160–163.
B. Hoppe, H. Meuth, M. Engels, and R. Peters, “Design of digital correlation systems for lowintensity precision photon spectroscopic measurements,” in “IEEE Proceedings Circuits, Devices and Systems,”, vol. 148 (IET, 2001), vol. 148, pp. 267–271.
M. Engels, B. Hoppe, H. Meuth, and R. Peters, “Fast digital photon correlation system with high dynamic range,” in “Proceedings of the 13th Annual IEEE International ASIC/SOC Conference, 2000,” (IEEE, 2000), pp. 18–22.
Michalet, X.
R. Colyer, G. Scalia, F. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra highthroughput single molecule spectroscopy with a 1024 pixel SPAD,” in “Proc. SPIE,” 7905, 790503–1 (2011).
R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “Highthroughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1, 1408–1431 (2010).
[Crossref]
R. Colyer, G. Scalia, T. Kim, I. Rech, D. Resnati, S. Marangoni, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “Highthroughput multispot singlemolecule spectroscopy,” in “ProceedingsSociety of PhotoOptical Instrumentation Engineers,”, vol. 7571 (NIH Public Access, 2010), vol. 7571, p. 75710G.
Mitchison, T. J.
D. J. Needleman, Y. Xu, and T. J. Mitchison, “Pinhole array correlation imaging: highly parallel fluorescence correlation spectroscopy,” Biophys. J. 96, 5050–5059 (2009).
[Crossref]
[PubMed]
Mocsar, G.
G. Mocsar, B. Kreith, J. Buchholz, J. W. Krieger, J. Langowski, and G. Vamosi, “Note: multiplexed multipletau auto and crosscorrelators on a single field programmable gate array,” Rev. Sci. Instrum. 83, 046101 (2012).
[Crossref]
[PubMed]
Narayanan, S.
B. Tieman, S. Narayanan, A. Sandy, and M. Sikorski, “Mpicorrelator: a parallel code for performing time correlations,” Nucl. Inst. Meth. A 649, 240–242 (2011).
[Crossref]
Needleman, D. J.
D. J. Needleman, Y. Xu, and T. J. Mitchison, “Pinhole array correlation imaging: highly parallel fluorescence correlation spectroscopy,” Biophys. J. 96, 5050–5059 (2009).
[Crossref]
[PubMed]
Niclass, C.
C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35μm CMOS and based on an eventdriven readout for TCSPC experiments,” in “Proc. SPIE,” 6372, 63720S (2006).
[Crossref]
C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 singlephoton imager with onchip columnlevel 10b timetodigital converter array capable of 97ps resolution,” in “ISSCC, IEEE International SolidState Circuits Conference,” (IEEE, 2008), pp. 44–594.
L. Carrara, C. Niclass, N. Scheidegger, H. Shea, and E. Charbon, “A gamma, xray and high energy proton radiationtolerant CMOS image sensor for space applications,” in “ISSCC, IEEE International SolidState Circuits Conference,” (2009), pp. 40–41.
Patting, M.
M. Wahl, I. Gregor, M. Patting, and J. Enderlein, “Fast calculation of fluorescence correlation data with asynchronous timecorrelated singlephoton counting,” Opt. Express 11, 3583–3591 (2003).
[Crossref]
[PubMed]
Peters, R.
M. Engels, B. Hoppe, H. Meuth, and R. Peters, “A single chip 200 MHz digital correlation system for laser spectroscopy with 512 correlation channels,” in “ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, 1999,”, vol. 5 (IEEE, 1999), vol. 5, pp. 160–163.
M. Engels, B. Hoppe, H. Meuth, and R. Peters, “Fast digital photon correlation system with high dynamic range,” in “Proceedings of the 13th Annual IEEE International ASIC/SOC Conference, 2000,” (IEEE, 2000), pp. 18–22.
B. Hoppe, H. Meuth, M. Engels, and R. Peters, “Design of digital correlation systems for lowintensity precision photon spectroscopic measurements,” in “IEEE Proceedings Circuits, Devices and Systems,”, vol. 148 (IET, 2001), vol. 148, pp. 267–271.
C. Jakob, A. Schwarzbacher, B. Hoppe, and R. Peters, “The development of a digital multichannel correlator system for light scattering experiments,” in “Irish Signals and Systems Conference, 2006. IET,” (IET, 2006), pp. 99–103.
C. Jakob, A. T. Schwarzbacher, B. Hoppe, and R. Peters, “A FPGA optimised digital realtime mutichannel correlator architecture,” in “10th Euromicro Conference on Digital System Design Architectures, Methods and Tools, 2007. DSD 2007,” (IEEE, 2007).
C. Jakob, A. Schwarzbacher, B. Hoppe, and R. Peters, “A multichannel digital realtime correlator as single FPGA implementation,” in “15th International Conference on Digital Signal Processing, 2007,” (2007), pp. 276–279.
Popovic, R.
M. Gösch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. Besse, R. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated singlephoton 2 × 2 CMOS detector array,” J. Biomed. Opt. 9, 913 (2004).
[Crossref]
[PubMed]
Rech, I.
R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “Highthroughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1, 1408–1431 (2010).
[Crossref]
R. Colyer, G. Scalia, T. Kim, I. Rech, D. Resnati, S. Marangoni, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “Highthroughput multispot singlemolecule spectroscopy,” in “ProceedingsSociety of PhotoOptical Instrumentation Engineers,”, vol. 7571 (NIH Public Access, 2010), vol. 7571, p. 75710G.
Resnati, D.
R. Colyer, G. Scalia, T. Kim, I. Rech, D. Resnati, S. Marangoni, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “Highthroughput multispot singlemolecule spectroscopy,” in “ProceedingsSociety of PhotoOptical Instrumentation Engineers,”, vol. 7571 (NIH Public Access, 2010), vol. 7571, p. 75710G.
Richardson, J. A.
C. Veerappan, J. A. Richardson, R. J. Walker, D.U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 singlephoton image sensor with onpixel 55ps 10b timetodigital converter.” in “ISSCC, IEEE International SolidState Circuits Conference,” (IEEE, 2011), pp. 312–314.
Riede, A.
Z. Kojro, A. Riede, M. Schubert, and W. Grill, “Systematic and statistical errors in correlation estimators obtained from various digital correlators,” Rev. Sci. Instrum. 70, 4487–4496 (1999).
[Crossref]
Rigler, R.
M. Gösch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. Besse, R. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated singlephoton 2 × 2 CMOS detector array,” J. Biomed. Opt. 9, 913 (2004).
[Crossref]
[PubMed]
Rippe, K.
G. Heuvelman, F. Erdel, M. Wachsmuth, and K. Rippe, “Analysis of protein mobilities and interactions in living cells by multifocal fluorescence fluctuation microscopy,” Eur. Biophys. J. 38, 813–828 (2009).
[Crossref]
[PubMed]
Rochas, A.
M. Gösch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. Besse, R. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated singlephoton 2 × 2 CMOS detector array,” J. Biomed. Opt. 9, 913 (2004).
[Crossref]
[PubMed]
Sandy, A.
B. Tieman, S. Narayanan, A. Sandy, and M. Sikorski, “Mpicorrelator: a parallel code for performing time correlations,” Nucl. Inst. Meth. A 649, 240–242 (2011).
[Crossref]
Sankaran, J.
T. Wohland, X. Shi, J. Sankaran, and E. H. K. Stelzer, “Single plane illumination fluorescence correlation spectroscopy (SPIMFCS) probes inhomogeneous threedimensional environments,” Opt. Express 10, 10627–10641 (2010).
[Crossref]
J. Sankaran, X. Shi, L. Ho, E. Stelzer, and T. Wohland, “ImFCS: a software for imaging FCS data analysis and visualization,” Opt. Express 18, 25468–25481 (2010).
[Crossref]
[PubMed]
Scalia, G.
R. Colyer, G. Scalia, F. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra highthroughput single molecule spectroscopy with a 1024 pixel SPAD,” in “Proc. SPIE,” 7905, 790503–1 (2011).
R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “Highthroughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1, 1408–1431 (2010).
[Crossref]
R. Colyer, G. Scalia, T. Kim, I. Rech, D. Resnati, S. Marangoni, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “Highthroughput multispot singlemolecule spectroscopy,” in “ProceedingsSociety of PhotoOptical Instrumentation Engineers,”, vol. 7571 (NIH Public Access, 2010), vol. 7571, p. 75710G.
Schätzel, K.
K. Schätzel, “Noise on photon correlation data: I. autocorrelation functions,” Quantum Opt. 2, 287–305 (1990).
[Crossref]
K. Schätzel, “New concepts in correlator design,” Inst. Phys. Conf. Ser. 77, 175–184 (1985).
Schaub, E.
E. Schaub, “F2cor: fast 2stage correlation algorithm for FCS and DLS,” Opt. Express 20, 2184–2195 (2012).
[Crossref]
[PubMed]
Scheidegger, N.
L. Carrara, C. Niclass, N. Scheidegger, H. Shea, and E. Charbon, “A gamma, xray and high energy proton radiationtolerant CMOS image sensor for space applications,” in “ISSCC, IEEE International SolidState Circuits Conference,” (2009), pp. 40–41.
Schubert, M.
Z. Kojro, A. Riede, M. Schubert, and W. Grill, “Systematic and statistical errors in correlation estimators obtained from various digital correlators,” Rev. Sci. Instrum. 70, 4487–4496 (1999).
[Crossref]
Schwarzbacher, A.
C. Jakob, A. Schwarzbacher, B. Hoppe, and R. Peters, “The development of a digital multichannel correlator system for light scattering experiments,” in “Irish Signals and Systems Conference, 2006. IET,” (IET, 2006), pp. 99–103.
C. Jakob, A. Schwarzbacher, B. Hoppe, and R. Peters, “A multichannel digital realtime correlator as single FPGA implementation,” in “15th International Conference on Digital Signal Processing, 2007,” (2007), pp. 276–279.
Schwarzbacher, A. T.
C. Jakob, A. T. Schwarzbacher, B. Hoppe, and R. Peters, “A FPGA optimised digital realtime mutichannel correlator architecture,” in “10th Euromicro Conference on Digital System Design Architectures, Methods and Tools, 2007. DSD 2007,” (IEEE, 2007).
Schwille, P.
M. Burkhardt and P. Schwille, “Electron multiplying ccd based detection for spatially resolved fluorescence correlation spectroscopy,” Opt. Express 14, 5013–5020 (2006).
[Crossref]
[PubMed]
Seghiri, Z.
F. Bestvater, Z. Seghiri, M. S. Kang, N. Gröner, J. Y. Lee, I. KangBin, and M. Wachsmuth, “EMCCDbased spectrally resolved fluorescence correlation spectroscopy,” Opt. Express 18, 23818–23828 (2010).
[Crossref]
[PubMed]
Sergio, M.
C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35μm CMOS and based on an eventdriven readout for TCSPC experiments,” in “Proc. SPIE,” 6372, 63720S (2006).
[Crossref]
Serov, A.
M. Gösch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. Besse, R. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated singlephoton 2 × 2 CMOS detector array,” J. Biomed. Opt. 9, 913 (2004).
[Crossref]
[PubMed]
Shea, H.
L. Carrara, C. Niclass, N. Scheidegger, H. Shea, and E. Charbon, “A gamma, xray and high energy proton radiationtolerant CMOS image sensor for space applications,” in “ISSCC, IEEE International SolidState Circuits Conference,” (2009), pp. 40–41.
Shen, J.
Y. Yang, J. Shen, W. Liu, and Y. Cheng, “Digital realtime correlator implemented by field programmable gate array,” in “CISP’08. Congress on Image and Signal Processing, 2008,”, vol. 1 (IEEE, 2008), vol. 1, pp. 149–151.
W. Liu, J. Shen, and X. Sun, “Design of multipletau photon correlation system implemented by FPGA,” in “ICESS’08. International Conference on Embedded Software and Systems, 2008,” (IEEE, 2008), pp. 410–414.
Shi, X.
T. Wohland, X. Shi, J. Sankaran, and E. H. K. Stelzer, “Single plane illumination fluorescence correlation spectroscopy (SPIMFCS) probes inhomogeneous threedimensional environments,” Opt. Express 10, 10627–10641 (2010).
[Crossref]
J. Sankaran, X. Shi, L. Ho, E. Stelzer, and T. Wohland, “ImFCS: a software for imaging FCS data analysis and visualization,” Opt. Express 18, 25468–25481 (2010).
[Crossref]
[PubMed]
Sikorski, M.
B. Tieman, S. Narayanan, A. Sandy, and M. Sikorski, “Mpicorrelator: a parallel code for performing time correlations,” Nucl. Inst. Meth. A 649, 240–242 (2011).
[Crossref]
Stelzer, E.
J. Sankaran, X. Shi, L. Ho, E. Stelzer, and T. Wohland, “ImFCS: a software for imaging FCS data analysis and visualization,” Opt. Express 18, 25468–25481 (2010).
[Crossref]
[PubMed]
Stelzer, E. H. K.
T. Wohland, X. Shi, J. Sankaran, and E. H. K. Stelzer, “Single plane illumination fluorescence correlation spectroscopy (SPIMFCS) probes inhomogeneous threedimensional environments,” Opt. Express 10, 10627–10641 (2010).
[Crossref]
K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum. 78, 023705 (2007).
[Crossref]
[PubMed]
Stoppa, D.
C. Veerappan, J. A. Richardson, R. J. Walker, D.U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 singlephoton image sensor with onpixel 55ps 10b timetodigital converter.” in “ISSCC, IEEE International SolidState Circuits Conference,” (IEEE, 2011), pp. 312–314.
Sudhaharan, T.
B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying chargecoupled device camera,” Anal. Chem. 79, 4463–4470 (2007).
[Crossref]
[PubMed]
Sun, X.
W. Liu, J. Shen, and X. Sun, “Design of multipletau photon correlation system implemented by FPGA,” in “ICESS’08. International Conference on Embedded Software and Systems, 2008,” (IEEE, 2008), pp. 410–414.
Swoger, J.
K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum. 78, 023705 (2007).
[Crossref]
[PubMed]
Tieman, B.
B. Tieman, S. Narayanan, A. Sandy, and M. Sikorski, “Mpicorrelator: a parallel code for performing time correlations,” Nucl. Inst. Meth. A 649, 240–242 (2011).
[Crossref]
Tisa, S.
R. Colyer, G. Scalia, F. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra highthroughput single molecule spectroscopy with a 1024 pixel SPAD,” in “Proc. SPIE,” 7905, 790503–1 (2011).
Vamosi, G.
G. Mocsar, B. Kreith, J. Buchholz, J. W. Krieger, J. Langowski, and G. Vamosi, “Note: multiplexed multipletau auto and crosscorrelators on a single field programmable gate array,” Rev. Sci. Instrum. 83, 046101 (2012).
[Crossref]
[PubMed]
Veerappan, C.
C. Veerappan, J. A. Richardson, R. J. Walker, D.U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 singlephoton image sensor with onpixel 55ps 10b timetodigital converter.” in “ISSCC, IEEE International SolidState Circuits Conference,” (IEEE, 2011), pp. 312–314.
Villa, F.
R. Colyer, G. Scalia, F. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra highthroughput single molecule spectroscopy with a 1024 pixel SPAD,” in “Proc. SPIE,” 7905, 790503–1 (2011).
Wachsmuth, M.
J. Capoulade, M. Wachsmuth, L. Hufnagel, and M. Knop, “Quantitative fluorescence imaging of protein diffusion and interaction in living cells,” Nat. Biotechnol. 29, 835–839 (2011).
[Crossref]
[PubMed]
F. Bestvater, Z. Seghiri, M. S. Kang, N. Gröner, J. Y. Lee, I. KangBin, and M. Wachsmuth, “EMCCDbased spectrally resolved fluorescence correlation spectroscopy,” Opt. Express 18, 23818–23828 (2010).
[Crossref]
[PubMed]
G. Heuvelman, F. Erdel, M. Wachsmuth, and K. Rippe, “Analysis of protein mobilities and interactions in living cells by multifocal fluorescence fluctuation microscopy,” Eur. Biophys. J. 38, 813–828 (2009).
[Crossref]
[PubMed]
Wahl, M.
M. Wahl, I. Gregor, M. Patting, and J. Enderlein, “Fast calculation of fluorescence correlation data with asynchronous timecorrelated singlephoton counting,” Opt. Express 11, 3583–3591 (2003).
[Crossref]
[PubMed]
Walker, R. J.
C. Veerappan, J. A. Richardson, R. J. Walker, D.U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 singlephoton image sensor with onpixel 55ps 10b timetodigital converter.” in “ISSCC, IEEE International SolidState Circuits Conference,” (IEEE, 2011), pp. 312–314.
Webb, W. W.
S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83, 2300–2317 (2002).
[Crossref]
[PubMed]
D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. ii. an experimental realization,” Biopolymers 13, 29–61 (1974).
[Crossref]
[PubMed]
D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy i: conceptual basis and theory,” Biopolymers 13, 1–27 (1974).
[Crossref]
Weiss, S.
R. Colyer, G. Scalia, F. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra highthroughput single molecule spectroscopy with a 1024 pixel SPAD,” in “Proc. SPIE,” 7905, 790503–1 (2011).
R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “Highthroughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1, 1408–1431 (2010).
[Crossref]
R. Colyer, G. Scalia, T. Kim, I. Rech, D. Resnati, S. Marangoni, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “Highthroughput multispot singlemolecule spectroscopy,” in “ProceedingsSociety of PhotoOptical Instrumentation Engineers,”, vol. 7571 (NIH Public Access, 2010), vol. 7571, p. 75710G.
Wocjan, T.
T. Wocjan, J. Krieger, O. Krichevsky, and J. Langowski, “Dynamics of a fluorophore attached to superhelical DNA: FCS experiments simulated by brownian dynamics,” Phys. Chem. Chem. Phys. 11, 10671–10681 (2009).
[Crossref]
Wohland, T.
T. Wohland, X. Shi, J. Sankaran, and E. H. K. Stelzer, “Single plane illumination fluorescence correlation spectroscopy (SPIMFCS) probes inhomogeneous threedimensional environments,” Opt. Express 10, 10627–10641 (2010).
[Crossref]
J. Sankaran, X. Shi, L. Ho, E. Stelzer, and T. Wohland, “ImFCS: a software for imaging FCS data analysis and visualization,” Opt. Express 18, 25468–25481 (2010).
[Crossref]
[PubMed]
B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying chargecoupled device camera,” Anal. Chem. 79, 4463–4470 (2007).
[Crossref]
[PubMed]
Xu, Y.
D. J. Needleman, Y. Xu, and T. J. Mitchison, “Pinhole array correlation imaging: highly parallel fluorescence correlation spectroscopy,” Biophys. J. 96, 5050–5059 (2009).
[Crossref]
[PubMed]
Yang, Y.
Y. Yang, J. Shen, W. Liu, and Y. Cheng, “Digital realtime correlator implemented by field programmable gate array,” in “CISP’08. Congress on Image and Signal Processing, 2008,”, vol. 1 (IEEE, 2008), vol. 1, pp. 149–151.
Zappa, F.
R. Colyer, G. Scalia, F. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra highthroughput single molecule spectroscopy with a 1024 pixel SPAD,” in “Proc. SPIE,” 7905, 790503–1 (2011).
Anal. Chem. (1)
B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying chargecoupled device camera,” Anal. Chem. 79, 4463–4470 (2007).
[Crossref]
[PubMed]
Appl. Opt. (1)
D. Magatti and F. Ferri, “Fast multitau realtime software correlator for dynamic light scattering,” Appl. Opt. 40, 4011–4021 (2001).
[Crossref]
Biomed. Opt. Express (1)
R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “Highthroughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1, 1408–1431 (2010).
[Crossref]
Biophys. J. (2)
S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83, 2300–2317 (2002).
[Crossref]
[PubMed]
D. J. Needleman, Y. Xu, and T. J. Mitchison, “Pinhole array correlation imaging: highly parallel fluorescence correlation spectroscopy,” Biophys. J. 96, 5050–5059 (2009).
[Crossref]
[PubMed]
Biopolymers (2)
D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy i: conceptual basis and theory,” Biopolymers 13, 1–27 (1974).
[Crossref]
D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. ii. an experimental realization,” Biopolymers 13, 29–61 (1974).
[Crossref]
[PubMed]
Eur. Biophys. J. (1)
G. Heuvelman, F. Erdel, M. Wachsmuth, and K. Rippe, “Analysis of protein mobilities and interactions in living cells by multifocal fluorescence fluctuation microscopy,” Eur. Biophys. J. 38, 813–828 (2009).
[Crossref]
[PubMed]
IEEE (1)
M. Engels, B. Hoppe, H. Meuth, and R. Peters, “A single chip 200 MHz digital correlation system for laser spectroscopy with 512 correlation channels,” in “ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, 1999,”, vol. 5 (IEEE, 1999), vol. 5, pp. 160–163.
IEEE Proceedings Circuits, Devices and Systems (1)
B. Hoppe, H. Meuth, M. Engels, and R. Peters, “Design of digital correlation systems for lowintensity precision photon spectroscopic measurements,” in “IEEE Proceedings Circuits, Devices and Systems,”, vol. 148 (IET, 2001), vol. 148, pp. 267–271.
Inst. Phys. Conf. Ser. (1)
K. Schätzel, “New concepts in correlator design,” Inst. Phys. Conf. Ser. 77, 175–184 (1985).
J. Biomed. Opt. (1)
M. Gösch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. Besse, R. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated singlephoton 2 × 2 CMOS detector array,” J. Biomed. Opt. 9, 913 (2004).
[Crossref]
[PubMed]
Nat. Biotechnol. (1)
J. Capoulade, M. Wachsmuth, L. Hufnagel, and M. Knop, “Quantitative fluorescence imaging of protein diffusion and interaction in living cells,” Nat. Biotechnol. 29, 835–839 (2011).
[Crossref]
[PubMed]
Nucl. Inst. Meth. A (1)
B. Tieman, S. Narayanan, A. Sandy, and M. Sikorski, “Mpicorrelator: a parallel code for performing time correlations,” Nucl. Inst. Meth. A 649, 240–242 (2011).
[Crossref]
Opt. Express (6)
T. Wohland, X. Shi, J. Sankaran, and E. H. K. Stelzer, “Single plane illumination fluorescence correlation spectroscopy (SPIMFCS) probes inhomogeneous threedimensional environments,” Opt. Express 10, 10627–10641 (2010).
[Crossref]
M. Wahl, I. Gregor, M. Patting, and J. Enderlein, “Fast calculation of fluorescence correlation data with asynchronous timecorrelated singlephoton counting,” Opt. Express 11, 3583–3591 (2003).
[Crossref]
[PubMed]
M. Burkhardt and P. Schwille, “Electron multiplying ccd based detection for spatially resolved fluorescence correlation spectroscopy,” Opt. Express 14, 5013–5020 (2006).
[Crossref]
[PubMed]
F. Bestvater, Z. Seghiri, M. S. Kang, N. Gröner, J. Y. Lee, I. KangBin, and M. Wachsmuth, “EMCCDbased spectrally resolved fluorescence correlation spectroscopy,” Opt. Express 18, 23818–23828 (2010).
[Crossref]
[PubMed]
J. Sankaran, X. Shi, L. Ho, E. Stelzer, and T. Wohland, “ImFCS: a software for imaging FCS data analysis and visualization,” Opt. Express 18, 25468–25481 (2010).
[Crossref]
[PubMed]
E. Schaub, “F2cor: fast 2stage correlation algorithm for FCS and DLS,” Opt. Express 20, 2184–2195 (2012).
[Crossref]
[PubMed]
Opt. Lett. (1)
T. Laurence, S. Fore, and T. Huser, “A fast, flexible algorithm for calculating correlations in fluorescence correlation spectroscopy,” Opt. Lett. 31, 829–31 (2006).
[Crossref]
[PubMed]
Phys. Chem. Chem. Phys. (1)
T. Wocjan, J. Krieger, O. Krichevsky, and J. Langowski, “Dynamics of a fluorophore attached to superhelical DNA: FCS experiments simulated by brownian dynamics,” Phys. Chem. Chem. Phys. 11, 10671–10681 (2009).
[Crossref]
Proc. SPIE (2)
C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35μm CMOS and based on an eventdriven readout for TCSPC experiments,” in “Proc. SPIE,” 6372, 63720S (2006).
[Crossref]
R. Colyer, G. Scalia, F. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra highthroughput single molecule spectroscopy with a 1024 pixel SPAD,” in “Proc. SPIE,” 7905, 790503–1 (2011).
Quantum Opt. (1)
K. Schätzel, “Noise on photon correlation data: I. autocorrelation functions,” Quantum Opt. 2, 287–305 (1990).
[Crossref]
Rep. Prog. Phys. (1)
O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–297 (2002).
[Crossref]
Rev. Sci. Instrum. (5)
G. Mocsar, B. Kreith, J. Buchholz, J. W. Krieger, J. Langowski, and G. Vamosi, “Note: multiplexed multipletau auto and crosscorrelators on a single field programmable gate array,” Rev. Sci. Instrum. 83, 046101 (2012).
[Crossref]
[PubMed]
D. Magatti and F. Ferri, “25 ns software correlator for photon and fluorescence correlation spectroscopy,” Rev. Sci. Instrum. 74, 1135–1144 (2003).
[Crossref]
M. Culbertson and D. Burden, “A distributed algorithm for multitau autocorrelation,” Rev. Sci. Instrum. 78, 044102 (2007).
[Crossref]
[PubMed]
Z. Kojro, A. Riede, M. Schubert, and W. Grill, “Systematic and statistical errors in correlation estimators obtained from various digital correlators,” Rev. Sci. Instrum. 70, 4487–4496 (1999).
[Crossref]
K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum. 78, 023705 (2007).
[Crossref]
[PubMed]
Other (13)
Joachim Wuttke: lmfit  a C/C++ routine for LevenbergMarquardt minimization with wrapper for leastsquares curve fitting, based on work by B. S. Garbow, K. E. Hillstrom, J. J. Moré, and S. Moshier. Version 3.2, retrieved on 20110831 from http://www.messenunddeuten.de/lmfit/ .
QuickFit 3.0 can be downloaded free of charge from http://www.dkfz.de/Macromol/quickfit/ . In addition to the fitting capabilities, it also contains software implementations of the correlators described in here.
The diffusion coefficient was D = 20μm2/s (corresponding to an intermediately sized protein in water), the simulation timestep of the random walk, as well as the minimum lag time were Δtsim = τmin = 1μs. There were around 1.2 particles in the effective measurement volume Veff ≈ 0.4μm3 on average.
C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 singlephoton imager with onchip columnlevel 10b timetodigital converter array capable of 97ps resolution,” in “ISSCC, IEEE International SolidState Circuits Conference,” (IEEE, 2008), pp. 44–594.
R. Colyer, G. Scalia, T. Kim, I. Rech, D. Resnati, S. Marangoni, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “Highthroughput multispot singlemolecule spectroscopy,” in “ProceedingsSociety of PhotoOptical Instrumentation Engineers,”, vol. 7571 (NIH Public Access, 2010), vol. 7571, p. 75710G.
C. Veerappan, J. A. Richardson, R. J. Walker, D.U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 singlephoton image sensor with onpixel 55ps 10b timetodigital converter.” in “ISSCC, IEEE International SolidState Circuits Conference,” (IEEE, 2011), pp. 312–314.
L. Carrara, C. Niclass, N. Scheidegger, H. Shea, and E. Charbon, “A gamma, xray and high energy proton radiationtolerant CMOS image sensor for space applications,” in “ISSCC, IEEE International SolidState Circuits Conference,” (2009), pp. 40–41.
M. Engels, B. Hoppe, H. Meuth, and R. Peters, “Fast digital photon correlation system with high dynamic range,” in “Proceedings of the 13th Annual IEEE International ASIC/SOC Conference, 2000,” (IEEE, 2000), pp. 18–22.
C. Jakob, A. Schwarzbacher, B. Hoppe, and R. Peters, “The development of a digital multichannel correlator system for light scattering experiments,” in “Irish Signals and Systems Conference, 2006. IET,” (IET, 2006), pp. 99–103.
C. Jakob, A. T. Schwarzbacher, B. Hoppe, and R. Peters, “A FPGA optimised digital realtime mutichannel correlator architecture,” in “10th Euromicro Conference on Digital System Design Architectures, Methods and Tools, 2007. DSD 2007,” (IEEE, 2007).
C. Jakob, A. Schwarzbacher, B. Hoppe, and R. Peters, “A multichannel digital realtime correlator as single FPGA implementation,” in “15th International Conference on Digital Signal Processing, 2007,” (2007), pp. 276–279.
Y. Yang, J. Shen, W. Liu, and Y. Cheng, “Digital realtime correlator implemented by field programmable gate array,” in “CISP’08. Congress on Image and Signal Processing, 2008,”, vol. 1 (IEEE, 2008), vol. 1, pp. 149–151.
W. Liu, J. Shen, and X. Sun, “Design of multipletau photon correlation system implemented by FPGA,” in “ICESS’08. International Conference on Embedded Software and Systems, 2008,” (IEEE, 2008), pp. 410–414.
Cited By
OSA participates in Crossref's CitedBy Linking service. Citing articles from OSA journals and other participating publishers are listed here.
Alert me when this article is cited.
Figures (8)
Hardware design of a linear correlator (a) in comparison with a multi
Block scheduling algorithm. The counter
Comparison of a naïve implementation (a: one correlator per pixel) and an optimized implementation (b: reuse CorrPEs for several pixels) of a multipixel multi
System layout and data path  from data acquisition to correlation. One USB interface is used to stream the raw images, the other for streaming (intermediate) results. The first level cache (L1, double buffered) is used to hold the context of the currently processed pixel. FIFOs for row resorting and for context storage use external memory.
Simulation results for different implementations of multi
Distribution of 992 (gray) ACFs taken by our sensor (first 31 columns only), exposed to a 630 nm LED sinemodulated with a frequency of 2.5kHz. The inset shows a section of the input count rate summed over 4 samples or 40
Results from SPIMFCS measurements of fluorescent microspheres with diameter 40nm. The measurement duration was 20.97s.
Example normalized correlation curves for two different sizes of beads, with diameters 40nm (red) and 100nm (blue). The curves are an average over 16 singlepixel ACFs each and the given diffusion coefficients are the average and standard deviation from fits to these 16 single curves.
Tables (3)
Table 1 Interleaved pipeline of the linear correlator design with 8 channels.
Table 2 Binary representation of counter
Table 3 Memory layout of a pixel context
Equations (13)
Equations on this page are rendered with MathJax. Learn more.