Abstract

We present the first experimental demonstration of a high-directivity using a mu and epsilon near zero (MENZ) metamaterial. We use the hybridization principles to design a planar MENZ structure based on the fishnet unit cell. Resonant mode engineering achieves an effective permittivity and permeability that approaches zeros around 10.5 GHz simultaneously. We use this metamaterial as a superstrate of a microstrip patch antenna. We show that the directivity of the antenna is effectively enhanced compared to that of the patch antenna alone at the desired frequency.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
    [CrossRef] [PubMed]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  3. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004).
    [CrossRef] [PubMed]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  5. D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexópoulos, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech.47(11), 2059–2074 (1999).
    [CrossRef]
  6. R. W. Ziolkowski and A. Kipple, “Application of double negative metamaterials to increase the power radiated by electrically small antennas,” IEEE Trans. Ant. Propag.51(10), 2626–2640 (2003).
    [CrossRef]
  7. R. W. Ziolkowski and A. Erentok, “Metamaterial-based efficient electrically small antennas,” IEEE Trans. Antenn. Propag.54(7), 2113–2130 (2006).
    [CrossRef]
  8. A. Ourir, A. de Lustrac, and J.-M. Lourtioz, “All-metamaterial-based sub-wavelength cavities (λ/60) for ultrathin directive antennas,” Appl. Phys. Lett.88(8), 084103 (2006).
    [CrossRef]
  9. S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett.89(21), 213902 (2002).
    [CrossRef] [PubMed]
  10. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(4), 046608 (2004).
    [CrossRef] [PubMed]
  11. J. Zhang, Y. Luo, S. Xi, H. Chen, L. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res.81, 437–446 (2008).
    [CrossRef]
  12. J. Zhang, Y. Luo, H. Chen, and B.-I. Wu, “Manipulating the directivity of antennas with metamaterial,” Opt. Express16(15), 10962–10967 (2008).
    [CrossRef] [PubMed]
  13. K. C. Gupta, “Narrow-beam antennas using an artificial dielectric medium with permittivity less than unity,” Electron. Lett.7(1), 16–18 (1971).
    [CrossRef]
  14. I. J. Bahl and K. C. Gupta, “A leaky-wave antenna using an artificial dielectric medium,” IEEE Trans. Antenn. Propag.22(1), 119–122 (1974).
    [CrossRef]
  15. G. Poilasne, J. Lenormand, P. Pouliguen, K. Mahdjoubi, C. Terret, and P. Gelin, “Theoretical study of interactions between antennas and metallic photonic bandgap materials,” Microw. Opt. Technol. Lett.15(6), 384–389 (1997).
    [CrossRef]
  16. S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett.89(21), 213902 (2002).
    [CrossRef] [PubMed]
  17. G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Trans Ant. Propag.54(3), 1017–1030 (2006).
    [CrossRef]
  18. G. Lovat, P. Burghignoli, F. Capolino, and D. R. Jackson, “Combinations of low/high permittivity and/or permeability substrates for highly directive planar metamaterial antennas,” IET Microw. Ant. Propag.1(1), 177–183 (2007).
    [CrossRef]
  19. J. Yang, M. Huang, and J. Peng, “Directive emission obtained by mu and epsilon-near-zero metamaterials,” Radioengineering18, 124 (2009).
  20. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
    [CrossRef] [PubMed]
  21. N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. (Deerfield Beach Fla.)19(21), 3628–3632 (2007).
    [CrossRef]
  22. R. Abdeddaim, A. Ourir, and J. de Rosny, “Realizing a negative index metamaterial by controlling hybridization of trapped modes,” Phys. Rev. B83(3), 033101 (2011).
    [CrossRef]
  23. A. Ourir and H. Ouslimani, “Negative refractive index in symmetric cut-wire pair metamaterial,” Appl. Phys. Lett.98(11), 113505 (2011).
    [CrossRef]
  24. A. Ourir, R. Abdeddaim, and J. de Rosny, “Double-T metamaterial for parallel and normal transverse electric incident waves,” Opt. Lett.36, 1527–1529 (2011).
    [CrossRef] [PubMed]
  25. J. J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. X. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res.81, 437–446 (2008).
    [CrossRef]
  26. D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
    [CrossRef] [PubMed]

2011 (3)

R. Abdeddaim, A. Ourir, and J. de Rosny, “Realizing a negative index metamaterial by controlling hybridization of trapped modes,” Phys. Rev. B83(3), 033101 (2011).
[CrossRef]

A. Ourir and H. Ouslimani, “Negative refractive index in symmetric cut-wire pair metamaterial,” Appl. Phys. Lett.98(11), 113505 (2011).
[CrossRef]

A. Ourir, R. Abdeddaim, and J. de Rosny, “Double-T metamaterial for parallel and normal transverse electric incident waves,” Opt. Lett.36, 1527–1529 (2011).
[CrossRef] [PubMed]

2009 (1)

J. Yang, M. Huang, and J. Peng, “Directive emission obtained by mu and epsilon-near-zero metamaterials,” Radioengineering18, 124 (2009).

2008 (3)

J. J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. X. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res.81, 437–446 (2008).
[CrossRef]

J. Zhang, Y. Luo, S. Xi, H. Chen, L. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res.81, 437–446 (2008).
[CrossRef]

J. Zhang, Y. Luo, H. Chen, and B.-I. Wu, “Manipulating the directivity of antennas with metamaterial,” Opt. Express16(15), 10962–10967 (2008).
[CrossRef] [PubMed]

2007 (2)

G. Lovat, P. Burghignoli, F. Capolino, and D. R. Jackson, “Combinations of low/high permittivity and/or permeability substrates for highly directive planar metamaterial antennas,” IET Microw. Ant. Propag.1(1), 177–183 (2007).
[CrossRef]

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. (Deerfield Beach Fla.)19(21), 3628–3632 (2007).
[CrossRef]

2006 (4)

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Trans Ant. Propag.54(3), 1017–1030 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

R. W. Ziolkowski and A. Erentok, “Metamaterial-based efficient electrically small antennas,” IEEE Trans. Antenn. Propag.54(7), 2113–2130 (2006).
[CrossRef]

A. Ourir, A. de Lustrac, and J.-M. Lourtioz, “All-metamaterial-based sub-wavelength cavities (λ/60) for ultrathin directive antennas,” Appl. Phys. Lett.88(8), 084103 (2006).
[CrossRef]

2005 (1)

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

2004 (2)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004).
[CrossRef] [PubMed]

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(4), 046608 (2004).
[CrossRef] [PubMed]

2003 (2)

R. W. Ziolkowski and A. Kipple, “Application of double negative metamaterials to increase the power radiated by electrically small antennas,” IEEE Trans. Ant. Propag.51(10), 2626–2640 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

2002 (2)

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett.89(21), 213902 (2002).
[CrossRef] [PubMed]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett.89(21), 213902 (2002).
[CrossRef] [PubMed]

2000 (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1999 (1)

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexópoulos, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech.47(11), 2059–2074 (1999).
[CrossRef]

1997 (1)

G. Poilasne, J. Lenormand, P. Pouliguen, K. Mahdjoubi, C. Terret, and P. Gelin, “Theoretical study of interactions between antennas and metallic photonic bandgap materials,” Microw. Opt. Technol. Lett.15(6), 384–389 (1997).
[CrossRef]

1974 (1)

I. J. Bahl and K. C. Gupta, “A leaky-wave antenna using an artificial dielectric medium,” IEEE Trans. Antenn. Propag.22(1), 119–122 (1974).
[CrossRef]

1971 (1)

K. C. Gupta, “Narrow-beam antennas using an artificial dielectric medium with permittivity less than unity,” Electron. Lett.7(1), 16–18 (1971).
[CrossRef]

Abdeddaim, R.

R. Abdeddaim, A. Ourir, and J. de Rosny, “Realizing a negative index metamaterial by controlling hybridization of trapped modes,” Phys. Rev. B83(3), 033101 (2011).
[CrossRef]

A. Ourir, R. Abdeddaim, and J. de Rosny, “Double-T metamaterial for parallel and normal transverse electric incident waves,” Opt. Lett.36, 1527–1529 (2011).
[CrossRef] [PubMed]

Alexópoulos, N. G.

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexópoulos, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech.47(11), 2059–2074 (1999).
[CrossRef]

Bahl, I. J.

I. J. Bahl and K. C. Gupta, “A leaky-wave antenna using an artificial dielectric medium,” IEEE Trans. Antenn. Propag.22(1), 119–122 (1974).
[CrossRef]

Broas, R. F. J.

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexópoulos, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech.47(11), 2059–2074 (1999).
[CrossRef]

Burghignoli, P.

G. Lovat, P. Burghignoli, F. Capolino, and D. R. Jackson, “Combinations of low/high permittivity and/or permeability substrates for highly directive planar metamaterial antennas,” IET Microw. Ant. Propag.1(1), 177–183 (2007).
[CrossRef]

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Trans Ant. Propag.54(3), 1017–1030 (2006).
[CrossRef]

Capolino, F.

G. Lovat, P. Burghignoli, F. Capolino, and D. R. Jackson, “Combinations of low/high permittivity and/or permeability substrates for highly directive planar metamaterial antennas,” IET Microw. Ant. Propag.1(1), 177–183 (2007).
[CrossRef]

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Trans Ant. Propag.54(3), 1017–1030 (2006).
[CrossRef]

Chen, H.

J. Zhang, Y. Luo, S. Xi, H. Chen, L. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res.81, 437–446 (2008).
[CrossRef]

J. Zhang, Y. Luo, H. Chen, and B.-I. Wu, “Manipulating the directivity of antennas with metamaterial,” Opt. Express16(15), 10962–10967 (2008).
[CrossRef] [PubMed]

Chen, H. S.

J. J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. X. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res.81, 437–446 (2008).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

de Lustrac, A.

A. Ourir, A. de Lustrac, and J.-M. Lourtioz, “All-metamaterial-based sub-wavelength cavities (λ/60) for ultrathin directive antennas,” Appl. Phys. Lett.88(8), 084103 (2006).
[CrossRef]

de Rosny, J.

A. Ourir, R. Abdeddaim, and J. de Rosny, “Double-T metamaterial for parallel and normal transverse electric incident waves,” Opt. Lett.36, 1527–1529 (2011).
[CrossRef] [PubMed]

R. Abdeddaim, A. Ourir, and J. de Rosny, “Realizing a negative index metamaterial by controlling hybridization of trapped modes,” Phys. Rev. B83(3), 033101 (2011).
[CrossRef]

Enoch, S.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett.89(21), 213902 (2002).
[CrossRef] [PubMed]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett.89(21), 213902 (2002).
[CrossRef] [PubMed]

Erentok, A.

R. W. Ziolkowski and A. Erentok, “Metamaterial-based efficient electrically small antennas,” IEEE Trans. Antenn. Propag.54(7), 2113–2130 (2006).
[CrossRef]

Fu, L. W.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. (Deerfield Beach Fla.)19(21), 3628–3632 (2007).
[CrossRef]

Gelin, P.

G. Poilasne, J. Lenormand, P. Pouliguen, K. Mahdjoubi, C. Terret, and P. Gelin, “Theoretical study of interactions between antennas and metallic photonic bandgap materials,” Microw. Opt. Technol. Lett.15(6), 384–389 (1997).
[CrossRef]

Giessen, H.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. (Deerfield Beach Fla.)19(21), 3628–3632 (2007).
[CrossRef]

Guérin, N.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett.89(21), 213902 (2002).
[CrossRef] [PubMed]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett.89(21), 213902 (2002).
[CrossRef] [PubMed]

Guo, H. C.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. (Deerfield Beach Fla.)19(21), 3628–3632 (2007).
[CrossRef]

Gupta, K. C.

I. J. Bahl and K. C. Gupta, “A leaky-wave antenna using an artificial dielectric medium,” IEEE Trans. Antenn. Propag.22(1), 119–122 (1974).
[CrossRef]

K. C. Gupta, “Narrow-beam antennas using an artificial dielectric medium with permittivity less than unity,” Electron. Lett.7(1), 16–18 (1971).
[CrossRef]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Huang, M.

J. Yang, M. Huang, and J. Peng, “Directive emission obtained by mu and epsilon-near-zero metamaterials,” Radioengineering18, 124 (2009).

Jackson, D. R.

G. Lovat, P. Burghignoli, F. Capolino, and D. R. Jackson, “Combinations of low/high permittivity and/or permeability substrates for highly directive planar metamaterial antennas,” IET Microw. Ant. Propag.1(1), 177–183 (2007).
[CrossRef]

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Trans Ant. Propag.54(3), 1017–1030 (2006).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kaiser, S.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. (Deerfield Beach Fla.)19(21), 3628–3632 (2007).
[CrossRef]

Kipple, A.

R. W. Ziolkowski and A. Kipple, “Application of double negative metamaterials to increase the power radiated by electrically small antennas,” IEEE Trans. Ant. Propag.51(10), 2626–2640 (2003).
[CrossRef]

Kong, J. A.

J. Zhang, Y. Luo, S. Xi, H. Chen, L. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res.81, 437–446 (2008).
[CrossRef]

J. J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. X. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res.81, 437–446 (2008).
[CrossRef]

Koschny, Th.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

Lenormand, J.

G. Poilasne, J. Lenormand, P. Pouliguen, K. Mahdjoubi, C. Terret, and P. Gelin, “Theoretical study of interactions between antennas and metallic photonic bandgap materials,” Microw. Opt. Technol. Lett.15(6), 384–389 (1997).
[CrossRef]

Liu, N.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. (Deerfield Beach Fla.)19(21), 3628–3632 (2007).
[CrossRef]

Lourtioz, J.-M.

A. Ourir, A. de Lustrac, and J.-M. Lourtioz, “All-metamaterial-based sub-wavelength cavities (λ/60) for ultrathin directive antennas,” Appl. Phys. Lett.88(8), 084103 (2006).
[CrossRef]

Lovat, G.

G. Lovat, P. Burghignoli, F. Capolino, and D. R. Jackson, “Combinations of low/high permittivity and/or permeability substrates for highly directive planar metamaterial antennas,” IET Microw. Ant. Propag.1(1), 177–183 (2007).
[CrossRef]

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Trans Ant. Propag.54(3), 1017–1030 (2006).
[CrossRef]

Luo, Y.

J. Zhang, Y. Luo, H. Chen, and B.-I. Wu, “Manipulating the directivity of antennas with metamaterial,” Opt. Express16(15), 10962–10967 (2008).
[CrossRef] [PubMed]

J. Zhang, Y. Luo, S. Xi, H. Chen, L. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res.81, 437–446 (2008).
[CrossRef]

J. J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. X. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res.81, 437–446 (2008).
[CrossRef]

Mahdjoubi, K.

G. Poilasne, J. Lenormand, P. Pouliguen, K. Mahdjoubi, C. Terret, and P. Gelin, “Theoretical study of interactions between antennas and metallic photonic bandgap materials,” Microw. Opt. Technol. Lett.15(6), 384–389 (1997).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Ourir, A.

R. Abdeddaim, A. Ourir, and J. de Rosny, “Realizing a negative index metamaterial by controlling hybridization of trapped modes,” Phys. Rev. B83(3), 033101 (2011).
[CrossRef]

A. Ourir, R. Abdeddaim, and J. de Rosny, “Double-T metamaterial for parallel and normal transverse electric incident waves,” Opt. Lett.36, 1527–1529 (2011).
[CrossRef] [PubMed]

A. Ourir and H. Ouslimani, “Negative refractive index in symmetric cut-wire pair metamaterial,” Appl. Phys. Lett.98(11), 113505 (2011).
[CrossRef]

A. Ourir, A. de Lustrac, and J.-M. Lourtioz, “All-metamaterial-based sub-wavelength cavities (λ/60) for ultrathin directive antennas,” Appl. Phys. Lett.88(8), 084103 (2006).
[CrossRef]

Ouslimani, H.

A. Ourir and H. Ouslimani, “Negative refractive index in symmetric cut-wire pair metamaterial,” Appl. Phys. Lett.98(11), 113505 (2011).
[CrossRef]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Peng, J.

J. Yang, M. Huang, and J. Peng, “Directive emission obtained by mu and epsilon-near-zero metamaterials,” Radioengineering18, 124 (2009).

Poilasne, G.

G. Poilasne, J. Lenormand, P. Pouliguen, K. Mahdjoubi, C. Terret, and P. Gelin, “Theoretical study of interactions between antennas and metallic photonic bandgap materials,” Microw. Opt. Technol. Lett.15(6), 384–389 (1997).
[CrossRef]

Pouliguen, P.

G. Poilasne, J. Lenormand, P. Pouliguen, K. Mahdjoubi, C. Terret, and P. Gelin, “Theoretical study of interactions between antennas and metallic photonic bandgap materials,” Microw. Opt. Technol. Lett.15(6), 384–389 (1997).
[CrossRef]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Ran, L.

J. Zhang, Y. Luo, S. Xi, H. Chen, L. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res.81, 437–446 (2008).
[CrossRef]

Ran, L. X.

J. J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. X. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res.81, 437–446 (2008).
[CrossRef]

Sabouroux, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett.89(21), 213902 (2002).
[CrossRef] [PubMed]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett.89(21), 213902 (2002).
[CrossRef] [PubMed]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Schweizer, H.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. (Deerfield Beach Fla.)19(21), 3628–3632 (2007).
[CrossRef]

Sievenpiper, D.

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexópoulos, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech.47(11), 2059–2074 (1999).
[CrossRef]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Soukoulis, C. M.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Tayeb, G.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett.89(21), 213902 (2002).
[CrossRef] [PubMed]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett.89(21), 213902 (2002).
[CrossRef] [PubMed]

Terret, C.

G. Poilasne, J. Lenormand, P. Pouliguen, K. Mahdjoubi, C. Terret, and P. Gelin, “Theoretical study of interactions between antennas and metallic photonic bandgap materials,” Microw. Opt. Technol. Lett.15(6), 384–389 (1997).
[CrossRef]

Vier, D. C.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Vincent, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett.89(21), 213902 (2002).
[CrossRef] [PubMed]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett.89(21), 213902 (2002).
[CrossRef] [PubMed]

Wilton, D. R.

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Trans Ant. Propag.54(3), 1017–1030 (2006).
[CrossRef]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Wu, B.-I.

J. Zhang, Y. Luo, S. Xi, H. Chen, L. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res.81, 437–446 (2008).
[CrossRef]

J. Zhang, Y. Luo, H. Chen, and B.-I. Wu, “Manipulating the directivity of antennas with metamaterial,” Opt. Express16(15), 10962–10967 (2008).
[CrossRef] [PubMed]

J. J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. X. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res.81, 437–446 (2008).
[CrossRef]

Xi, S.

J. J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. X. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res.81, 437–446 (2008).
[CrossRef]

J. Zhang, Y. Luo, S. Xi, H. Chen, L. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res.81, 437–446 (2008).
[CrossRef]

Yablonovitch, E.

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexópoulos, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech.47(11), 2059–2074 (1999).
[CrossRef]

Yang, J.

J. Yang, M. Huang, and J. Peng, “Directive emission obtained by mu and epsilon-near-zero metamaterials,” Radioengineering18, 124 (2009).

Zhang, J.

J. Zhang, Y. Luo, H. Chen, and B.-I. Wu, “Manipulating the directivity of antennas with metamaterial,” Opt. Express16(15), 10962–10967 (2008).
[CrossRef] [PubMed]

J. Zhang, Y. Luo, S. Xi, H. Chen, L. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res.81, 437–446 (2008).
[CrossRef]

Zhang, J. J.

J. J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. X. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res.81, 437–446 (2008).
[CrossRef]

Zhang, L.

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexópoulos, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech.47(11), 2059–2074 (1999).
[CrossRef]

Ziolkowski, R. W.

R. W. Ziolkowski and A. Erentok, “Metamaterial-based efficient electrically small antennas,” IEEE Trans. Antenn. Propag.54(7), 2113–2130 (2006).
[CrossRef]

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(4), 046608 (2004).
[CrossRef] [PubMed]

R. W. Ziolkowski and A. Kipple, “Application of double negative metamaterials to increase the power radiated by electrically small antennas,” IEEE Trans. Ant. Propag.51(10), 2626–2640 (2003).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. (Deerfield Beach Fla.)19(21), 3628–3632 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

A. Ourir and H. Ouslimani, “Negative refractive index in symmetric cut-wire pair metamaterial,” Appl. Phys. Lett.98(11), 113505 (2011).
[CrossRef]

A. Ourir, A. de Lustrac, and J.-M. Lourtioz, “All-metamaterial-based sub-wavelength cavities (λ/60) for ultrathin directive antennas,” Appl. Phys. Lett.88(8), 084103 (2006).
[CrossRef]

Electron. Lett. (1)

K. C. Gupta, “Narrow-beam antennas using an artificial dielectric medium with permittivity less than unity,” Electron. Lett.7(1), 16–18 (1971).
[CrossRef]

IEEE Trans Ant. Propag. (1)

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Trans Ant. Propag.54(3), 1017–1030 (2006).
[CrossRef]

IEEE Trans. Ant. Propag. (1)

R. W. Ziolkowski and A. Kipple, “Application of double negative metamaterials to increase the power radiated by electrically small antennas,” IEEE Trans. Ant. Propag.51(10), 2626–2640 (2003).
[CrossRef]

IEEE Trans. Antenn. Propag. (2)

R. W. Ziolkowski and A. Erentok, “Metamaterial-based efficient electrically small antennas,” IEEE Trans. Antenn. Propag.54(7), 2113–2130 (2006).
[CrossRef]

I. J. Bahl and K. C. Gupta, “A leaky-wave antenna using an artificial dielectric medium,” IEEE Trans. Antenn. Propag.22(1), 119–122 (1974).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexópoulos, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech.47(11), 2059–2074 (1999).
[CrossRef]

IET Microw. Ant. Propag. (1)

G. Lovat, P. Burghignoli, F. Capolino, and D. R. Jackson, “Combinations of low/high permittivity and/or permeability substrates for highly directive planar metamaterial antennas,” IET Microw. Ant. Propag.1(1), 177–183 (2007).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

G. Poilasne, J. Lenormand, P. Pouliguen, K. Mahdjoubi, C. Terret, and P. Gelin, “Theoretical study of interactions between antennas and metallic photonic bandgap materials,” Microw. Opt. Technol. Lett.15(6), 384–389 (1997).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

R. Abdeddaim, A. Ourir, and J. de Rosny, “Realizing a negative index metamaterial by controlling hybridization of trapped modes,” Phys. Rev. B83(3), 033101 (2011).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(4), 046608 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett.89(21), 213902 (2002).
[CrossRef] [PubMed]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett.89(21), 213902 (2002).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Prog. Electromagn. Res. (2)

J. Zhang, Y. Luo, S. Xi, H. Chen, L. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res.81, 437–446 (2008).
[CrossRef]

J. J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. X. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res.81, 437–446 (2008).
[CrossRef]

Radioengineering (1)

J. Yang, M. Huang, and J. Peng, “Directive emission obtained by mu and epsilon-near-zero metamaterials,” Radioengineering18, 124 (2009).

Science (3)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic view of the MENZ metamaterial based on the fishnet structure. (b) the metamaterial unit cell (h = 0.5 mm, w = 10 mm). The lattice constants on the x, y and z directions are 20 mm, 20 mm and 10 mm respectively.

Fig. 2
Fig. 2

Variation of the plasma frequency, the magnetic and the electric resonant mode frequency as a function of the thickness of the air gap.

Fig. 3
Fig. 3

(a) Calculated and measured transmission spectra of the two layers metamaterial. Effective permittivity (a) and permeability (d) retrieved from measurements and simulations.

Fig. 4
Fig. 4

(a) Schematic view of the antenna based on the MENZ metamaterial. The metamaterial is disposed over a coax fed patch antenna at a distance d. (b) Return loss of the path antenna in different configurations: with and without the metamaterial superstrate.

Fig. 5
Fig. 5

(a) Measured and calculated return loss of the patch antenna. (b) Return loss of the antenna based on the MENZ metamaterial for d = 10 mm.

Fig. 6
Fig. 6

(a) and (b) Calculated and measured radiation patterns of the patch antenna in the E and H planes respectively. (c) and (d) E and H-plane cuts of the radiation pattern of the antenna based on the MENZ metamaterial.

Fig. 7
Fig. 7

(a) and (b) Radiation pattern of the antenna based on 6x6 and 8x8 cells metamaterial superstrate in the E and H planes respectively.

Metrics