Abstract

We report diode pumped high power 2-µm Tm3+ fiber lasers with an all-fiber configuration. The all-fiber configuration is completed by specially designed fiber Bragg gratings with similar structure parameters matched to the gain fiber. The maximum output power is 137 W with an optical-to-optical slope efficiency of 62% with respect to absorbed 793-nm pump power. The laser wavelength is stabilized at ~2019 nm with a spectral linewidth less than 3 nm across all output levels. To the best of our knowledge, this is the highest 2-µm laser output from a single narrow bandwidth all-fiber laser system.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Tang and J. Xu, “Effects of excited-state absorption on self-pulsing in Tm3+-doped fiber lasers,” J. Opt. Soc. Am. B27(2), 179–186 (2010).
    [CrossRef]
  2. S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett.23(18), 1462–1464 (1998).
    [CrossRef] [PubMed]
  3. S. Jiang, J. Wu, Zh. Yao, and J. Zong, “104 W highly efficient Thulium doped germinate glass fiber laser,” Adv. Solid-State Photon. MF3 (2007).
  4. E. Slobodtchikov, P. F. Moulton, and G. Frith, “Efficient, high-power, Tm-doped silica fiber laser,” Adv. Solid-State Photon. MF2 (2007).
  5. G. D. Goodno, L. D. Book, and J. E. Rothenberg, “600-W, single-mode, single-frequency thulium fiber laser amplifier,” Proc. SPIE7195, 71950Y, 71950Y-10 (2009).
    [CrossRef]
  6. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
    [CrossRef]
  7. http://www.qpeak.com/Aboutus/news.shtml .
  8. G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier,” Opt. Lett.34(8), 1204–1206 (2009).
    [CrossRef] [PubMed]
  9. Y. J. Zhang, B. Q. Yao, S. F. Song, and Y. L. Ju, “All-fiber Tm-doped double-clad fiber laser with multi-mode FBG as cavity,” Laser Phys.19(5), 1006–1008 (2009).
    [CrossRef]
  10. Z. Yunjun, Y. Baoquan, J. Youlun, Z. Hui, and W. Yuezhu, “LD-cladding-pumped 50 pm linewidth Tm 3+ -doped silica fiber laser,” Opt. Express16(11), 7715–7719 (2008).
    [CrossRef] [PubMed]
  11. T. McComb, V. Sudesh, and M. Richardson, “Volume Bragg grating stabilized spectrally narrow Tm fiber laser,” Opt. Lett.33(8), 881–883 (2008).
    [CrossRef] [PubMed]
  12. F. Wang, D. Shen, D. Fan, and Q. Lu, “Spectrum narrowing of high power Tm: fiber laser using a volume Bragg grating,” Opt. Express18(9), 8937–8941 (2010).
    [CrossRef] [PubMed]
  13. F. Wang, D. Shen, D. Fan, and Q. Lu, “Widely tunable dual-wavelength operation of a high-power Tm:fiber laser using volume Bragg gratings,” Opt. Lett.35(14), 2388–2390 (2010).
    [CrossRef] [PubMed]
  14. F. Wang, D. Shen, D. Fan, and Q. Lu, “Spectral narrowing of cladding-pumped high-power Tm-doped fiber laser using a volume Bragg grating-pair,” Appl. Phys. Express3(11), 112701 (2010).
    [CrossRef]
  15. Y. Tang, F. Li, and J. Xu, “High Peak-Power Gain-Switched Tm3+-Doped Fiber Laser,” IEEE Photon. Technol. Lett.23(13), 893–895 (2011).
    [CrossRef]
  16. G. Frith, D. G. Lancaster, and S. D. Jackson, “85W Tm3+-doped silica fibre laser,” Electron. Lett.41(12), 687–688 (2005).
    [CrossRef]
  17. M. Y. Cheng, Y. C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, and P. Gatchell, “High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-microm core highly multimode Yb-doped fiber amplifiers,” Opt. Lett.30(4), 358–360 (2005).
    [CrossRef] [PubMed]

2011 (1)

Y. Tang, F. Li, and J. Xu, “High Peak-Power Gain-Switched Tm3+-Doped Fiber Laser,” IEEE Photon. Technol. Lett.23(13), 893–895 (2011).
[CrossRef]

2010 (4)

2009 (4)

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “600-W, single-mode, single-frequency thulium fiber laser amplifier,” Proc. SPIE7195, 71950Y, 71950Y-10 (2009).
[CrossRef]

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier,” Opt. Lett.34(8), 1204–1206 (2009).
[CrossRef] [PubMed]

Y. J. Zhang, B. Q. Yao, S. F. Song, and Y. L. Ju, “All-fiber Tm-doped double-clad fiber laser with multi-mode FBG as cavity,” Laser Phys.19(5), 1006–1008 (2009).
[CrossRef]

2008 (2)

2005 (2)

1998 (1)

Baoquan, Y.

Book, L. D.

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier,” Opt. Lett.34(8), 1204–1206 (2009).
[CrossRef] [PubMed]

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “600-W, single-mode, single-frequency thulium fiber laser amplifier,” Proc. SPIE7195, 71950Y, 71950Y-10 (2009).
[CrossRef]

Carter, A. L. G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Chang, Y. C.

Changkakoti, R.

Cheng, M. Y.

Fan, D.

Frith, G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

G. Frith, D. G. Lancaster, and S. D. Jackson, “85W Tm3+-doped silica fibre laser,” Electron. Lett.41(12), 687–688 (2005).
[CrossRef]

Galvanauskas, A.

Gatchell, P.

Goodno, G. D.

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “600-W, single-mode, single-frequency thulium fiber laser amplifier,” Proc. SPIE7195, 71950Y, 71950Y-10 (2009).
[CrossRef]

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier,” Opt. Lett.34(8), 1204–1206 (2009).
[CrossRef] [PubMed]

Hui, Z.

Jackson, S. D.

G. Frith, D. G. Lancaster, and S. D. Jackson, “85W Tm3+-doped silica fibre laser,” Electron. Lett.41(12), 687–688 (2005).
[CrossRef]

S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett.23(18), 1462–1464 (1998).
[CrossRef] [PubMed]

Ju, Y. L.

Y. J. Zhang, B. Q. Yao, S. F. Song, and Y. L. Ju, “All-fiber Tm-doped double-clad fiber laser with multi-mode FBG as cavity,” Laser Phys.19(5), 1006–1008 (2009).
[CrossRef]

King, T. A.

Lancaster, D. G.

G. Frith, D. G. Lancaster, and S. D. Jackson, “85W Tm3+-doped silica fibre laser,” Electron. Lett.41(12), 687–688 (2005).
[CrossRef]

Li, F.

Y. Tang, F. Li, and J. Xu, “High Peak-Power Gain-Switched Tm3+-Doped Fiber Laser,” IEEE Photon. Technol. Lett.23(13), 893–895 (2011).
[CrossRef]

Lu, Q.

Mamidipudi, P.

McComb, T.

Moulton, P. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Richardson, M.

Rines, G. A.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Rothenberg, J. E.

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “600-W, single-mode, single-frequency thulium fiber laser amplifier,” Proc. SPIE7195, 71950Y, 71950Y-10 (2009).
[CrossRef]

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier,” Opt. Lett.34(8), 1204–1206 (2009).
[CrossRef] [PubMed]

Samson, B.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Shen, D.

Slobodtchikov, E. V.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Song, S. F.

Y. J. Zhang, B. Q. Yao, S. F. Song, and Y. L. Ju, “All-fiber Tm-doped double-clad fiber laser with multi-mode FBG as cavity,” Laser Phys.19(5), 1006–1008 (2009).
[CrossRef]

Sudesh, V.

Tang, Y.

Y. Tang, F. Li, and J. Xu, “High Peak-Power Gain-Switched Tm3+-Doped Fiber Laser,” IEEE Photon. Technol. Lett.23(13), 893–895 (2011).
[CrossRef]

Y. Tang and J. Xu, “Effects of excited-state absorption on self-pulsing in Tm3+-doped fiber lasers,” J. Opt. Soc. Am. B27(2), 179–186 (2010).
[CrossRef]

Wall, K. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Wang, F.

Xu, J.

Y. Tang, F. Li, and J. Xu, “High Peak-Power Gain-Switched Tm3+-Doped Fiber Laser,” IEEE Photon. Technol. Lett.23(13), 893–895 (2011).
[CrossRef]

Y. Tang and J. Xu, “Effects of excited-state absorption on self-pulsing in Tm3+-doped fiber lasers,” J. Opt. Soc. Am. B27(2), 179–186 (2010).
[CrossRef]

Yao, B. Q.

Y. J. Zhang, B. Q. Yao, S. F. Song, and Y. L. Ju, “All-fiber Tm-doped double-clad fiber laser with multi-mode FBG as cavity,” Laser Phys.19(5), 1006–1008 (2009).
[CrossRef]

Youlun, J.

Yuezhu, W.

Yunjun, Z.

Zhang, Y. J.

Y. J. Zhang, B. Q. Yao, S. F. Song, and Y. L. Ju, “All-fiber Tm-doped double-clad fiber laser with multi-mode FBG as cavity,” Laser Phys.19(5), 1006–1008 (2009).
[CrossRef]

Appl. Phys. Express (1)

F. Wang, D. Shen, D. Fan, and Q. Lu, “Spectral narrowing of cladding-pumped high-power Tm-doped fiber laser using a volume Bragg grating-pair,” Appl. Phys. Express3(11), 112701 (2010).
[CrossRef]

Electron. Lett. (1)

G. Frith, D. G. Lancaster, and S. D. Jackson, “85W Tm3+-doped silica fibre laser,” Electron. Lett.41(12), 687–688 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Tang, F. Li, and J. Xu, “High Peak-Power Gain-Switched Tm3+-Doped Fiber Laser,” IEEE Photon. Technol. Lett.23(13), 893–895 (2011).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

Y. J. Zhang, B. Q. Yao, S. F. Song, and Y. L. Ju, “All-fiber Tm-doped double-clad fiber laser with multi-mode FBG as cavity,” Laser Phys.19(5), 1006–1008 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Proc. SPIE (1)

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “600-W, single-mode, single-frequency thulium fiber laser amplifier,” Proc. SPIE7195, 71950Y, 71950Y-10 (2009).
[CrossRef]

Other (3)

http://www.qpeak.com/Aboutus/news.shtml .

S. Jiang, J. Wu, Zh. Yao, and J. Zong, “104 W highly efficient Thulium doped germinate glass fiber laser,” Adv. Solid-State Photon. MF3 (2007).

E. Slobodtchikov, P. F. Moulton, and G. Frith, “Efficient, high-power, Tm-doped silica fiber laser,” Adv. Solid-State Photon. MF2 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup of the Tm3+ fiber laser with the co-propagating configuration; LD: laser diode; FBG: fiber Bragg grating; DM: dichroic mirror.

Fig. 2
Fig. 2

Output of the 5-m Tm3+ fiber laser with the co-propagating configuration.

Fig. 3
Fig. 3

Output of the 5-m Tm3+ fiber laser with the counter-propagating configuration.

Fig. 4
Fig. 4

Laser spectra of the Tm3+ fiber laser after the fiber-end coupler.

Fig. 5
Fig. 5

Laser spectra of the Tm3+ fiber laser after the 10% FBG coupler.

Fig. 6
Fig. 6

M2 measurement of the Tm3+ fiber laser at the 100-W level. Inset shows the near-field (left) and far-field (right) laser spot profiles obtained through paper burning.

Metrics