Abstract

A Fourier domain optical coherence tomography system with two spectrometers in balance detection is assembled using each an InGaAs linear camera. Conditions and adjustments of spectrometer parameters are presented to ensure anti-phase channeled spectrum modulation across the two cameras for a majority of wavelengths within the optical source spectrum. By blocking the signal to one of the spectrometers, the setup was used to compare the conditions of operation of a single camera with that of a balanced configuration. Using multiple layer samples, balanced detection technique is compared with techniques applied to conventional single camera setups, based on sequential deduction of averaged spectra collected with different on/off settings for the sample or reference beams. In terms of reducing the autocorrelation terms and fixed pattern noise, it is concluded that balance detection performs better than single camera techniques, is more tolerant to movement, exhibits longer term stability and can operate dynamically in real time. The cameras used exhibit larger saturation power than the power threshold where excess photon noise exceeds shot noise. Therefore, conditions to adjust the two cameras to reduce the noise when used in a balanced configuration are presented. It is shown that balance detection can reduce the noise in real time operation, in comparison with single camera configurations. However, simple deduction of an average spectrum in single camera configurations delivers less noise than the balance detection.

© 2012 OSA

PDF Article
OSA Recommended Articles
Evaluation of effective noise bandwidth for broadband optical coherence tomography operation

Ramona Cernat, George M. Dobre, Adrian Bradu, and Adrian Gh. Podoleanu
J. Opt. Soc. Am. A 26(4) 723-731 (2009)

Balanced detection for spectral domain optical coherence tomography

Wen-Chuan Kuo, Chih-Ming Lai, Yi-Shiang Huang, Cheng-Yi Chang, and Yue-Ming Kuo
Opt. Express 21(16) 19280-19291 (2013)

Fast dispersion encoded full range optical coherence tomography for retinal imaging at 800 nm and 1060 nm

Bernd Hofer, Boris Považay, Angelika Unterhuber, Ling Wang, Boris Hermann, Sara Rey, Gerald Matz, and Wolfgang Drexler
Opt. Express 18(5) 4898-4919 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [Crossref] [PubMed]
  2. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref] [PubMed]
  3. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
    [Crossref] [PubMed]
  4. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett. 28(22), 2201–2203 (2003).
    [Crossref] [PubMed]
  5. E. Götzinger, M. Pircher, R. Leitgeb, and C. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13(2), 583–594 (2005).
    [Crossref] [PubMed]
  6. J. Ai and L. V. Wang, “Synchronous self-elimination of autocorrelation interference in Fourier-domain optical coherence tomography,” Opt. Lett. 30(21), 2939–2941 (2005).
    [Crossref] [PubMed]
  7. J. Ai and L. Wang, “Spectral domain optical coherence tomography: removal of autocorrelation using an optical switch,” Appl. Phys. Lett. 88(11), 111115 (2006).
    [Crossref]
  8. S. Moon, S. W. Lee, and Z. Chen, “Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography,” Opt. Express 18(24), 24395–24404 (2010).
    [Crossref] [PubMed]
  9. A. G. Podoleanu and D. A. Jackson, “Noise analysis of a combined optical coherence tomograph and a confocal scanning ophthalmoscope,” Appl. Opt. 38(10), 2116–2127 (1999).
    [Crossref] [PubMed]
  10. A. G. Podoleanu, “Unbalanced versus balanced operation in an optical coherence tomography system,” Appl. Opt. 39(1), 173–182 (2000).
    [Crossref] [PubMed]
  11. I. Trifanov, P. Caldas, L. Neagu, R. Berendt, J. Salcedo, A. G. Podoleanu, and A. Ribeiro, “Combined neodymium–ytterbium-doped ASE fiber-optic Source for optical coherence tomography applications,” IEEE Photon. Technol. Lett. 23(1), 21–23 (2011).
  12. C. C. Rosa and A. G. Podoleanu, “Limitation of the achievable signal-to-noise ratio in optical coherence tomography due to mismatch of the balanced receiver,” Appl. Opt. 43(25), 4802–4815 (2004).
    [Crossref] [PubMed]
  13. Y. Chen, D. M. de Bruin, C. Kerbage, and J. F. de Boer, “Spectrally balanced detection for optical frequency domain imaging,” Opt. Express 15(25), 16390–16399 (2007).
    [Crossref] [PubMed]
  14. D. Woods and A. Podoleanu, “Controlling the shape of Talbot bands’ visibility,” Opt. Express 16(13), 9654–9670 (2008).
    [Crossref] [PubMed]
  15. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).
    [Crossref] [PubMed]
  16. N. Nassif, B. Cense, B. Hyle Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29(5), 480–482 (2004).
    [Crossref] [PubMed]

2011 (1)

I. Trifanov, P. Caldas, L. Neagu, R. Berendt, J. Salcedo, A. G. Podoleanu, and A. Ribeiro, “Combined neodymium–ytterbium-doped ASE fiber-optic Source for optical coherence tomography applications,” IEEE Photon. Technol. Lett. 23(1), 21–23 (2011).

2010 (1)

2008 (1)

2007 (1)

2006 (1)

J. Ai and L. Wang, “Spectral domain optical coherence tomography: removal of autocorrelation using an optical switch,” Appl. Phys. Lett. 88(11), 111115 (2006).
[Crossref]

2005 (2)

2004 (3)

2003 (3)

2002 (1)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

2000 (1)

1999 (1)

Ai, J.

J. Ai and L. Wang, “Spectral domain optical coherence tomography: removal of autocorrelation using an optical switch,” Appl. Phys. Lett. 88(11), 111115 (2006).
[Crossref]

J. Ai and L. V. Wang, “Synchronous self-elimination of autocorrelation interference in Fourier-domain optical coherence tomography,” Opt. Lett. 30(21), 2939–2941 (2005).
[Crossref] [PubMed]

Bajraszewski, T.

R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett. 28(22), 2201–2203 (2003).
[Crossref] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

Berendt, R.

I. Trifanov, P. Caldas, L. Neagu, R. Berendt, J. Salcedo, A. G. Podoleanu, and A. Ribeiro, “Combined neodymium–ytterbium-doped ASE fiber-optic Source for optical coherence tomography applications,” IEEE Photon. Technol. Lett. 23(1), 21–23 (2011).

Bouma, B.

Bouma, B. E.

Caldas, P.

I. Trifanov, P. Caldas, L. Neagu, R. Berendt, J. Salcedo, A. G. Podoleanu, and A. Ribeiro, “Combined neodymium–ytterbium-doped ASE fiber-optic Source for optical coherence tomography applications,” IEEE Photon. Technol. Lett. 23(1), 21–23 (2011).

Cense, B.

Chen, T.

Chen, T. C.

Chen, Y.

Chen, Z.

de Boer, J.

de Boer, J. F.

de Bruin, D. M.

Fercher, A.

Fercher, A. F.

R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett. 28(22), 2201–2203 (2003).
[Crossref] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

Götzinger, E.

Hitzenberger, C.

Hitzenberger, C. K.

Hyle Park, B.

Jackson, D. A.

Kerbage, C.

Kowalczyk, A.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

Lee, S. W.

Leitgeb, R.

Leitgeb, R. A.

Moon, S.

Nassif, N.

Neagu, L.

I. Trifanov, P. Caldas, L. Neagu, R. Berendt, J. Salcedo, A. G. Podoleanu, and A. Ribeiro, “Combined neodymium–ytterbium-doped ASE fiber-optic Source for optical coherence tomography applications,” IEEE Photon. Technol. Lett. 23(1), 21–23 (2011).

Park, B.

Park, B. H.

Pierce, M.

Pierce, M. C.

Pircher, M.

Podoleanu, A.

Podoleanu, A. G.

Ribeiro, A.

I. Trifanov, P. Caldas, L. Neagu, R. Berendt, J. Salcedo, A. G. Podoleanu, and A. Ribeiro, “Combined neodymium–ytterbium-doped ASE fiber-optic Source for optical coherence tomography applications,” IEEE Photon. Technol. Lett. 23(1), 21–23 (2011).

Rosa, C. C.

Salcedo, J.

I. Trifanov, P. Caldas, L. Neagu, R. Berendt, J. Salcedo, A. G. Podoleanu, and A. Ribeiro, “Combined neodymium–ytterbium-doped ASE fiber-optic Source for optical coherence tomography applications,” IEEE Photon. Technol. Lett. 23(1), 21–23 (2011).

Tearney, G.

Tearney, G. J.

Trifanov, I.

I. Trifanov, P. Caldas, L. Neagu, R. Berendt, J. Salcedo, A. G. Podoleanu, and A. Ribeiro, “Combined neodymium–ytterbium-doped ASE fiber-optic Source for optical coherence tomography applications,” IEEE Photon. Technol. Lett. 23(1), 21–23 (2011).

Wang, L.

J. Ai and L. Wang, “Spectral domain optical coherence tomography: removal of autocorrelation using an optical switch,” Appl. Phys. Lett. 88(11), 111115 (2006).
[Crossref]

Wang, L. V.

Wojtkowski, M.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

Woods, D.

Yun, S.

Yun, S. H.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

J. Ai and L. Wang, “Spectral domain optical coherence tomography: removal of autocorrelation using an optical switch,” Appl. Phys. Lett. 88(11), 111115 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (1)

I. Trifanov, P. Caldas, L. Neagu, R. Berendt, J. Salcedo, A. G. Podoleanu, and A. Ribeiro, “Combined neodymium–ytterbium-doped ASE fiber-optic Source for optical coherence tomography applications,” IEEE Photon. Technol. Lett. 23(1), 21–23 (2011).

J. Biomed. Opt. (1)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (4)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics