Abstract

Simple designs for polarization independent, metamaterial absorbers at mid-infrared wavelengths and over wide angle of incidence are evaluated computationally. One design consists of an array of circular metallic disks separated from a continuous metallic film by a dielectric film, and shows over 99.9% peak absorbance and a resonant bandwidth of about 0.2 μm wavelengths. The effects of various geometric parameters are analyzed for this metamaterial. Another design consisting of an array of stacked metal-dielectric-metal disks is shown to have an absorbance of over 90% in a comparatively large band of over 1 μm bandwidth, although with a lower peak absorbance of 97%.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press, Boca Raton, 2008).
    [CrossRef]
  2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett.76, 4773–4776 (1996).
    [CrossRef] [PubMed]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter10, 4785–4809 (1999).
    [CrossRef]
  4. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008).
    [CrossRef] [PubMed]
  5. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express16, 7181–7188 (2008).
    [CrossRef] [PubMed]
  6. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104, 207403,(2010).
    [CrossRef] [PubMed]
  7. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010).
    [CrossRef]
  8. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010).
    [CrossRef] [PubMed]
  9. T. Maier and H. Brueckl, “Multispectral microbolometers for the mid infra-red,” Opt. Lett.35, 3766–3768 (2010).
    [CrossRef] [PubMed]
  10. C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt.14, 024005 (2012).
    [CrossRef]
  11. X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond Photothermal Effects in Plasmonic Nanostructures,” ACS Nano6, 2550–2557 (2012).
    [CrossRef] [PubMed]
  12. H. T. Chen, J. Zhou, J. F. OHara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection Coating Using Metamaterials and Identification of Its Mechanism,” Phys. Rev. Lett.105, 073901 (2010).
    [CrossRef] [PubMed]
  13. J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” Appl. Phys. Lett.109, 074510 (2011).
  14. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95, 137404 (2005).
    [CrossRef] [PubMed]
  15. U. K. Chettiar, A. V. Kildishev, T. A. Klar, and V. M. Shalaev, “Negative index metamaterial combining magnetic resonators with metal films,” Opt. Express14, 7872–7877 (2006).
    [CrossRef] [PubMed]
  16. V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A: Pure Appl. Opt.7, S32–S37 (2005).
    [CrossRef]
  17. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far-infrared,” Appl. Opt.22, 1099–1119 (1983).
    [CrossRef] [PubMed]
  18. G. Hawkins and R. Hunneman, “The temperature-dependent spectral properties of filter substrate materials in the far-infrared (640 μm),” Infrared Phys Techn45, 69–79 (2004).
    [CrossRef]
  19. COMSOL Multiphysics RF Module 3.5a User’s Guide.
  20. Y. Zeng, H. T. Chen, and D. A. R. Dalvit, “A reinterpretation of the metamaterial perfect absorber,” arXiv:1201.5109v1, (2012).
  21. S. OBrien and J. B. Pendry, “Magnetic activity at infrared frequencies in structured metallic photonic crystals,” J. Phys.: Condens. Matter14, 6383–6394 (2002).
    [CrossRef]
  22. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “Supporting Information for High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, (2010).
    [CrossRef]
  23. R. Qiang, R. L. Chen, and J. Chen, “Modeling Electrical Properties of Gold Films at Infrared Frequency Using FDTD Method,” Int. J. Infra Milli25, 1263–1270 (2004).
    [CrossRef]

2012 (2)

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt.14, 024005 (2012).
[CrossRef]

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond Photothermal Effects in Plasmonic Nanostructures,” ACS Nano6, 2550–2557 (2012).
[CrossRef] [PubMed]

2011 (1)

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” Appl. Phys. Lett.109, 074510 (2011).

2010 (6)

H. T. Chen, J. Zhou, J. F. OHara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection Coating Using Metamaterials and Identification of Its Mechanism,” Phys. Rev. Lett.105, 073901 (2010).
[CrossRef] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104, 207403,(2010).
[CrossRef] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010).
[CrossRef] [PubMed]

T. Maier and H. Brueckl, “Multispectral microbolometers for the mid infra-red,” Opt. Lett.35, 3766–3768 (2010).
[CrossRef] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “Supporting Information for High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, (2010).
[CrossRef]

2008 (2)

2006 (1)

2005 (2)

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A: Pure Appl. Opt.7, S32–S37 (2005).
[CrossRef]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95, 137404 (2005).
[CrossRef] [PubMed]

2004 (2)

G. Hawkins and R. Hunneman, “The temperature-dependent spectral properties of filter substrate materials in the far-infrared (640 μm),” Infrared Phys Techn45, 69–79 (2004).
[CrossRef]

R. Qiang, R. L. Chen, and J. Chen, “Modeling Electrical Properties of Gold Films at Infrared Frequency Using FDTD Method,” Int. J. Infra Milli25, 1263–1270 (2004).
[CrossRef]

2002 (1)

S. OBrien and J. B. Pendry, “Magnetic activity at infrared frequencies in structured metallic photonic crystals,” J. Phys.: Condens. Matter14, 6383–6394 (2002).
[CrossRef]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter10, 4785–4809 (1999).
[CrossRef]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett.76, 4773–4776 (1996).
[CrossRef] [PubMed]

1983 (1)

Alexander, R. W.

Averitt, R. D.

Azad, A. K.

H. T. Chen, J. Zhou, J. F. OHara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection Coating Using Metamaterials and Identification of Its Mechanism,” Phys. Rev. Lett.105, 073901 (2010).
[CrossRef] [PubMed]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bingham, C. M.

Brueck, S. R. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95, 137404 (2005).
[CrossRef] [PubMed]

Brueckl, H.

Chen, F.

H. T. Chen, J. Zhou, J. F. OHara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection Coating Using Metamaterials and Identification of Its Mechanism,” Phys. Rev. Lett.105, 073901 (2010).
[CrossRef] [PubMed]

Chen, H. T.

H. T. Chen, J. Zhou, J. F. OHara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection Coating Using Metamaterials and Identification of Its Mechanism,” Phys. Rev. Lett.105, 073901 (2010).
[CrossRef] [PubMed]

Y. Zeng, H. T. Chen, and D. A. R. Dalvit, “A reinterpretation of the metamaterial perfect absorber,” arXiv:1201.5109v1, (2012).

Chen, J.

R. Qiang, R. L. Chen, and J. Chen, “Modeling Electrical Properties of Gold Films at Infrared Frequency Using FDTD Method,” Int. J. Infra Milli25, 1263–1270 (2004).
[CrossRef]

Chen, R. L.

R. Qiang, R. L. Chen, and J. Chen, “Modeling Electrical Properties of Gold Films at Infrared Frequency Using FDTD Method,” Int. J. Infra Milli25, 1263–1270 (2004).
[CrossRef]

Chen, X.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond Photothermal Effects in Plasmonic Nanostructures,” ACS Nano6, 2550–2557 (2012).
[CrossRef] [PubMed]

Chen, Y.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond Photothermal Effects in Plasmonic Nanostructures,” ACS Nano6, 2550–2557 (2012).
[CrossRef] [PubMed]

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” Appl. Phys. Lett.109, 074510 (2011).

Chettiar, U. K.

Dalvit, D. A. R.

Y. Zeng, H. T. Chen, and D. A. R. Dalvit, “A reinterpretation of the metamaterial perfect absorber,” arXiv:1201.5109v1, (2012).

Fan, W.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95, 137404 (2005).
[CrossRef] [PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010).
[CrossRef] [PubMed]

Grzegorczyk, T. M.

S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press, Boca Raton, 2008).
[CrossRef]

Hao, J.

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” Appl. Phys. Lett.109, 074510 (2011).

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “Supporting Information for High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, (2010).
[CrossRef]

Hawkins, G.

G. Hawkins and R. Hunneman, “The temperature-dependent spectral properties of filter substrate materials in the far-infrared (640 μm),” Infrared Phys Techn45, 69–79 (2004).
[CrossRef]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter10, 4785–4809 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett.76, 4773–4776 (1996).
[CrossRef] [PubMed]

Hunneman, R.

G. Hawkins and R. Hunneman, “The temperature-dependent spectral properties of filter substrate materials in the far-infrared (640 μm),” Infrared Phys Techn45, 69–79 (2004).
[CrossRef]

John, J.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt.14, 024005 (2012).
[CrossRef]

Kildishev, A. V.

Klar, T. A.

Landy, N. I.

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010).
[CrossRef] [PubMed]

Liu, X.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104, 207403,(2010).
[CrossRef] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “Supporting Information for High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, (2010).
[CrossRef]

Long, L. L.

Maier, T.

Malloy, K. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95, 137404 (2005).
[CrossRef] [PubMed]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010).
[CrossRef] [PubMed]

Milder, A.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt.14, 024005 (2012).
[CrossRef]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008).
[CrossRef] [PubMed]

Narimanov, E. E.

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A: Pure Appl. Opt.7, S32–S37 (2005).
[CrossRef]

Neuner, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt.14, 024005 (2012).
[CrossRef]

OBrien, S.

S. OBrien and J. B. Pendry, “Magnetic activity at infrared frequencies in structured metallic photonic crystals,” J. Phys.: Condens. Matter14, 6383–6394 (2002).
[CrossRef]

OHara, J. F.

H. T. Chen, J. Zhou, J. F. OHara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection Coating Using Metamaterials and Identification of Its Mechanism,” Phys. Rev. Lett.105, 073901 (2010).
[CrossRef] [PubMed]

Ordal, M. A.

Osgood, R. M.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95, 137404 (2005).
[CrossRef] [PubMed]

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104, 207403,(2010).
[CrossRef] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “Supporting Information for High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, (2010).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express16, 7181–7188 (2008).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008).
[CrossRef] [PubMed]

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95, 137404 (2005).
[CrossRef] [PubMed]

Pendry, J. B.

S. OBrien and J. B. Pendry, “Magnetic activity at infrared frequencies in structured metallic photonic crystals,” J. Phys.: Condens. Matter14, 6383–6394 (2002).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter10, 4785–4809 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett.76, 4773–4776 (1996).
[CrossRef] [PubMed]

Podolskiy, V. A.

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A: Pure Appl. Opt.7, S32–S37 (2005).
[CrossRef]

Qiang, R.

R. Qiang, R. L. Chen, and J. Chen, “Modeling Electrical Properties of Gold Films at Infrared Frequency Using FDTD Method,” Int. J. Infra Milli25, 1263–1270 (2004).
[CrossRef]

Qiu, M.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond Photothermal Effects in Plasmonic Nanostructures,” ACS Nano6, 2550–2557 (2012).
[CrossRef] [PubMed]

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” Appl. Phys. Lett.109, 074510 (2011).

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “Supporting Information for High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, (2010).
[CrossRef]

Ramakrishna, S. A.

S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press, Boca Raton, 2008).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter10, 4785–4809 (1999).
[CrossRef]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008).
[CrossRef] [PubMed]

Sarychev, A. K.

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A: Pure Appl. Opt.7, S32–S37 (2005).
[CrossRef]

Savoy, S.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt.14, 024005 (2012).
[CrossRef]

Shalaev, V. M.

U. K. Chettiar, A. V. Kildishev, T. A. Klar, and V. M. Shalaev, “Negative index metamaterial combining magnetic resonators with metal films,” Opt. Express14, 7872–7877 (2006).
[CrossRef] [PubMed]

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A: Pure Appl. Opt.7, S32–S37 (2005).
[CrossRef]

Shvets, G.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt.14, 024005 (2012).
[CrossRef]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008).
[CrossRef] [PubMed]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104, 207403,(2010).
[CrossRef] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104, 207403,(2010).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter10, 4785–4809 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett.76, 4773–4776 (1996).
[CrossRef] [PubMed]

Tao, H.

Taylor, A. J.

H. T. Chen, J. Zhou, J. F. OHara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection Coating Using Metamaterials and Identification of Its Mechanism,” Phys. Rev. Lett.105, 073901 (2010).
[CrossRef] [PubMed]

Wang, J.

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” Appl. Phys. Lett.109, 074510 (2011).

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “Supporting Information for High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, (2010).
[CrossRef]

Ward, C. A.

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010).
[CrossRef] [PubMed]

Wu, C.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt.14, 024005 (2012).
[CrossRef]

Yan, M.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond Photothermal Effects in Plasmonic Nanostructures,” ACS Nano6, 2550–2557 (2012).
[CrossRef] [PubMed]

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” Appl. Phys. Lett.109, 074510 (2011).

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett.76, 4773–4776 (1996).
[CrossRef] [PubMed]

Zeng, Y.

Y. Zeng, H. T. Chen, and D. A. R. Dalvit, “A reinterpretation of the metamaterial perfect absorber,” arXiv:1201.5109v1, (2012).

Zhang, S.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95, 137404 (2005).
[CrossRef] [PubMed]

Zhang, X.

Zhou, J.

H. T. Chen, J. Zhou, J. F. OHara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection Coating Using Metamaterials and Identification of Its Mechanism,” Phys. Rev. Lett.105, 073901 (2010).
[CrossRef] [PubMed]

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “Supporting Information for High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, (2010).
[CrossRef]

Zollars, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt.14, 024005 (2012).
[CrossRef]

ACS Nano (1)

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond Photothermal Effects in Plasmonic Nanostructures,” ACS Nano6, 2550–2557 (2012).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” Appl. Phys. Lett.109, 074510 (2011).

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “Supporting Information for High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, (2010).
[CrossRef]

Infrared Phys Techn (1)

G. Hawkins and R. Hunneman, “The temperature-dependent spectral properties of filter substrate materials in the far-infrared (640 μm),” Infrared Phys Techn45, 69–79 (2004).
[CrossRef]

Int. J. Infra Milli (1)

R. Qiang, R. L. Chen, and J. Chen, “Modeling Electrical Properties of Gold Films at Infrared Frequency Using FDTD Method,” Int. J. Infra Milli25, 1263–1270 (2004).
[CrossRef]

J. Opt. (1)

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt.14, 024005 (2012).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A: Pure Appl. Opt.7, S32–S37 (2005).
[CrossRef]

J. Phys. Condens. Matter (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter10, 4785–4809 (1999).
[CrossRef]

J. Phys.: Condens. Matter (1)

S. OBrien and J. B. Pendry, “Magnetic activity at infrared frequencies in structured metallic photonic crystals,” J. Phys.: Condens. Matter14, 6383–6394 (2002).
[CrossRef]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (5)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104, 207403,(2010).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett.76, 4773–4776 (1996).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95, 137404 (2005).
[CrossRef] [PubMed]

H. T. Chen, J. Zhou, J. F. OHara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection Coating Using Metamaterials and Identification of Its Mechanism,” Phys. Rev. Lett.105, 073901 (2010).
[CrossRef] [PubMed]

Other (3)

COMSOL Multiphysics RF Module 3.5a User’s Guide.

Y. Zeng, H. T. Chen, and D. A. R. Dalvit, “A reinterpretation of the metamaterial perfect absorber,” arXiv:1201.5109v1, (2012).

S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press, Boca Raton, 2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Electromagnetic quantities calculated for absorbing structures with h= 100 nm, t= 150 nm, d= 60 nm, r= 1 μm and a= 2μm at the resonant wavelength 5.34 μm are showm (b) Electric field magnitude, (c) surface currents density, (d) Magnetic field magnitude, (e) power flow given by Poynting vector, (f) resistive heating in the material.

Fig. 2
Fig. 2

Simulated Absorbance spectra of the designed absorber structures for (a) different thicknesses of dielectric film, (b) angle independence of the absorbance for different polarization, (c) and (d) different thicknesses of ground plane and dielectric layer thickness of 60 nm, (e) different thickness of gold disk with dielectric layer 60 nm. (a) to (e) are for metamaterial structure with continuous dielectric layer and gold ground plane. (f) shows the broadband absorbance for stacks of metal/dielectric/metal disk.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = 1 ω p 2 ω ( ω + i γ ) .

Metrics