Abstract

We study modulation-free methods for producing sub-Doppler, dispersive line shapes for laser stabilization near the potassium D2 transitions at 767 nm. Polarization spectroscopy is performed and a comparison is made between the use of a mirror or beam splitter for aligning the counter-propagating pump and probe beams. Conventional magnetically-induced dichroism is found to suffer from a small dispersion and large background offset. We therefore introduce a modified scheme, using two spatially separated pump-probe beam pairs. Finally we compare our results to methods using phase modulation and heterodyne detection.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Hänsch, M. D. Levenson, A. L. Schawlow, and G. Assanto, “Complete hyperfine structure of a molecular iodine line,” Phys. Rev. Lett.26, 946–949 (1971).
    [CrossRef]
  2. P. R. Berman and V. S. Malinovsky, Principles of Laser Spectroscopy and Quantum Optics (Princeton University Press, Princeton, 2011).
  3. T. P. Dinneen, C. D. Wallace, and P. L. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun.92, 277–282 (1992).
    [CrossRef]
  4. C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett.36, 1170–1173 (1976).
    [CrossRef]
  5. C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B35, 5141–5151 (2002).
    [CrossRef]
  6. K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt.37, 3295–3298 (1998).
    [CrossRef]
  7. U. Shim, J.-A. Kim, and W. Jhe, “Saturated absorption spectroscopy in the presence of a longitudinal magnetic field,” J. Kor. Phys. Soc.35, 222–225 (1999).
  8. G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B75, 613–619 (2002).
    [CrossRef]
  9. T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D22, 279–283 (2003).
    [CrossRef]
  10. N. P. Robins, B. J. J. Slagmolen, D. A. Shaddock, J. D. Close, and M. B. Gray, “Interferometric, modulation-free laser stabilization,” Opt. Lett.27, 1905–1907 (2002).
    [CrossRef]
  11. F. Wei, D. Chen, Z. Fang, H. Cai, and R. Qu, “Modulation-free frequency stabilization of external-cavity diode laser based on a phase-difference biased Sagnac interferometer,” Opt. Lett.35, 3853–3855 (2010).
    [CrossRef] [PubMed]
  12. L. Mudarikwa, K. Pahwa, and J. Goldwin, “Sub-Doppler modulation spectroscopy of potassium for laser stabilization,” J. Phys. B45, 065002 (2012).
    [CrossRef]
  13. M. Pichler and D. C. Hall, “Simple laser frequency locking based on Doppler-free magnetically induced dichroism,” Opt. Commun.285, 50–53 (2012).
    [CrossRef]
  14. M. L. Harris, S. L. Cornish, A. Tripathi, and I. G. Hughes, “Optimization of sub-Doppler DAVLL on the rubidium D2 line,” J. Phys. B41, 085401 (2008).
    [CrossRef]
  15. H. Wang, P. L Gould, and W. C. Stwalley, “Long-range interaction of the 39K(4s)+39K(4p) asymptote by photoassociative spectroscopy. I. The 0g− pure long-range state and the long-range potential constants,” J. Chem. Phys.106, 7899–7912 (1997).
    [CrossRef]
  16. D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys.72, 631–637 (2004).
    [CrossRef]
  17. S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition frequencies of the D lines of 39K, 40K, and 41K measured with a femtosecond laser frequency comb,” Phys. Rev. A74, 032503 (2006).
    [CrossRef]
  18. P. G. Pappas, M. M. Burns, D. D. Hinshelwood, and M. S. Feld, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A21, 1955–1968 (1980).
    [CrossRef]
  19. B. E. Sherlock and I. G. Hughes, “How weak is a weak probe in laser spectroscopy?” Am. J. Phys.77, 111–115 (2009).
    [CrossRef]
  20. H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer, New York, 1999).
    [CrossRef]
  21. V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun.263, 249–255 (2006).
    [CrossRef]

2012 (2)

L. Mudarikwa, K. Pahwa, and J. Goldwin, “Sub-Doppler modulation spectroscopy of potassium for laser stabilization,” J. Phys. B45, 065002 (2012).
[CrossRef]

M. Pichler and D. C. Hall, “Simple laser frequency locking based on Doppler-free magnetically induced dichroism,” Opt. Commun.285, 50–53 (2012).
[CrossRef]

2010 (1)

2009 (1)

B. E. Sherlock and I. G. Hughes, “How weak is a weak probe in laser spectroscopy?” Am. J. Phys.77, 111–115 (2009).
[CrossRef]

2008 (1)

M. L. Harris, S. L. Cornish, A. Tripathi, and I. G. Hughes, “Optimization of sub-Doppler DAVLL on the rubidium D2 line,” J. Phys. B41, 085401 (2008).
[CrossRef]

2006 (2)

S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition frequencies of the D lines of 39K, 40K, and 41K measured with a femtosecond laser frequency comb,” Phys. Rev. A74, 032503 (2006).
[CrossRef]

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun.263, 249–255 (2006).
[CrossRef]

2004 (1)

D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys.72, 631–637 (2004).
[CrossRef]

2003 (1)

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D22, 279–283 (2003).
[CrossRef]

2002 (3)

N. P. Robins, B. J. J. Slagmolen, D. A. Shaddock, J. D. Close, and M. B. Gray, “Interferometric, modulation-free laser stabilization,” Opt. Lett.27, 1905–1907 (2002).
[CrossRef]

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B35, 5141–5151 (2002).
[CrossRef]

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B75, 613–619 (2002).
[CrossRef]

1999 (1)

U. Shim, J.-A. Kim, and W. Jhe, “Saturated absorption spectroscopy in the presence of a longitudinal magnetic field,” J. Kor. Phys. Soc.35, 222–225 (1999).

1998 (1)

1997 (1)

H. Wang, P. L Gould, and W. C. Stwalley, “Long-range interaction of the 39K(4s)+39K(4p) asymptote by photoassociative spectroscopy. I. The 0g− pure long-range state and the long-range potential constants,” J. Chem. Phys.106, 7899–7912 (1997).
[CrossRef]

1992 (1)

T. P. Dinneen, C. D. Wallace, and P. L. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun.92, 277–282 (1992).
[CrossRef]

1980 (1)

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, and M. S. Feld, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A21, 1955–1968 (1980).
[CrossRef]

1976 (1)

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett.36, 1170–1173 (1976).
[CrossRef]

1971 (1)

T. W. Hänsch, M. D. Levenson, A. L. Schawlow, and G. Assanto, “Complete hyperfine structure of a molecular iodine line,” Phys. Rev. Lett.26, 946–949 (1971).
[CrossRef]

Adams, C. S.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B35, 5141–5151 (2002).
[CrossRef]

Assanto, G.

T. W. Hänsch, M. D. Levenson, A. L. Schawlow, and G. Assanto, “Complete hyperfine structure of a molecular iodine line,” Phys. Rev. Lett.26, 946–949 (1971).
[CrossRef]

Berman, P. R.

P. R. Berman and V. S. Malinovsky, Principles of Laser Spectroscopy and Quantum Optics (Princeton University Press, Princeton, 2011).

Burns, M. M.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, and M. S. Feld, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A21, 1955–1968 (1980).
[CrossRef]

Cai, H.

Chen, D.

Close, J. D.

Cornish, S. L.

M. L. Harris, S. L. Cornish, A. Tripathi, and I. G. Hughes, “Optimization of sub-Doppler DAVLL on the rubidium D2 line,” J. Phys. B41, 085401 (2008).
[CrossRef]

Corwin, K. L.

Cox, S. G.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B35, 5141–5151 (2002).
[CrossRef]

Dinneen, T. P.

T. P. Dinneen, C. D. Wallace, and P. L. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun.92, 277–282 (1992).
[CrossRef]

Epstein, R. J.

Falke, S.

S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition frequencies of the D lines of 39K, 40K, and 41K measured with a femtosecond laser frequency comb,” Phys. Rev. A74, 032503 (2006).
[CrossRef]

Fang, Z.

Fattori, M.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D22, 279–283 (2003).
[CrossRef]

Feld, M. S.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, and M. S. Feld, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A21, 1955–1968 (1980).
[CrossRef]

Gawlik, W.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B75, 613–619 (2002).
[CrossRef]

Goldwin, J.

L. Mudarikwa, K. Pahwa, and J. Goldwin, “Sub-Doppler modulation spectroscopy of potassium for laser stabilization,” J. Phys. B45, 065002 (2012).
[CrossRef]

Gould, P. L

H. Wang, P. L Gould, and W. C. Stwalley, “Long-range interaction of the 39K(4s)+39K(4p) asymptote by photoassociative spectroscopy. I. The 0g− pure long-range state and the long-range potential constants,” J. Chem. Phys.106, 7899–7912 (1997).
[CrossRef]

Gould, P. L.

T. P. Dinneen, C. D. Wallace, and P. L. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun.92, 277–282 (1992).
[CrossRef]

Gray, M. B.

Griffin, P. F.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B35, 5141–5151 (2002).
[CrossRef]

Grosche, G.

S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition frequencies of the D lines of 39K, 40K, and 41K measured with a femtosecond laser frequency comb,” Phys. Rev. A74, 032503 (2006).
[CrossRef]

Hall, D. C.

M. Pichler and D. C. Hall, “Simple laser frequency locking based on Doppler-free magnetically induced dichroism,” Opt. Commun.285, 50–53 (2012).
[CrossRef]

Hand, C. F.

Hänsch, T. W.

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett.36, 1170–1173 (1976).
[CrossRef]

T. W. Hänsch, M. D. Levenson, A. L. Schawlow, and G. Assanto, “Complete hyperfine structure of a molecular iodine line,” Phys. Rev. Lett.26, 946–949 (1971).
[CrossRef]

Harris, M. L.

M. L. Harris, S. L. Cornish, A. Tripathi, and I. G. Hughes, “Optimization of sub-Doppler DAVLL on the rubidium D2 line,” J. Phys. B41, 085401 (2008).
[CrossRef]

Hinshelwood, D. D.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, and M. S. Feld, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A21, 1955–1968 (1980).
[CrossRef]

Hughes, I. G.

B. E. Sherlock and I. G. Hughes, “How weak is a weak probe in laser spectroscopy?” Am. J. Phys.77, 111–115 (2009).
[CrossRef]

M. L. Harris, S. L. Cornish, A. Tripathi, and I. G. Hughes, “Optimization of sub-Doppler DAVLL on the rubidium D2 line,” J. Phys. B41, 085401 (2008).
[CrossRef]

D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys.72, 631–637 (2004).
[CrossRef]

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B35, 5141–5151 (2002).
[CrossRef]

Jhe, W.

U. Shim, J.-A. Kim, and W. Jhe, “Saturated absorption spectroscopy in the presence of a longitudinal magnetic field,” J. Kor. Phys. Soc.35, 222–225 (1999).

Kim, J.-A.

U. Shim, J.-A. Kim, and W. Jhe, “Saturated absorption spectroscopy in the presence of a longitudinal magnetic field,” J. Kor. Phys. Soc.35, 222–225 (1999).

Lamporesi, G.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D22, 279–283 (2003).
[CrossRef]

Levenson, M. D.

T. W. Hänsch, M. D. Levenson, A. L. Schawlow, and G. Assanto, “Complete hyperfine structure of a molecular iodine line,” Phys. Rev. Lett.26, 946–949 (1971).
[CrossRef]

Lisdat, C.

S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition frequencies of the D lines of 39K, 40K, and 41K measured with a femtosecond laser frequency comb,” Phys. Rev. A74, 032503 (2006).
[CrossRef]

Lu, Z.-T.

Malinovsky, V. S.

P. R. Berman and V. S. Malinovsky, Principles of Laser Spectroscopy and Quantum Optics (Princeton University Press, Princeton, 2011).

Mehendale, S. C.

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun.263, 249–255 (2006).
[CrossRef]

Metcalf, H. J.

H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer, New York, 1999).
[CrossRef]

Mishra, S. R.

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun.263, 249–255 (2006).
[CrossRef]

Mudarikwa, L.

L. Mudarikwa, K. Pahwa, and J. Goldwin, “Sub-Doppler modulation spectroscopy of potassium for laser stabilization,” J. Phys. B45, 065002 (2012).
[CrossRef]

Pahwa, K.

L. Mudarikwa, K. Pahwa, and J. Goldwin, “Sub-Doppler modulation spectroscopy of potassium for laser stabilization,” J. Phys. B45, 065002 (2012).
[CrossRef]

Pappas, P. G.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, and M. S. Feld, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A21, 1955–1968 (1980).
[CrossRef]

Pearman, C. P.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B35, 5141–5151 (2002).
[CrossRef]

Petelski, T.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D22, 279–283 (2003).
[CrossRef]

Pichler, M.

M. Pichler and D. C. Hall, “Simple laser frequency locking based on Doppler-free magnetically induced dichroism,” Opt. Commun.285, 50–53 (2012).
[CrossRef]

Qu, R.

Rawat, H. S.

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun.263, 249–255 (2006).
[CrossRef]

Robins, N. P.

Schawlow, A. L.

T. W. Hänsch, M. D. Levenson, A. L. Schawlow, and G. Assanto, “Complete hyperfine structure of a molecular iodine line,” Phys. Rev. Lett.26, 946–949 (1971).
[CrossRef]

Schnatz, H.

S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition frequencies of the D lines of 39K, 40K, and 41K measured with a femtosecond laser frequency comb,” Phys. Rev. A74, 032503 (2006).
[CrossRef]

Shaddock, D. A.

Sherlock, B. E.

B. E. Sherlock and I. G. Hughes, “How weak is a weak probe in laser spectroscopy?” Am. J. Phys.77, 111–115 (2009).
[CrossRef]

Shim, U.

U. Shim, J.-A. Kim, and W. Jhe, “Saturated absorption spectroscopy in the presence of a longitudinal magnetic field,” J. Kor. Phys. Soc.35, 222–225 (1999).

Singh, S.

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun.263, 249–255 (2006).
[CrossRef]

Slagmolen, B. J. J.

Smith, D. A.

D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys.72, 631–637 (2004).
[CrossRef]

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B35, 5141–5151 (2002).
[CrossRef]

Stuhler, J.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D22, 279–283 (2003).
[CrossRef]

Stwalley, W. C.

H. Wang, P. L Gould, and W. C. Stwalley, “Long-range interaction of the 39K(4s)+39K(4p) asymptote by photoassociative spectroscopy. I. The 0g− pure long-range state and the long-range potential constants,” J. Chem. Phys.106, 7899–7912 (1997).
[CrossRef]

Tiemann, E.

S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition frequencies of the D lines of 39K, 40K, and 41K measured with a femtosecond laser frequency comb,” Phys. Rev. A74, 032503 (2006).
[CrossRef]

Tino, G. M.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D22, 279–283 (2003).
[CrossRef]

Tiwari, V. B.

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun.263, 249–255 (2006).
[CrossRef]

Tripathi, A.

M. L. Harris, S. L. Cornish, A. Tripathi, and I. G. Hughes, “Optimization of sub-Doppler DAVLL on the rubidium D2 line,” J. Phys. B41, 085401 (2008).
[CrossRef]

van der Straten, P.

H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer, New York, 1999).
[CrossRef]

Wallace, C. D.

T. P. Dinneen, C. D. Wallace, and P. L. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun.92, 277–282 (1992).
[CrossRef]

Wang, H.

H. Wang, P. L Gould, and W. C. Stwalley, “Long-range interaction of the 39K(4s)+39K(4p) asymptote by photoassociative spectroscopy. I. The 0g− pure long-range state and the long-range potential constants,” J. Chem. Phys.106, 7899–7912 (1997).
[CrossRef]

Wasik, G.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B75, 613–619 (2002).
[CrossRef]

Wei, F.

Wieman, C.

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett.36, 1170–1173 (1976).
[CrossRef]

Wieman, C. E.

Zachorowski, J.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B75, 613–619 (2002).
[CrossRef]

Zawadzki, W.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B75, 613–619 (2002).
[CrossRef]

Am. J. Phys. (2)

D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys.72, 631–637 (2004).
[CrossRef]

B. E. Sherlock and I. G. Hughes, “How weak is a weak probe in laser spectroscopy?” Am. J. Phys.77, 111–115 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B75, 613–619 (2002).
[CrossRef]

Eur. Phys. J. D (1)

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D22, 279–283 (2003).
[CrossRef]

J. Chem. Phys. (1)

H. Wang, P. L Gould, and W. C. Stwalley, “Long-range interaction of the 39K(4s)+39K(4p) asymptote by photoassociative spectroscopy. I. The 0g− pure long-range state and the long-range potential constants,” J. Chem. Phys.106, 7899–7912 (1997).
[CrossRef]

J. Kor. Phys. Soc. (1)

U. Shim, J.-A. Kim, and W. Jhe, “Saturated absorption spectroscopy in the presence of a longitudinal magnetic field,” J. Kor. Phys. Soc.35, 222–225 (1999).

J. Phys. B (3)

L. Mudarikwa, K. Pahwa, and J. Goldwin, “Sub-Doppler modulation spectroscopy of potassium for laser stabilization,” J. Phys. B45, 065002 (2012).
[CrossRef]

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B35, 5141–5151 (2002).
[CrossRef]

M. L. Harris, S. L. Cornish, A. Tripathi, and I. G. Hughes, “Optimization of sub-Doppler DAVLL on the rubidium D2 line,” J. Phys. B41, 085401 (2008).
[CrossRef]

Opt. Commun. (3)

M. Pichler and D. C. Hall, “Simple laser frequency locking based on Doppler-free magnetically induced dichroism,” Opt. Commun.285, 50–53 (2012).
[CrossRef]

T. P. Dinneen, C. D. Wallace, and P. L. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun.92, 277–282 (1992).
[CrossRef]

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun.263, 249–255 (2006).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (2)

S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition frequencies of the D lines of 39K, 40K, and 41K measured with a femtosecond laser frequency comb,” Phys. Rev. A74, 032503 (2006).
[CrossRef]

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, and M. S. Feld, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A21, 1955–1968 (1980).
[CrossRef]

Phys. Rev. Lett. (2)

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett.36, 1170–1173 (1976).
[CrossRef]

T. W. Hänsch, M. D. Levenson, A. L. Schawlow, and G. Assanto, “Complete hyperfine structure of a molecular iodine line,” Phys. Rev. Lett.26, 946–949 (1971).
[CrossRef]

Other (2)

P. R. Berman and V. S. Malinovsky, Principles of Laser Spectroscopy and Quantum Optics (Princeton University Press, Princeton, 2011).

H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer, New York, 1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Saturated absorption of potassium, taken at a cell temperature of 48 °C. The labeled transitions are described in the text.

Fig. 2
Fig. 2

Schematic setup for polarization spectroscopy. Pump and probe beams are derived from a single incident beam (not shown). The potassium reference cell is wrapped in a foil heater and a solenoid, and then placed in a magentic shield. NPBS: non-polarizing (50:50) beam splitter; QWP: quarter-wave plate; HWP: half-wave plate; PBS: polarizing beam splitter; PD: photodiode.

Fig. 3
Fig. 3

Polarization spectroscopy of potassium. The middle curve is a PS spectrum taken with the setup show in Fig. 2, and the lower curve is the spectrum obtained under the same conditions when the NPBS is replaced with a gold mirror, resulting in a ∼ 40 mrad crossing angle between pump and probe beams. For comparison, the upper curve shows saturated absorption in a separate cell, with the Doppler background subtracted. The curves have been shifted vertically for clarity.

Fig. 4
Fig. 4

Dependence of polarization spectroscopy on pump intensity, with fixed 1.9 ± 0.3 mW/cm2 probe intensity. (a) Slope at the zero crossing. Red circles correspond to the F = 2 feature, and blue triangles to the crossover. (b) Peak-to-peak amplitude between turning points.

Fig. 5
Fig. 5

Dependence of polarization spectra on probe intensity, with fixed 5.6±1.0 mW/cm2 pump intensity. (a) Slope at the zero crossing. Points are as in Fig. 4. (b) Peak-to-peak amplitude.

Fig. 6
Fig. 6

Split-beam magnetically induced dichroism. (a) Simplified schematic. Notations are as in Fig. 2. The dashed quarter-wave plate QWP* is absent in Type I spectroscopy and present in Type II. (b) Comparison of pump and probe polarizations for Type I and II configurations. (c) Type I spectroscopy. The dark (red) curve shows the magnetically induced dichroism, and the faint (blue) curve shows saturated absorption for reference. For the MD signal, the pump intensity per beam was 7.3 ± 1.5 mW/cm2 (measured just before the cell) and the magnetic field was 10.3 G. (d) Type II spectroscopy, under the same conditions as in (c).

Fig. 7
Fig. 7

Dependence of the magnetic dichroism error signal with applied field. Only data for the crossover are shown. The pump intensities were 2.7±0.5 mW/cm2 each, measured just before the cell. (a) Slope at the zero-crossing. (b) Peak-to-peak amplitude.

Fig. 8
Fig. 8

Dependence of the MD error signal on beam intensity. Shown is the intensity per pump beam, measured just before the cell. The magnetic field was 10.3 G. (a) Slope at the zero-crossing. (b) Peak-to-peak amplitude.

Tables (1)

Tables Icon

Table 1 Comparison of modulation-based and modulation-free error signals. Results for direct modulation (DM) and modulation transfer (MT) are from [12]. Numbers for MD correspond to the crossover, and all others to the F = 2 feature.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ V = V 0 e α L ( Δ α 0 L x 1 + x 2 )
α ± = α D ± ( 1 ± )
Δ V α α +
Δ V = A [ 1 1 + ( x δ ) 2 1 1 + ( x + δ ) 2 ]

Metrics